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Abstract

Background: In medical research and practice, the p-value is arguably the most often used statistic and yet it is
widely misconstrued as the probability of the type I error, which comes with serious consequences. This
misunderstanding can greatly affect the reproducibility in research, treatment selection in medical practice, and
model specification in empirical analyses. By using plain language and concrete examples, this paper is intended
to elucidate the p-value confusion from its root, to explicate the difference between significance and hypothesis
testing, to illuminate the consequences of the confusion, and to present a viable alternative to the conventional
p-value.

Main text: The confusion with p-values has plagued the research community and medical practitioners for
decades. However, efforts to clarify it have been largely futile, in part, because intuitive yet mathematically
rigorous educational materials are scarce. Additionally, the lack of a practical alternative to the p-value for
guarding against randomness also plays a role. The p-value confusion is rooted in the misconception of
significance and hypothesis testing. Most, including many statisticians, are unaware that p-values and significance
testing formed by Fisher are incomparable to the hypothesis testing paradigm created by Neyman and Pearson.
And most otherwise great statistics textbooks tend to cobble the two paradigms together and make no effort to
elucidate the subtle but fundamental differences between them. The p-value is a practical tool gauging the
“strength of evidence” against the null hypothesis. It informs investigators that a p-value of 0.001, for example, is
stronger than 0.05. However, p-values produced in significance testing are not the probabilities of type I errors as
commonly misconceived. For a p-value of 0.05, the chance a treatment does not work is not 5%; rather, it is at
least 28.9%.

Conclusions: A long-overdue effort to understand p-values correctly is much needed. However, in medical
research and practice, just banning significance testing and accepting uncertainty are not enough. Researchers,
clinicians, and patients alike need to know the probability a treatment will or will not work. Thus, the calibrated
p-values (the probability that a treatment does not work) should be reported in research papers.

Keywords: P-values, Type I error, Significance testing, Hypothesis testing, Research reproducibility, Calibrated P-
values

Background
Without any exaggeration, humankind’s wellbeing is
profoundly affected by p-values: Health depends on
prevention and intervention, ascertaining their effica-
cies relies on research, and research findings hinge on
p-values. The p-value is a sine qua non for deciding

if a research finding is real or by chance, a treatment
is effective or even harmful, a paper will be accepted
or rejected, a grant will be funded or declined, or if a
drug will be approved or denied by U.S. Food & Drug
Administration (FDA).
Yet, the misconception of p-values is pervasive and

virtually universal. “The P value is probably the most
ubiquitous and at the same time, misunderstood, misin-
terpreted, and occasionally miscalculated index in all of
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biomedical research [1].” Even “among statisticians there
is a near ubiquitous misinterpretation of p values as fre-
quentist error probabilities [2].”
The extent of the p-value confusion is well illustrated

by a survey of medical residents published in the Journal
of the American Medical Association (JAMA). In the art-
icle, 88% of the residents expressed fair to complete con-
fidence in understanding p-values, but 100% of them
had the p-value interpretation wrong [1, 3]. Make no
mistake, they are the future experts and leaders in clin-
ical research that will affect public health policies, treat-
ment options, and ultimately people’s health.
The survey published in JAMA used multiple-choice

format with four potential answers for a correct inter-
pretation of p > 0.05 [3]:

a. The chances are greater than 1 in 20 that a
difference would be found again if the study were
repeated.

b. The probability is less than 1 in 20 that a difference
this large could occur by chance alone.

c. The probability is greater than 1 in 20 that a
difference this large could occur by chance alone.

d. The chance is 95% that the study is correct.

How could it be possible that 100% of the residents
selected incorrect answers when one of the possible
choices was supposed to be correct? As reported in
the paper [3], 58.8% of the residents selected choice c
which was designated by the authors as the correct
answer. The irony is that choice c is not correct ei-
ther. In fact, none of the four choices are correct. So,
not only were the residents who picked choice c
wrong but also the authors as well. Keep in mind, the
paper was peer-reviewed and published by one of the
most prestigious medical journals in the world.
This is no coincidence -- most otherwise great

statistics textbooks make no effort or fail to clarify
the massive confusion about p-values, and even
provide outright wrong interpretations. The confu-
sion is near-universal among medical researchers and
clinicians [4–6].
Unfortunately, the misunderstanding of p-values is not

inconsequential. For a p-value of 0.05, the chance a
treatment doesn’t work is not 5%; rather, it is at least
28.9% [7].
After decades of misunderstanding and inaction, the

pendulum of p-values finally started to swing in 2014
when the American Statistical Association (ASA) was
taunted by two pairs of questions and answers on its
discussion forum:

Q: Why do so many colleges and grad schools teach
p = 0.05?

A: Because that’s still what the scientific community
and journal editors use.
Q: Why do so many people still use p = 0.05?
A: Because that’s what they were taught in college or
grad school.

The questions and answers, posted by George Cobb,
Professor Emeritus of Mathematics & Statistics from
Mount Holyoke College, spurred the ASA Board into ac-
tion. In 2015, for the first time, the ASA board decided
to take on the challenge of developing a policy statement
on p-values, much like the American Heart Association
(AHA) policy statement on dietary fat and heart disease.
After months of preparation, in October 2015, a group
of 20 experts gathered at the ASA Office in Alexandria,
Virginia and laid out the roadmap during a two-day
meeting. Over the next three months, multiple drafts of
the p-value statement were produced. On January 29,
2016, the ASA Executive Committee approved the p-
value statement with six principles listed on what p-
values are or are not [8].
Although the statement hardly made any ripples in

medical journals, it grabbed many statisticians’ attention
and ignited a rebellion against p-values among some sci-
entists. In March 2019, Nature published a comment
with over 800 signatories calling for an end of signifi-
cance testing with p < 0.05 [9]. At the same time, the
American Statistician that carried the ASA’s p-value
statement published a special issue with 43 articles
exploring ways to report results without statistical sig-
nificance testing. Unfortunately, no consensus was
reached for a better alternative in gauging the reliability
of studies, and the authors even disagreed on whether
the p-value should continue to be used or abandoned.
The only agreement reached was the abolishment of
significance testing as summarized in the special issue’s
editorial: “statistically significant” – don’t say it and don’t
use it [10].
So, for researchers, practitioners, and journals in the

medical field, what will replace significance testing? And
what is significance testing anyway? Is it different from
hypothesis testing? Should p-values be banned too? If
not, how should p-values be used and interpreted? In
healthcare or medicine, we must accept uncertainty as
the editorial of the special issue urged, but do we need
to know how likely a given treatment will work or not?
To answer these questions, we must get to the bottom

of the misconception and confusion, and we must iden-
tify a practical alternative(s). However, despite numerous
publications on this topic, few studies aimed for these
goals are understandable to non-statisticians and retain
mathematical rigor at the same time. This paper is
intended to fill this gap by using plain language and
concrete examples to elucidate the p-value confusion
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from its root, to intuitively describe the true meaning of
p-values, to illuminate the consequences of the
confusion, and to present a viable alternative to the
conventional p-value.

Main text
The root of confusion
The p-value confusion began 100 years ago when the
father of modern statistics, Ronald Aylmer Fisher,
formed the paradigm of significance testing. But it
should be noted Fisher bears no blame for the miscon-
ception; it is the users who tend to muddle Fisher’s sig-
nificance testing with hypothesis testing developed by
Jerzy Neyman and Egon Pearson. To clarify the confu-
sion, this section uses concrete examples and plain lan-
guage to illustrate the essence of significance and
hypothesis testing and to explicate the difference
between the p-value and the type I error.

Significance testing
Suppose a painkiller has a proven track record of lasting
for 24 h and now another drug manufacturer claims its
new over-the-counter painkiller lasts longer. An investi-
gator wants to test if the claim is true. Instead of collect-
ing data from all the patients who took the new
medication, which is often infeasible, the investigator de-
cided to randomly survey 50 patients to gather data on
how long (hours) the new painkiller lasts. Thus, the in-
vestigator now has a random variable X , the average
hours from a sample of 50 patients. This is a random
variable because the 50 patients are randomly selected,
and nobody knows what value this variable will take be-
fore conducting the survey and calculating the average.
Nevertheless, each survey does produce a fixed number,
x , which itself is not a random variable, rather it is a
realization or observation of the random variable X
(hereafter, let X denote a random variable and x denote
a fixed value, an observation of X).
Intuitively, if the survey yielded a value (average hours

the painkiller lasts) very close to 24, say, 23 or 25, the in-
vestigator would not believe the new painkiller is worse
or better. If the survey came to an average of 32 h the in-
vestigator would believe it indeed lasts longer. However,
it would be hard to form an opinion if the survey
showed an average of 22 or 26 h. Does the new painkiller
really last shorter, longer, or it is due to random chance
(after all, only 50 patients were surveyed)?
This is where the significance test formulated by

Fisher in the 1920s comes in. Note that although mod-
ern significance testing began with the Student’s t-test in
1908, it was Fisher who extended the test to the testing
of two samples, regression coefficients, as well as

analysis of variance, and created the paradigm of signifi-
cance testing.
In Fisher’s significance testing, the Central Limit The-

orem (CLT) plays a vital role, which states that given a
population with a mean of μ and a variance of σ2, re-
gardless of the shape of its distribution, the sample mean
statistic X has a normal distribution with the same mean

μ and variance σ2/n, or ðX−μÞ
σ=

ffiffi
n

p has a standard normal dis-

tribution with a mean of 0 and a variance of 1, as long
as the sample size n is large enough. In practice, the dis-
tribution of the study population is often unknown and
n ≥ 30 is considered sufficient for the sample mean stat-
istic to have an approximately normal distribution.
In conducting the significance test, a null hypothesis is

first formed, i.e., there is no difference between the new
and old painkillers, or the new painkiller also lasts for
24 h (the mean of X = μ =24). Under this assumption
and based on CLT, X is normally distributed with a
mean of 24 and a variance of σ2/50. Assume σ2 = 200
(typically σ2 is unknown but can be estimated), then X
has a normal distribution N (24, 2), or Z ¼ ðX−24Þ=2
has a standard normal distribution with a mean of 0 and
standard deviation of 1 (Z is a standardized random vari-
able). The next step is to calculate z = j x−24 j =2 based
on the survey data and then find the p-value or the
probability of |Z| > z from a normal distribution table (z
is a fixed value or an observation of Z). Fisher suggested
if the p-value is smaller than 0.05 then the hypothesis is
rejected. He argued that the farther the sample mean x
from the population mean μ, the smaller the p-value, the
less likely the null hypothesis is true. Just as Fisher
stated, “Either an exceptionally rare chance has occurred
or the theory [H0] is not true [11].”

Based on this paradigm, if the survey came back with
an average of 26 h, i.e., x ¼ 26; then z = 1 and p = 0.3173,
as a result, the investigator accepts the null hypothesis
(orthodoxically, fails to reject the null hypothesis), i.e.,
the new painkiller does not last longer and the difference
between 24 and 26 h is due to chance or random factors.
On the other hand, if the survey revealed an average of
28 h, i.e., x ¼ 28; then z = 2, and p = 0.0455, thus the null
hypothesis is rejected. In other words, the new painkiller
is deemed lasting longer.
Now, can the p-value, 0.0455, be interpreted as the

probability of the type I error, or only 4.55% chance the
new painkiller does not last longer (no difference), or the
probability that the difference between 24 and 28 h is due
to chance, or the investigator could make a mistake by
rejecting the null hypothesis but only wrong about 4.55%
of the time? The answer is No.
So, what is a p-value? Precisely, a p-value tells us how

often we would see a difference as extreme as or more
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extreme than what is observed if there really were no dif-
ference. Drawing a bell curve with the p-value on it will
readily delineate this definition or concept.
In the example above, if the new painkiller also lasts

for 24 h, the p-value of 0.0455 means there is a 4.55%
chance that the investigator would observe x≤20 or x≥2
8; it is not 4.55% chance the new painkiller also lasts for
24 h. It is categorically wrong to believe the p-value is
the probability of the null hypothesis being true (there is
no difference), or 1 – p is the probability of the null hy-
pothesis being false (there is a difference) because the p-
value is deduced based on the premise that the null hy-
pothesis is true. The p-value, a conditional probability
given H0 is true, is totally invalidated if the null hypoth-
esis is deemed not true.
In addition, p-values are data-dependent: each test

(survey) produces a different p-value; for the same ana-
lysis, it is illogical to say the error rate or the type I error
is 31.73% based on one sample (survey) and 4.55% based
on another. There is no theoretical or empirical basis for
such frequency interpretations. In fact, Fisher himself
was fully aware that his p-value, a relative measure of
evidence against the null hypothesis, does not bear any
interpretation of the long-term error rate. When the p-
value was misinterpreted, he protested the p-value was
not the type I error rate, had no long-run frequentist
characteristics, and should not be explained as a fre-
quency of error if the test was repeated [12].
Interestingly, Fisher was an abstract thinker at the

highest level, but often developed solutions and tests
without solid theoretical foundation. He was an obstin-
ate proponent of inductive inference, i.e., reasoning from
specific to general, or from sample to population, which
is reflected by his significance testing.

Hypothesis testing
On the contrary, mathematicians Jerzy Neyman and
Egon Pearson dismissed the idea of inductive inference
all together and insisted reasoning should be deductive,
i.e., from general to specific. In 1928, they published
the landmark paper on the theoretical foundation for a
statistical inference method that they called “hypothesis
test [12].” In the paper, they introduced the concepts of
alternative hypothesis H1, type I and type II errors,
which were groundbreaking. The Neyman and Pear-
son’s hypothesis test is deductive in nature, i.e., reason-
ing from general to particular. The type I and type II
errors, which must be set ahead, formulate a “rule of
behavior” such that “in the long run of experience, we
shall not be too often wrong,” as stated by Neyman and
Pearson [13].
The hypothesis test can be illustrated by a four-step

process with the painkiller example.

The first step is to lay out what the investigator seeks
to test, i.e. to establish a null hypothesis, H0, and an al-
ternative hypothesis, H1:

H0 : mean of Χ ¼ μ ¼ 24

H1 : mean of Χ ¼ μ ¼ 28

The second step is to set the criteria for the decision,
or to specify an acceptable rate of mistake if the test is
conducted many times. Specifically, that is to set the
probability of the type I error, α, and the probability of
the type II error, β.
A type I error refers to the mistake of rejecting the null

hypothesis when it is true (claiming the treatment works
or the new drug lasts longer but actually it does not). Con-
ventionally and almost universally, the probability of the
type I error or α is set to 0.05, which means 5% of the time
one will be wrong if carrying out the test many times. A
type II error is the failure to reject the null hypothesis that
is not true; the probability of the type II error, β, is con-
ventionally set as 0.2, which is equivalent to a power of
0.8, the probability of detecting the difference if it exists.
Table 1 summarizes the type I and type II errors.
The third step is to select a statistic and the associated

distribution for the test. For the painkiller example, the
statistic is Z = (X−24)/2, and the distribution is the stand-
ard normal. Because the type I error has been set to 0.05
and Z has a standard normal distribution under the null
hypothesis, as shown in Fig. 1, 1.96 becomes the critical
value, − 1.96 ≤ z ≤ 1.96 becomes the acceptance region,
and z < − 1.96 or z > 1.96 becomes the rejection regions.
The final step is to calculate the z value and make a

decision. Similar to significance testing, if the survey re-
sulted in x ¼ 26; then z = 1 < 1.96 and the investigator
accepts the null hypothesis; if the survey revealed x ¼ 28
; then z = 2 > 1.96 and the investigator rejects the null
hypothesis and accepts the alternative hypothesis. It is
interesting to note, in significance testing, “one can
never accept the null hypothesis, only failed to reject it,”
while that is not the case in hypothesis testing.
Unlike Fisher’s significance test, the hypothesis test pos-

sesses a nice frequency explanation: one can be wrong by
rejecting the null hypothesis but cannot be wrong more
than 5% of the time in the long run if the test is performed
many times. Quite intuitively, every time the null hypoth-
esis is rejected (when z < − 1.96 or z > 1.96) there is a
chance that the null hypothesis is true, and a mistake is
made. When the null hypothesis is true, Z = (X−24)/2 is a
random variable with a standard normal distribution as
shown in Fig. 1, thus 5% of the time z = (x−24)/2 would
fall outside (− 1.96, 1.96) and the decision will be wrong
5% of the time. Of course, when the null hypothesis is not
true, rejecting it is not a mistake.
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Noticeably, the p-value plays no role in hypothesis
testing under the framework of the Neyman-Pearson
paradigm [12, 14]. However, most, including many stat-
isticians, are unaware that p-values and significance test-
ing created by Fisher are incomparable to the hypothesis
testing paradigm created by Neyman and Pearson [14,
15], and many statistics textbooks tend to cobble them
together [2, 14]. The near-universal confusion is, at least
in part, caused by the subtle similarities and differences
between the two tests:

1. Both the significance and hypothesis tests use the
same statistic and distribution, for example, Z = (X−
24)/2 and N (0, 1).

2. The hypothesis test compares the observed z with
the critical value 1.96, while the significance test
compares the p-value (based on z) to 0.05, which
are linked by P(|Z| > 1.96) = 0.05.

3. The hypothesis test sets the type I error α at 0.05,
while the significance test also uses 0.05 as the
significance level.

One of the key differences is, for the p-value to be
meaningful in significance testing, the null hypothesis
must be true, while this is not the case for the critical

value in hypothesis testing. Although the critical value is
derived from α based on the null hypothesis, rejecting the
null hypothesis is not a mistake when it is not true; when
it is true, there is a 5% chance that z = (x−24)/2 will fall
outside (− 1.96, 1.96), and the investigator will be wrong
5% of the time (bear in mind, the null hypothesis is either
true or false when a decision is made). In addition, the
type I error and the resultant critical value is set ahead
and fixed, while the p-value is a moving “target” varying
from sample to sample even for the same test.
As if it was not confusing enough, the understanding

and interpretation of p-values are also complicated by
non-experimental studies where model misspecifications
and even p-hacking are common, which often misleads
the audience to believe the model and the findings are
valid for its small p-values [16]. In fact, p-values have
little value in assessing if the relationship between an
outcome and exposure(s) is causal or just an artifact of
confounding – one cannot claim the use of smartphones
causes gun violence even if the p-value for their correl-
ation is close to zero. To see the p-value problem at its
core and to elucidate the confusion, the discussion of p-
values should be in the context of experimental designs
such as randomized controlled trials where the model or
the outcome and exposure(s) are correctly specified.

Table 1 Type I and Type II Errors

Null hypothesis (H0) is true Null hypothesis (H0) is false

Reject the null hypothesis Type I error
False positive

Correct decision
True positive

Accept the null hypothesis Correct decision
True negative

Type II error
False negative

Fig. 1 Standard Normal Distribution with Critical Value 1.96
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The Link between P-values and Type I Errors
The p-value fallacy can be readily quantified under a
Bayesian framework [7, 17, 18]. However, “those omin-
ous words [Bayes theorem], with their associations of
hazy prior probabilities and abstruse mathematical for-
mulas, strike fear into the hearts of most us, clinician,
researcher, and editor alike [19],” as Frank Davidoff,
former Editor of the Annals of Internal Medicine, wrote.
It is understandable but still unfortunate that Bayesian
methods such as Bayes factors, despite their merit, are
still considered exotic by the medical research
community.
Thanks to Sellke, Bayarri, and Berger, the difference

between the p-value and the type I error is quantified
[7]. Based on the conditional frequentist approach,
which was formalized by Kiefer and further developed
by others [20–23], Berger and colleagues established the
lower bound of the error rate P(H0│| Z| >z0) or the type
I error given the p-value [7]: After converting to PDF,
the left side of the equation below shows a mail sign
rather than

P H0│jZj > z0
� � ¼ α pð Þ

¼ 1þ −e� p� ln pð Þ½ �−1� �−1
:

As shown, the lower bound equation is mathematically
straightforward. Noteworthy is that the derivation of the
lower bound is also ingeniously elegant (a simplified
proof is provided in the Supplementary File for those
who are interested in it). The relationship between p-
values and type I errors (lower bound) can be readily
seen from Table 2 showing some of the commonly re-
ported results [7].
As seen in Table 2, the difference between p-values

and the error probabilities (lower bound) is quite strik-
ing. A p-value of 0.05, commonly misinterpreted as only
5% chance the treatment does not work, seems to offer
strong evidence against the null hypothesis; however, the
true probability of the treatment not working is at least
0.289. Keep in mind, the relationship between the p-
value and the type I error is the lower bound; in fact,
many prefer to report the upper bound [6, 7].
The discrepancy between the p-value and the lower-

bound error rate explains the big puzzle of why so many
wonder drugs and treatments worldwide lose their
amazing power outside clinical trials [24–26]. This dis-
crepancy likely also contributes to the frequently re-
ported contradictory findings on risk factors and health

outcomes in observational studies. For example, an early
study published in the New England Journal of Medicine
found drinking coffee was associated with a high risk of
pancreatic cancer [27]. The finding became a big head-
line in The New York Times [28] and the leading author
and probably many frightened readers stopped drinking
coffee. Later studies, however, concluded the finding was
a fluke [29, 30]. Likewise, the p-value fallacy may also
contribute to the ongoing confusion of dietary fat intake
and heart disease. On the one hand, a meta-analysis
published in Annals of Internal Medicine in 2014 con-
cluded “Current evidence does not clearly support car-
diovascular guidelines that encourage high consumption
of polyunsaturated fatty acids and low consumption of
total saturated fats [31].” On the other hand, in the 2017
recommendation, the American Heart Association
(AHA) stated “Taking into consideration the totality of
the scientific evidence, satisfying rigorous criteria for
causality, we conclude strongly that lowering intake of
saturated fat and replacing it with unsaturated fats, espe-
cially polyunsaturated fats, will lower the incidence of
CVD [32].”
In short, the misunderstanding and misinterpretation

of the relationship between the p-value and the type I
error all too often exaggerate the true effects of treat-
ments and risk factors, which in turn leads to conflicting
findings with real public health consequences.

The future of P-values
It is readily apparent that the p-value conundrum poses
a serious challenge to researchers and practitioners
alike in healthcare with real-life consequences. To
address the p-value complications, some believe the use
of p-values should be banned or discouraged [33, 34].
In fact, since 2015, Basic and Applied Social Psychology
has officially banned significance tests and p-values
[35], and Epidemiology has a longstanding policy dis-
couraging the use of significance testing and p-values
[36, 37]. On the other hand, many are against a total
ban [38, 39]. P-values do possess practical utility -- they
offer insight into what is observed and are the first line
of defense against being fooled by randomness. You
would be more suspicious of a coin being fair if nine
heads turned up after ten flips versus, for example, if
seven heads did. Similarly, you would like to see how
strong the evidence is against the null hypothesis: say, a
p-value of 0.0499 or 0.0001.
“It is hopeless to expect users to change their reliance

on p-values unless they are offered an alternative way of
judging the reliability of their conclusions [40].” Rather
than banning the use of p-values, many believe the con-
ventional significance level of 0.05 should be lowered for
better research reproducibility [41]. In 2018, 72 statisti-
cians and scientists made the case for changing p < 0.05

Table 2 P-values and Associated Type I Error Probabilities
(lower bound)

P-value 0.20 0.15 0.10 0.05 0.02 0.01 0.005 0.001

α(p) 0.465 0.436 0.385 0.289 0.175 0.111 0.067 0.018
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to p < 0.005 [42]. Inevitably, like most medical treat-
ments, the proposed change is accompanied by some
side effects: For instance, to achieve the same power of
80%, α = 0.005 requires a 70% larger sample size com-
pared to α = 0.05, which could lead to fewer studies due
to limited resources [43].
Other alternatives (e.g., second-generation p-values

[44], and analysis of credibility [45]) have been proposed
in the special issue of the American Statistician; how-
ever, no consensus was reached. As a result, instead of
recommending a ban of p-values, the accompanying edi-
torial of the special issue called for an end of statistical
significance testing [46]: “‘statistically significant’ – don’t
say it and don’t use it [10].”
Will researchers and medical journals heed the

“mandate” banning significance testing? It does not seem
to be likely, at least thus far. Even if they do, it is no more
than just a quibble – a significance test is done as long as
the p-value is produced or reported – anyone seeing the
result would know the p-value is greater or less than 0.05;
the only difference is “Don’t ask, don’t tell.”
In any event, it is the right call to end dichotomizing

the p-value and using it as the sole criterion to judge the
results [47]. There is no practical difference between p =
0.049 and p = 0.051, and “God loves the .06 nearly as
much as the .05 [48].” Furthermore, not all the results
with a p-value close to 0.05 are valueless. Doctors and
patients need to put p-values into context when making
treatment choices, which can be well illustrated by a
hypothetical but not unrealistic example. Suppose a
study finds a new procedure (a kind of spine surgery) is
effective in relieving debilitating neck and back pain with
a p-value of 0.05, but when the procedure fails, it crip-
ples the patient. If the patient believes there is only a 5%
chance the procedure does not work or fails, he or she
would probably take the chance. However, after learning
the actual chance of failure is nearly 30% or higher based
on the calibrated p-value, one would probably think
twice. On the other hand, even if the p-value is 0.1 and
the real chance of failure is nearly 40% or higher, if it
does not cause serious side effects when the procedure
fails, one would probably like to give it a try.
Taken together, in medicine or healthcare, the use of

p-values needs more context (the balance of harms and
benefits) than thresholds. However, banning significance
testing and accepting uncertainty as called for by the
editorial of the special issue are not enough [10]. When
making treatment decisions, what researchers, practi-
tioners, and patients alike need to know is the probabil-
ity that a treatment does or does not work (the type I
error). In this regard, the calibrated p-value, compared
to other proposals [44, 45], offers several advantages: (1)
It provides a lower-bound, (2) it is fully frequentist al-
though it can have a Bayesian interpretation, (3) it is

easy to understand, and (4) it is easy to implement. Of
course, other recommendations for improving the use of
p-values may work well under different circumstances
such as improving research reproducibility [49, 50].

Conclusions
In medical research and practice, the p-value produced
from significance testing has been widely misconstrued
as the probability of the type I error, or the probability a
treatment does not work. This misunderstanding comes
with serious consequences: poor research reproducibility
and inflated medical treatment effects. For a p-value of
0.05, the type I error or the chance a treatment does not
work is not 5%; rather, it is at least 28.9%. Nevertheless,
banning significance testing and accepting uncertainty,
albeit well justified in many circumstances, offer little to
apprise clinicians and patients of the probability a treat-
ment will or will not work. In this respect, the calibrated
p-value, a link between the p-value and the type I error,
is practical and instructive.
In short, a long-overdue effort to understand p-values

correctly is urgently needed and better education on
statistical reasoning including Bayesian methods is de-
sired [15]. Meanwhile, a rational action that medical
journals can take is to require authors to report both
conventional p-values and calibrated ones in research
papers.
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