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Periodontitis is a chronic inflammation of periodontal tissue caused by subgingival plaque-associated bacteria. Periodontitis 
has long been understood to be the result of an excessive host response to plaque bacteria. In addition, periodontal pathogens 
have been regarded as the causative agents that induce a hyperinflammatory response from the host. In this brief review, 
host-microbe interaction of nonperiodontopathic versus periodontopathic bacteria with innate immune components en-
countered in the gingival sulcus will be described. In particular, we will describe the susceptibility of these microbes to anti-
microbial peptides (AMPs) and phagocytosis by neutrophils, the induction of tissue-destructive mediators from neutrophils, 
the induction of AMPs and interleukin (IL)-8 from gingival epithelial cells, and the pattern recognition receptors that mediate 
the regulation of AMPs and IL-8 in gingival epithelial cells. This review indicates that true periodontal pathogens are poor ac-
tivators/suppressors of a host immune response, and they evade host defense mechanisms. 
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Review Article

INTRODUCTION

Periodontitis is the inflammation of periodontal tissue 
caused by subgingival plaque bacteria, leading to alveolar 
bone destruction [1]. Periodontitis affects about half of the 
adult population worldwide [2]. Periodontitis is not only a 
prevalent oral disease but also a risk factor for cardiovascular 
disease, pulmonary disease, and preterm birth [3,4]. Peri-
odontitis is a complex disease involving microbial, host, and 
environmental factors in its development [1]. The complexity 
of microbial factors alone is overwhelming, not to mention 
the complex host-microbial interactions. Therefore, the 
pathogenesis of periodontitis is difficult to understand. For 
decades, periodontitis has been regarded as the result of hy-

perimmune or hyperinflammatory responses to plaque bac-
teria [5-7]. In addition, it has been widely accepted that peri-
odontal pathogens induce hyperinflammatory responses, 
whereas commensal bacteria are well tolerated [8]. However, 
recent studies indicate that periodontal pathogens are poor 
activators and/or suppressors of host immune responses, 
evading host defense mechanisms. The immune-evasive 
characteristics of periodontal pathogens will be reviewed in 
this article.

DEFENSE MECHANISMS IN THE GINGIVAL 
SULCUS 

The gingival sulcus is a unique anatomic site surrounded by 
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hard tissue on one side and soft tissue on the other side. Ap-
proximately 700 bacterial species can colonize the gingival 
sulcus in varying quantities, from approximately 103 in healthy 
sulci to greater than 108 in pathologic pockets [9,10]. Although 
more than thousands of bacteria continually colonize subgin-
gival sites, most periodontal sites in most individuals do not 
exhibit new loss of periodontal tissue until 35 years of age [10]. 
Gingival epithelia form barriers between plaque bacteria and 
gingival tissue, providing the first line of defense against 
plaque bacteria.

The epithelial barrier consists of physical, chemical, and 
immunological barriers [11]. Physical barriers are created by 
the unique architectural integrity of the stratified gingival 
epithelia, where epithelial cells are adjoined by tight junction-
related structures and adhering junctions [12,13]. Chemical 
barriers are mainly formed by a variety of antimicrobial pep-
tides (AMPs) [14]. AMPs, referred to as endogenously pro-
duced antibiotics, are cationic peptides with an amphipathic 
structure. They have a broad spectrum of antimicrobial activ-
ity; thus, they contribute to controlling the bacterial load in 
the gingival sulcus [14,15]. They function by associating with 
the anionic microbial structure, and then aggregate to form 
pores in the microbial membranes [16]. Defensins and a cat-
helicidin are major AMPs detected in the oral cavity. Defen-
sins are subdivided into two families, α-defensins (human 
neutrophils peptides) that are essentially found in neutrophils 
and human β-defensins (HBDs) that are generally found in 
association with oral epithelium [17]. LL-37, the only human 
member belonging to the cathelicidin family, is produced by 
epithelial cells and neutrophils [17]. The lack of LL-37 in saliva 
and neutrophils observed in patients with Kostmann syn-
drome who develop severe periodontitis in young adulthood 
underscores the importance of chemical barriers [18,19].

The immunological barriers of gingival epithelia are pro-
vided by neutrophils, T cells, dendritic cells, macrophages, 
and mast cells distributed within the epithelia, lamina pro-
pria, and gingival sulcus [20]. Neutrophils are a particularly 
predominant cell type observed in the subgingival sulcus and 
in the gingival crevicular fluid [21]. Neutrophils are guided 
into the gingival sulcus from the capillary beds of the con-
nective tissue by a gradient of interleukin (IL)-8 that is pro-
duced by epithelial cells. Neutrophils recruited to the gingival 
sulcus actively phagocytose plaque bacteria [21]. The presence 
of neutrophils in clinically healthy gingival mucosa differen-
tiates it from other mucosa of the body. This infiltration of 
percolating immune cells has been explained by the theory 
that particular subgingival bacteria induce the characteristic 
epithelial cell IL-8 gradient and promote a mild inflammato-
ry infiltrate in clinically healthy gingival tissue [21]. Neutro-
phils also produce LL-37 and human neutrophil defensins 

[22]. Various conditions that accompany abnormalities in the 
number or function of neutrophils, including chronic/cyclic 
neutropenia, leukocyte adhesion deficiency syndrome, Papil-
lon-Lefevre syndrome, and Chediak-Higashi syndrome, are 
associated with severe periodontitis [23-28].

SUSCEPTIBILITY OF NONPERIODONTO-
PATHIC AND PERIODONTOPATHIC BACTE-
RIA TO DEFENSE MECHANISMS IN THE 
GINGIVAL SULCUS 

Resistance to killing by host immune machineries is one of 
the pathogenic mechanisms of many persistent pathogens. 
There are several reports on the susceptibility of oral bacteria 
to AMPs such as HBDs, HNPs, and LL-37, but most studies 
have focused on periodontopathic and cariogenic bacteria 
[29-34]. We hypothesized that features differentiating peri-
odontopathic bacteria from nonperiodontopathic bacteria 
may provide new insights into the pathogenesis of periodon-
titis. To address the potential role of immune evasion in the 
pathogenesis of periodontitis, we compared the susceptibility 
of nonperiodontopathic and periodontopathic bacteria to 
major defense mechanisms for bacterial clearance in the 
gingival sulcus: phagocytosis by human neutrophils and in-
hibition by AMPs LL-37 and HBD-3. Four species of nonperi-
odontopathic bacteria were selected from members of the 
genera Streptococcus, Actinomyces, and Veillonella, which are all 
early colonizers and are thought to be compatible with peri-
odontal health [35]. Nine species of periodontopathic bacte-
ria, including Eikenella corrodens, Fusobacterium nucleatum, 
Prevotella nigrescens, Prevotella intermedia, Peptostreptococcus 
micros, Porphyromonas gingivalis, Tannerella forsythia, Trepone-
ma denticola, and Aggregatibacter actinomycetemcomitans, 
were chosen from the list of bacteria that are known to be as-
sociated with periodontitis, that is, bacteria that accumulate 
with increasing pocket depth. The susceptibilities of oral bac-
teria to phagocytosis and AMPs were quite variable, depend-
ing on the species. Although the periodontopathic group was 
more resistant to phagocytosis than the nonperiodontopath-
ic group, a significant difference in susceptibility to AMPs 
was not observed. When the bacteria were grouped by the 
modified Socransky classification [36] into early colonizers, 
the orange complex, the red complex, and other (A. actinomy-
cetemcomitans), differences in susceptibility to phagocytosis 
or AMPs were more evident. The late colonizing red complex 
bacteria were more resistant to both phagocytosis and LL-37 
than the others. In addition, two out of three strains of A. ac-
tinomycetemcomitans presented overall resistance to phago-
cytosis and AMPs [37]. This study showed that immune eva-
sion is an important feature of true periodontal pathogens 
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such as the red complex triad and A. actinomycetemcomitans. 
Meanwhile, the increase in the orange complex bacteria ob-
served in periodontal lesions must be the result of disease 
rather than the cause of disease. In addition, proper control 
of the orange complex bacteria in the gingival sulcus, partic-
ularly, F. nucleatum and P. intermedia that were highly sensi-
tive to both phagocytosis and AMPs, would be critical to 
maintaining periodontal health by preventing colonization 
of resistant periodontal pathogens. 

INDUCTION OF TISSUE-DESTRUCTIVE 
MOLECULES FROM HUMAN NEUTROPHILS 
BY NONPERIODONTOPATHIC AND PERI-
ODONTOPATHIC BACTERIA

The neutrophil is often referred to as a double-edged-
sword: crucial for defense against sub-gingival microbes but 
also involved in periodontal tissue destruction. The infiltra-
tion of neutrophils increases in periodontal lesions, and acti-
vated neutrophils release a variety of tissue-damaging mole-
cules including elastase, matrix metalloproteinases (MMPs), 
reactive oxygen species (ROS), and inflammatory cytokines 
[21,38-40]. The induction of the release of tissue-destructive 
molecules from neutrophils by periodontal pathogens was 
repeatedly reported as one of the pathogenic mechanisms 
that leads to periodontal destruction [41-47]. However, when 
we compared the ability of periodontopathic bacteria (F. nu-
cleatum and T. denticola) to induce the release of tissue-de-
structive molecules, including ROS, MMP-8, and IL-1β, from 
neutrophils, with that of a nonperiodontopathic species (S. 
sanguinis), S. sanguinis was the most potent inducer and T. 
denticola was the least [48]. We also found that the levels of 
tissue-destructive molecules produced by neutrophils are 
positively correlated with the degree of phagocytosis. There-
fore, the ability of oral bacteria to induce tissue-destructive 
molecules from neutrophils is associated with the extent of 
phagocytosis rather than with the pathogenicity of the bacte-
ria, and it is not an inherent characteristic of periodontopath-
ic bacteria [48]. Considering the resistance of periodontal 
pathogens to phagocytosis by neutrophils [37], not only T. 
denticola but also other periodontal pathogens are expected 
to induce relatively low levels of tissue-destructive molecules 
from neutrophils.

INNATE IMMUNE RESPONSE OF GINGIVAL 
EPITHELIAL CELLS TO NONPERIODONTO-
PATHIC AND PERIODONTOPATHIC BACTE-
RIA

Gingival epithelium actively participates in innate immune 

protection by secreting AMPs and IL-8, a chemoattractant to 
neutrophils [49]. In addition, gingival epithelial cells secrete in-
flammatory cytokines, such as tumor necrosis factor (TNF)-α, 
IL-1α, and IL-1β. The epithelia of many body sites express 
HBD-2 and -3 only under conditions of an infection or inflam-
mation [50]; however, clinically healthy gingival epithelium is 
characterized by the presence of HBD-2 and a gradient of IL-8 
that guides the transmigration of neutrophils through the 
junctional epithelium, presumably due to the constant expo-
sure to oral bacteria [50,51]. 

Periodontal pathogens may also present differences in their 
ability to induce immune responses from the host; thus, we 
evaluated the effects of various oral bacteria on the expression 
of AMPs and IL-8 by gingival epithelial cells. Nonperiodonto-
pathic early colonizing bacteria (S. sanguinis, S. gordonii, and V. 
atypica) up-regulated some AMPs without affecting the levels 
of IL-8. Among the periodontopathic bacteria, the orange 
complex bacteria F. nucleatum and P. intermedia induced 
AMPs and IL-8 most efficiently, whereas the red complex tri-
ads rather suppressed the expression of HBDs and IL-8, again 
presenting immune-evasive characteristics [52]. The down-
regulation of IL-8 by P. gingivalis at both the mRNA and pro-
tein levels, a so-called “chemokine paralysis,” has been well 
characterized [53,54]. In our study, the red complex bacteria 
down-regulated not only IL-8 but also HBD-3 [52]. Through 
down-regulation of IL-8 and HBD-3, red complex bacteria are 
expected to perturb the immunological and chemical barriers. 
In addition to killing microorganisms, HBDs affect the adap-
tive immune response by selectively recruiting immature 
dendritic and memory T cells to the site of microbial invasion 
[55] and the down-regulation of HBD-3 may affect the overall 
innate and adaptive immune responses.

Taken together with the result of susceptibility of oral bac-
teria to AMPs and phagocytosis by neutrophils [37,52], early 
colonizers induced AMPs but not IL-8 from gingival epithe-
lial cells and had susceptibility to those peptides and phago-
cytosis at intermediate levels. Therefore, the early colonizers 
seem to be in balance with the host defense system. Bridg-
ing colonizers that belong to the orange complex efficiently 
induced both AMPs and IL-8, and these bacteria were highly 
susceptible to the two killing mechanisms. The bridging col-
onizers may be sensed as a threat by the host and induce ac-
tive clearance by the host. In contrast, late colonizing peri-
odontal pathogens suppressed the expression of AMP and 
IL-8 and were often resistant to AMPs and phagocytosis; thus 
they may easily secure their niches once they colonize and 
provide a favorable environment for other anaerobes. 
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TOLL-LIKE RECEPTOR 2 IS A MAJOR PAT-
TERN RECOGNITION RECEPTOR THAT ME-
DIATES ORAL BACTERIA-INDUCED REGULA-
TION OF HBD EXPRESSION IN GINGIVAL 
EPITHELIAL CELLS

At the receptor level, induction of HBD-2 expression is me-
diated via pattern recognition receptors (PRRs) and proin-
flammatory cytokine receptors that respond to cytokines 
such as TNF-α, IL-1, and IL-17 [56]. The regulation of HBD 
expression by gingival epithelial cells in response to bacteria, 
which is a part of the innate immune response, must be initi-
ated by the recognition of unique microbial molecular pat-
terns by PRRs. An array of PRRs is distributed on the surface, 
in the cytoplasm, and in the endosomal compartments of 
host cells. Toll-like receptors (TLRs) are expressed either on 
the cell surface (TLR1, 2, 4, 5, 6, and 10) or in the endosomal 
compartments (TLR3, 7, and 9) [57,58]. In contrast, new fami-
lies of PRRs, the nucleotide-binding oligomerization domain 
(NOD)-like receptors and retinoic acid-inducible gene-I-like 
receptors, have been characterized as cytoplasmic microbe 
sensors [48]. TLR1, 2, 4, 5, 6, and 9 are involved in the recogni-
tion of bacterial components such as lipoproteins, lipopoly-
saccharide, flagellin, and DNA [58]. NOD1 and NOD2 recog-
nize peptidoglycan. NACHT, LRR, and pyrin domain-con-
taining protein (NALP) 3 is activated in response to bacterial 
pore-forming toxins and bacterial mRNA [59]. In addition, 
the cytoplasmic DNA sensors, AIM2 and DAI, are involved in 
the recognition of bacterial dsDNA in the cytoplasm [60,61]. 
Compared to peripheral blood mononuclear cells, unstimu-
lated gingival epithelial cells express a limited repertoire of 
PRRs, and predominantly express NALP2 and TLR2 [62].

We characterized the PRRs and regulatory mechanisms in-
volved in the regulation of HBD-2 and -3 expression by F. nu-
cleatum in gingival epithelial cells. Lipopolysaccharide from F. 
nucleatum, a ligand to TLR4, was known to be a poor inducer 
of HBD-2 from cultured human oral keratinocytes [63], ex-
cluding the role of TLR4 in HBD-2 induction. The knock-
down of NALP2 by RNA interference (RNAi) significantly re-
duced the F. nucleatum-induced upregulation of HBD-3 but 
not HBD-2 or IL-8. In addition, knockdown of TLR2 RNA re-
duced the F. nucleatum-induced upregulation of HBD-2 and 
-3, but not IL-8. These data showed that TLR2 and NALP2 
mediate the induction of HBDs by F. nucleatum in gingival 
epithelial cells [62]. The TLR2-mediated up-regulation of 
HBD-2 and -3 was confirmed in another laboratory using F. 
nucleatum cell wall extracts [64]. Using blocking antibodies, 
Lu et al. [65] showed that up-regulation of HBD-2 by P. gingi-
valis LPS1690 with a penta-acylated lipid A structure involves 
both TLR2 and TLR4. The authors proposed cooperation of 

TLR2 and TLR4 in the modulation of HBD-2 by P. gingivalis 
LPS1690. Although P. gingivalis LPS had been shown to activate 
both TLR2 and TLR4 [66], a lipoprotein contaminant in the 
LPS preparation from P. gingivalis turned out to be a principal 
component for TLR2 activation [67]. Therefore, TLR2 seems 
to be a major PRR that mediates bacteria-induced upregula-
tion of HBDs in gingival epithelial cells. In addition to PRRs, 
protease activated receptor 2 has been shown to be partially 
involved in the up-regulation of HBD-2 by P. gingivalis [68].

When the ability of several oral bacterial species to activate 
TLR2 was examined by using the CHO/CD14/TLR2 reporter 
cell line, nonperiodontopathic early colonizing bacteria (S. 
sanguinis, S. gordonii, and V. atypica) and two bridging colo-
nizers, F. nucleatum and P. intermedia, substantially activated 
TLR2 in a dose-dependent manner. However, late colonizing 
periodontal pathogens, P. gingivalis, T. forsythia, and T. dentic-
ola, did not activate TLR2 [69]. These results coincide with the 
previous observation that these bacteria did not induce, but 
rather suppressed the expression of HBDs [52]. 

The mechanism(s) involved in the suppression of HBD ex-
pression in gingival epithelial cells were investigated using T. 
denticola, the most prominent suppressor. In contrast to live 
T. denticola, which suppressed the expression of HBD-2 and 
-3, heat-killed bacteria did not produce a suppressive effect 
but instead slightly upregulated the levels of HBD-2 and -3  
[69]. In addition, heat-killed T. denticola or bacterial lysate, but 
not live bacteria, could activate TLR2 in CHO/CD14/TLR2 re-
porter cells, suggesting that live T. denticola contains a heat-
labile inhibitor(s) of TLR2 in addition to ligands recognized 
by TLR2. Live T. denticola, but not T. denticola lysate, was able 
to inhibit TLR2 activation by Pam3CSK, indicating that the 
heat-labile inhibitor(s) are not TLR2 antagonists. Knockdown 
of TLR2 via RNAi abolished the suppressive effect of T. denti-
cola on the expression of HBD-2 and HBD-3 [69,70]. Collec-
tively, T. denticola suppresses the expression of HBDs in gin-
gival epithelial cells through a heat-labile inhibitor(s) of 
TLR2-signaling axis. The reversal of suppressive effects of T. 
denticola by TLR2 RNAi suggests that there is an endogenous 
TLR2 ligand in the control culture without bacteria. HBD-3 is 
known as a ligand for TLR1/TLR2 [71]. Thus, the interaction of 
HBD-3 and TLR2 in gingival epithelial cells is expected to 
form a positive feedback loop. Indeed, the basal level of 
HBD-3 expression rapidly increased within 3 hours of culture 
in the control cells [69]. Peyret-Lacombe et al. [64] suggested 
a role of TLR2 in the down-regulation of HBD-3, IL-8, and 
MMP-9 induced by S. sanguinis extracts. Whether S. sanguinis 
contains antagonist(s) to TLR2 or inhibitor(s) of the TLR2-
signaling axis is not clear. 

Signaling pathways involved in the expression of HBDs 
have also been studied. The promoter region of HBD-2 con-
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tains numerous regulatory elements, including the binding 
sites for nuclear factor-kappaB (NF-κB), activator protein 
(AP)-1, AP-2, and NF–IL-6, whereas the promoter of HBD-3 
contains no discernible NF-κB binding elements [72]. Chung 
and Dale [73] reported that commensal and periodontopathic 
bacteria utilized different signaling pathways in the induc-
tion of HBD-2. In contrast to commensal S. gordonii that 
used Jun N-terminal kinase (JNK) and p38 mitogen activated 
protein kinases (MAPKs), but not NF-κB, to induce HBD-2 
from gingival epithelial cells, periodontal pathogens A. acti-
nomycetemcomitans and P. gingivalis used both MAPKs and 
NF-κB. HBD-3 induction by Staphylococcus aureus in skin ke-
ratinocytes was shown to involve p38 and AP-1 [74]. In con-
trast to live F. nucleatum that upregulated both HBD-2 and -3, 
heat-killed bacteria upregulated only HBD-3 at a reduced 
level [62]. Although heat-killed bacteria activated NF-κB, p38, 
and JNK, the activation of JNK was significantly reduced 
compared to activation by live bacteria [62]. Krisanaprakornkit 
et al. [75] reported that p38 and JNK, but not NF-κB, are in-
volved in the induction of HBD-2 by F. nucleatum. Therefore, 
the reduced JNK activation may be responsible for the inabil-
ity of heat-killed F. nucleatum to induce HBD-2, suggesting a 
higher threshold of JNK activation for HBD-2 induction than 
for that of HBD-3. It should be emphasized that in our previ-
ous observation, only two out of eight bacterial species in-
duced HBD-2, whereas five species induced HBD-3 [52]. The 
differential regulation of HBD-2 and -3 may contribute to 
their different locations in the oral epithelia: the differentiat-
ed granular layers versus the basal and spinous layers [76]. 

TLR 9 MEDIATES ORAL BACTERIA-INDUCED 
IL-8 EXPRESSION IN GINGIVAL EPITHELIAL 
CELLS

A barrier formed by neutrophils against plaque-associated 
bacteria in the gingival sulcus plays a critical role in the main-
tenance of periodontal health. The migration of neutrophils 
into the gingival sulcus is guided by IL-8, the chemokine pro-
duced by gingival epithelial cells [21]. We already mentioned 
that various oral bacteria have different abilities to induce 
IL-8 production in gingival epithelial cells [52]. It is important 
to dissect molecular mechanisms for the regulation of IL-8 
expression in response to bacterial challenge. Asai et al. [77] 
showed that TLR2 mediates IL-8 induction by S. aureus pepti-
doglycan, N-acetylmuranyl-L-alanyl-D-isoglutamine, and P. 
gingivalis, utilizing a monoclonal antibody against TLR2. 
However, it is now known that peptidoglycan and N-acetyl-
muranyl-L-alanyl-D-isoglutamine are recognized by NOD1/2 
and not by TLR2 [58,59]. Furthermore, IL-8 induction by F. nu-
cleatum was not affected by the knockdown of the TLR2 pro-

tein [62]. To characterize the PRR(s) that mediate bacteria-in-
duced IL-8 expression, we tested several ligands that mimic 
bacterial microbe-associated molecular patterns for their 
ability to induce IL-8 in human oral keratinocytes (HOK-16B) 
cells. In repeated experiments, only a TLR9 ligand, CpG oligo-
nucleotide, significantly induced IL-8 [78]. An endosomal 
acidification blocker or a TLR9 antagonist inhibited the IL-8 
induction by two potent strains, F. nucleatum ATCC 25586 and 
P. gingivalis ATCC 49417. As TLR9 is located in the endosomal 
compartments of gingival epithelial cells, to induce IL-8 pro-
duction by TLR9 located in epithelial cells, oral bacteria must 
be able to invade epithelial cells and they must have DNA 
with immunostimulatory activity. The ability of eight strains 
of four oral bacterial species to induce IL-8 expression in 
HOK-16B cells showed a strong positive correlation with their 
invasion index and also with the immunostimulatory activity 
of their bacterial DNA [78]. Therefore, the differential ability 
of bacteria to induce IL-8 depends on a combination of the 
invasive ability and the immunostimulatory capacity of the 
bacterial DNA. Dependence on bacterial invasion for IL-8 in-
duction suggests that gingival epithelia are alarmed by tissue-
invading bacteria and recruit neutrophils to defend against 
them. Tissue-invading but IL-8-degrading bacteria, such as P. 
gingivalis and T. denticola [79,80], may thus threaten periodon-
tal health. In addition, T. denticola can also evade the TLR9-
mediated antimicrobial response by resisting endosomal 
degradation after invasion into gingival epithelial cells [81].

DISCUSSION 

Successful human pathogens have evolved strategies to es-
cape protective immunity, often by manipulating key com-
ponents of innate immunity, such as TLRs and complement 
receptors [82,83]. Molecular mechanisms for evasion of vari-
ous TLR2 antimicrobial responses by P. gingivalis in macro-
phages have been extensively studied. P. gingivalis inhibits 
phagocyte killing via instigation of the complement ana-
phylatoxin C5a receptor (C5aR)-TLR2 crosstalk [84] and of the 
CXC-chemokine receptor 4-TLR2 crosstalk [85], and sup-
presses IL-12 induction via the complement receptor 3-TLR2 
or C5aR-TLR2 crosstalk [86]. Because IL-12 is a key cytokine in 
Th1 differentiation and cell-mediated immunity, it may pre-
vent or attenuate possible intracellular killing of P. gingivalis 
[84]. Although both the orange complex and the red complex 
bacteria are associated with periodontitis, a review of host-
microbe interactions of these bacteria with innate immune 
components clearly reveals that the two groups of bacteria 
have different characteristics. The orange complex bacteria 
are relatively potent immune stimulators and susceptible to 
host defense. In contrast, the red complex bacteria are poor 
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activators/suppressors of host immune response, evading 
host surveillance. Such characteristics of the red complex 
bacteria define them as true periodontal pathogens and al-
low them to thrive in subgingival sites. 
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