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Abstract

Advances in multi-unit recordings pave the way for statistical modeling of activity patterns in

large neural populations. Recent studies have shown that the summed activity of all neurons

strongly shapes the population response. A separate recent finding has been that neural

populations also exhibit criticality, an anomalously large dynamic range for the probabilities

of different population activity patterns. Motivated by these two observations, we introduce a

class of probabilistic models which takes into account the prior knowledge that the neural

population could be globally coupled and close to critical. These models consist of an energy

function which parametrizes interactions between small groups of neurons, and an arbitrary

positive, strictly increasing, and twice differentiable function which maps the energy of a

population pattern to its probability. We show that: 1) augmenting a pairwise Ising model

with a nonlinearity yields an accurate description of the activity of retinal ganglion cells which

outperforms previous models based on the summed activity of neurons; 2) prior knowledge

that the population is critical translates to prior expectations about the shape of the nonline-

arity; 3) the nonlinearity admits an interpretation in terms of a continuous latent variable

globally coupling the system whose distribution we can infer from data. Our method is inde-

pendent of the underlying system’s state space; hence, it can be applied to other systems

such as natural scenes or amino acid sequences of proteins which are also known to exhibit

criticality.

Author summary

Populations of sensory neurons represent information about the outside environment in a

collective fashion. A salient property of this distributed neural code is criticality. Yet most

models used to date to analyze recordings from large neural populations do not take this

observation explicitly into account. Here we aim to bridge this gap by designing probabi-

listic models whose structure reflects the expectation that the population is close to criti-

cal. We show that such principled approach improves previously considered models, and

we demonstrate a connection between our models and the presence of continuous latent
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variables which is a recently proposed mechanism underlying criticality in many natural

systems.

Introduction

Recent progress in recording technology that permits monitoring the activity of large neural

populations simultaneously has enabled us to infer detailed large-scale probabilistic models for

neural activity and, hence, to document and interpret patterns of statistical dependencies

between neural responses. Many questions regarding collective behavior in large populations

of sensory neurons, previously in the domain of theoretical speculation, were thus brought

into the spotlight and into contact with rich experimental data: How can large populations of

sensory neurons encode information reliably despite the noise, and how can the stimulus

information be recovered? How can downstream areas “learn” to read the neural code without

direct access to the stimulus? Are there statistical features of the neural code that point to

“design principles” at the population level and provide a prior over the space of possible neural

codes? While stimulus-conditional (encoding) [1–3] and decoding approaches [4–6] have

been instrumental for understanding stimulus representation, probabilistic models for the

total distribution of neural activity [7] highlighted various salient statistical features of the neu-

ral code, two of which we focus on below.

The first salient feature is that neural populations are often “globally coupled.” While it has

been appreciated for some time that neurons do not spike independently, the approximation

that their interactions are well-described by low-order statistical dependencies (e.g., pairwise

interactions) has provided powerful descriptions of the data, known as pairwise maximum

entropy (Ising-like) models or, alternatively, as fully-visible Boltzmann machines [8–10]. As

the recorded populations grew to tens or hundreds of neurons, however, it became increas-

ingly clear that pairwise models are insufficient [11]. Instead of increasing model complexity

order-by-order (e.g., by including triplet interactions [12]) which quickly becomes intractable,

one proposal has been to directly identify global or collective modes of activity and build mod-

els that reproduce them well. In the retina, for example, the population synchrony, or the

summed activity over all neurons in a given time bin, represents one such global statistic that

probabilistic models can reproduce, leading to the so-called “K-pairwise” models [11, 13, 14].

Similar ideas relate to models able to capture the no-spike probability in groups of neurons in

hippocampal slices [15], or correlation between population synchrony and firing of individual

neurons in the cortex [16–18]. In all cases, the increased performance of the proposed models

originates in the models’ ability to capture higher-order correlations in neural spiking through

a smart guess for the global (macroscopic) statistic of the population activity.

The second salient feature is that neural population responses are close to critical in a ther-

modynamic sense [10, 19]. This criticality is distinct from the dynamical, avalanche-type criti-

cality that has been studied extensively in the past [20, 21], although formal connections

between the two notions may exist [22]. We give a precise definition of thermodynamic criti-

cality below. Intuitively and informally, criticality of the ensemble of patterns of spikes and

silences implies the following: (i) the distribution of neural responses is Zipfian, with a slope of

−1 on a log-frequency vs log-rank plot; equivalently, the (log) density of states and (log) proba-

bility of responses are linearly related [19, 23]; (ii) the dynamic range of neural response proba-

bilities is anomalously large in a certain mathematical sense [10]; (iii) there is no clearly

definable information-theoretic “typical set” of responses; (iv) even though responses are of
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high dimensionality, one is likely to observe certain patterns of spiking and silence multiple

times in a typical experiment [14, 24].

Several works pursued the origins of the observed signatures of criticality [25–30]. Two

recent papers [28, 29] focused on the role of unobserved (latent) variables whose fluctuations,

coupled to the observable responses of individual neurons, could lead to critical response

ensemble under relatively generic conditions. While these works provided an interesting

proof-of-concept analysis, it has remained unclear whether these ideas could be incorporated

into a probabilistic model that could be tractably inferred from large-scale data and that would

simultaneously recapitulate the critical behavior through the proposed mechanism, match in

detail the many previously documented statistical features of the neural code, and provide

cross-validated performance similar to existing state-of-the-art models.

Here we introduce a new class of probabilistic models for the neural code called semipara-
metric energy-basedmodels. These models explicitly incorporate our prior belief that the neural

population could be globally coupled and close to critical. If data indeed exhibits such features,

our models can capture them efficiently; otherwise, our models can reduce to previously stud-

ied energy-based (e.g., pairwise maximum entropy) models. We infer our models on popula-

tions of 100+ retinal ganglion cells and show that they provide superior performance over K-

pairwise models. We further show that our models capture critical behavior by a mechanism

that is mathematically equivalent to the fluctuating latent variable model, and give an interpre-

tation of the resulting latent variable as defining the state of the retinal population to be

“active” or “silent.” Importantly, the central idea of the framework introduced here extends

beyond the neural code in general and the retina in particular: any energy-based probabilistic

model can be augmented with our proposed mechanism. This flexibility is relevant since other

interesting datasets, such as natural image patches [31, 32] or certain genomic sequences [33],

also exhibit critical and globally coupled nature.

Models of globally coupled neural populations

We represent the response of a neural population with a binary vector s = {s1, s2, . . ., sN} 2

{0, 1}N identifying which of the N neurons elicited at least one action potential (‘1’) and which

stayed silent (‘0’) during a short time window. Our goal is to build a model for the probability

distribution of activity patterns, p(s), given a limited number M of samples, D ¼ fsð1Þ; . . . ; sðMÞg,
observed in a typical recording session. The regime we are mainly interested in is the one where

the dimensionality of the problem is sufficiently high that the distribution p cannot be directly

sampled from data, i.e., when 2N�M. Note that we are looking to infer models for the uncondi-

tional distribution over neural activity patterns (i.e., the population “vocabulary”), explored in a

number of recent papers [8, 9, 11, 13–18, 24, 34], rather than to construct stimulus-conditional

models (i.e., the “encoding models”, which have a long tradition in computational neuroscience

[1–3]).

Previous approaches to modeling globally coupled populations focused on the total network

activity, also known as synchrony, KðsÞ ¼
PN

i¼1
si. The importance of this quantity was first

analyzed in the context of probabilistic models in Ref [11] where the authors showed that a K-

pairwise model, which generalizes a pairwise maximum entropy model by placing constraints

on the statistics of K(s), is much better at explaining the observed population responses of 100

+ salamander retinal ganglion cells than a pairwise model. Specifically, a pairwise model

assumes that the covariance matrix between single neuron responses, Cij = hsisji, which can be

determined empirically from data D, is sufficient to estimate the probability of any population

activity pattern. In the maximum entropy framework, this probability is given by the most
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unstructured (or random) distribution that reproduces exactly the measured Cij:

pðs; JÞ ¼
1

ZðJÞ
exp

XN

i;j¼1

Jijsisj

 !

; ð1Þ

where Z(J) is a normalization constant, and J is a coupling matrix which is chosen so that sam-

ples from the model have the same covariance matrix as data. Note that because s2
i ¼ si, the

diagonal terms Jii of the coupling matrix correspond to single neuron biases, i.e. firing proba-

bilities in the absence of spikes from other neurons (previous work [11] used a representation

si 2 {−1, 1} for which the single neuron biases need to be included as separate parameters and

where Jii are all 0). A K-pairwise model generalizes the pairwise model and has the form

pðs; J; �Þ ¼
1

ZðJ; �Þ
exp

XN

i;j¼1

Jijsisj þ
XN

k¼0

�kdk;KðsÞ

 !

: ð2Þ

The coupling matrix J has the same role as in a pairwise model while the additional parameters

ϕ are chosen to match the probability distribution of K(s) under the model to that estimated

from data. The “potentials” ϕk introduced into the K-pairwise probabilistic model, Eq (2),

globally couple the population, and cannot be reduced to low-order interactions between, e.g.,

pairs or triplets, of neurons, except in very special cases. We will generically refer to probabilis-

tic models that impose non-trivial constraints on population-level statistics (of which the dis-

tribution of total network activity K is one particular example) as “globally coupled” models.

Here we introduce new semiparametric energy-basedmodels that extend the notion of global

coupling. These models are defined as follows:

pðs;α;VÞ ¼
e� V ðEðs;αÞÞ

Zðα;VÞ
; ð3Þ

where E(s; α) is some energy function parametrized by α, and V is an arbitrary increasing differ-

entiable function which we will refer to simply as the “nonlinearity.” The parametrization of the

energy function should be chosen so as to reflect local interactions among neurons. Crucially,

while it is necessary to choose a specific parametrization of the energy function, we do not make

any assumptions on the shape of the nonlinearity—we let the shape be determined nonparame-

trically from data. Fig 1 schematically displays the relationship between the previously studied

probabilistic models of population activity and two semiparametric energy-based models that we

focus on in this paper, the semiparametric independent model (which we also refer to as “V(inde-

pendent)”) and the semiparametric pairwisemodel (which we also refer to as “V(pairwise)”).

Our motivation for introducing the global coupling via the nonlinearity V traces back to

the argument made in Ref [11] for choosing to constrain the statistics of synchrony, K(s); in

short, the key intuition in earlier work has been that K(s) is a biologically relevant quantity

which encodes information about the global state of a population. There are, however, many

other quantities whose distributions could contain signatures of global coupling in a popula-

tion. In particular, while most energy functions—e.g., the pairwise energy function, E(s; J) =

−∑i,j Jijsisj—are defined solely in terms of local interactions between small groups of neurons,

the statistics of these same energy functions (for instance, their moments) are strongly shaped

by global effects. Specifically, we show in Methods that the role of the nonlinearity in Eq (3) is

precisely to match the probability density of the energy under the model to that estimated

from data. In other words, once any energy function for Eq (3) has been chosen, the nonlinear-

ity V will ensure that the distributions of that particular energy in the model and over data

samples agree.

Probabilistic models for critical neural populations
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Constraining the statistics of the energy E(s; α) is different from constraining the statistics

of K(s), used in previous work. First, the energy depends on a priori unknown parameters α
which must be learned from data. Second, while K(s) is always an integer between 0 and N, the

energy can take up to 2N distinct values; this allows for extra richness but also requires us to

constrain the (smoothed) histogram of energy rather than the probability of every possible

energy value, to prevent overfitting.

As we discuss next, the statistics of the energy are also closely related to criticality, a formal,

model-free property distinguishing large, globally-coupled neural populations.

Criticality

The notion of criticality originates in thermodynamics where it encompasses several different

properties of systems undergoing a second-order phase transition [35]. Today, many other

Fig 1. Overview of models which contain mechanisms for capturing global coupling. At any given time, the population activity pattern is defined by

neurons which either spike (si = 1, dark discs) or are silent (si = 0, white discs). The probability of spiking is partially determined by an intrinsic firing bias (αi

for models without local interactions, or the diagonal terms of the coupling matrix J for models with local pairwise interactions). When local interactions

between neurons are important, they can be parametrized by assigning each pair of neurons a coupling weight. Positive weight (orange) increases the

likelihood of the paired neurons spiking together, while negative weight (blue) decreases the likelihood. The negative sum of the intrinsic firing biases of

active neurons and the coupling weights of pairs which fire synchronously is referred to as the energy of the population activity pattern. The probability of a

given pattern is simply proportional to the exponential of its negative energy. To capture correlations due to global coupling, previous studies considered

models which bias the response probabilities with a function of the total network activity (here denoted as K, i.e., the sum of the activities of individual

neurons). We introduce a different approach (shaded models in the figure) where global coupling is induced by mapping the energy of the activity pattern

to its probability with an arbitrary (smooth and increasing) function exp(−V (E)).

https://doi.org/10.1371/journal.pcbi.1005763.g001
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phenomena, such as power-law distributed sizes of “avalanches” in neural activity, have been

termed critical [20]. Our definition, which we discuss below, is a restricted version of the ther-

modynamic criticality.

We consider a sequence of probability distributions fpNg
1

N¼1
over the responses of neural

populations of increasing sizes, N. These probability distributions define the discrete random

variable s (the population response), but they can also be thought of simply as functions which

map a population response to a number between 0 and 1. Combining these two viewpoints,

we can consider a real-valued random variable pN(s) 2 (0, 1) which is constructed by applying

the function pN to the random variable s. The behavior of this random variable as N!1 is

often universal, meaning that some of its features are independent of the precise form of pN.

As is conventional, we work with the logarithm of pN(s) instead of the actual distribution. We

call a population “critical” if the standard deviation of the random variable log pN(s)/N does

not vanish as the population size becomes large, i.e.

1

N
sð logpNðsÞÞ ↛ 0 as N !1: ð4Þ

(For completeness, we further exclude some degenerate cases such as when the probability

density of log pN(s)/N converges to two equally sized delta functions.)

The above definition is related to criticality as studied in statistical physics. In thermody-

namics, sð logpNðsÞÞ=
ffiffiffiffi
N
p

is proportional to the square root of the specific heat, which

diverges in systems undergoing a second-order phase transition. While at a thermodynamical

critical point σ (log pN(s))/N scales as N−γ with γ 2 (0, 1/2), here we are concerned with the

extreme case of γ = 0. Rather than being related to second-order phase transitions, this defini-

tion of criticality is related to the so-called Zipf law [23].

A pattern s can be assigned a rank by counting how many other patterns have a higher

probability. In its original form, a probability distribution is said to satisfy Zipf law if the prob-

ability of a pattern is inversely proportional to its rank. No real probability distribution is actu-

ally expected to satisfy this definition precisely, but there is a weaker form of Zipf law which

concerns very large populations, and which is much less restrictive. This weaker form can be

stated as a smoothed version of the original Zipf law. Consider patterns whose rank is in some

small interval [r, r + ΔN], and denote pN(r) the average probability of these patterns. We gener-

alize the notion of Zipf law to mean that for very large populations pN(r)/ r−1 (ΔN is assumed

to go to zero sufficiently quickly with N). As shown in Ref [23], a system is critical in the sense

of Eq (4) precisely when it follows this generalized Zipf law. Practically speaking, no experi-

mentally studied population ever has an infinite size, and a typical way to check for signs of

criticality is to see if a log-log plot of a pattern probability versus its rank resembles a straight

line with slope −1.

Most systems are not expected to be critical. The simplest example is a population of identi-

cal and independent neurons,

pNðsÞ ¼ q
PN

i¼1
sið1 � qÞN�

PN

i¼1
si ; ð5Þ

where q is the probability of eliciting a spike. For such population,

1

N
sð logpNðsÞÞ ¼

1
ffiffiffiffi
N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1 � qÞ

p
log

q
1 � q

; ð6Þ

which vanishes for very large number of neurons, and so the system is not critical. More gener-

ally, if pN(s) can be factorized into a product of probability distributions over smaller subpopu-

lations which are independent of each other and whose number is proportional to N, then log

Probabilistic models for critical neural populations
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pN(s)/N turns into an empirical average whose standard deviation is expected to vanish in the

large N limit, and the population is not critical. Reversing this argument, signatures of critical-

ity can be interpreted as evidence that the population is globally coupled, i.e. that it cannot be

decomposed into independent parts.

These preliminaries establish a direct link between criticality and semiparametric energy

models of Eq (3). Nonlinearity in semiparametric energy models makes sure that the statistics

of the energy E(s; α), and, since V (E) is monotone, also the statistics of log p(s; α, V) are mod-

eled accurately (see Methods). Because the behavior of log probability is crucial for criticality,

as argued above, semiparametric energy models can capture accurately and efficiently the rele-

vant statistical structure of any system that exhibits signs of criticality and/or global coupling.

Nonparametric estimation of the nonlinearity

To fully specify semiparametric energy models, we need a procedure for constructing the non-

linearity V (E). We cannot let this function be arbitrary because then the model could learn to

assign nonzero probabilities only to the samples in the dataset, and hence it would overfit. To

avoid such scenarios, we will restrict ourselves to functions which are increasing. We also

require V (E) to be differentiable so that we can utilize its derivatives when fitting the model to

data. The class of increasing differentiable functions is very large. It includes functions as

diverse as the sigmoid, 1/(1 + exp(−E)), and the square root,
ffiffiffi
E
p

(for positive E), but we do not

want to restrict ourselves to any such particular form—we want to estimate V (E)

nonparametrically.

Nonparametric estimation of monotone differentiable functions is a nontrivial yet very use-

ful task (for example, consider tracking the height of a child over time—the child is highly

unlikely to shrink at any given time). We follow Ref [36] and restrict ourselves to the class of

strictly monotone twice differentiable functions for which V00/V0 is square-integrable. Any

such function can be represented in terms of a square-integrable function W and two con-

stants γ1 and γ2 as

VðEÞ ¼ g1 þ g2

Z E

E0

exp
Z E0

E0

WðE00ÞdE00
 !

dE0; ð7Þ

where E0 is arbitrary and sets the constants to γ1 = V (E0), γ2 = V0(E0). The function is either

everywhere increasing or everywhere decreasing (depending on the sign of γ2) because the

exponential is always positive. Eq (7) is easier to understand by noting that V (E) is a solution

to the differential equation V0 0 = WV0. This means, for example, that on any interval on which

W = 0, the equation reduces to V00 = 0, and so V (E) is a linear function on this interval. If V
(E) is increasing (V0 > 0), it also shows that the sign of W at a given point determines the sign

of the second derivative of V at that point.

An advantage of writing the nonlinearity in the form of Eq (7) is that we can parametrize it

by expanding W in an arbitrary basis without imposing any constraints on the coefficients of

the basis vectors yet V (E) is still guaranteed to be monotone and smooth. In particular, we will

use piecewise-constant functions for W. This allows us to use unconstrained optimization

techniques for fitting our models to data.

Results

We analyzed a simultaneous recording from 160 neurons in a salamander retina which was

presented with 297 repetitions of a 19 second natural movie. The data was collected as part of a

previous study [11], and is publicly available [37]. All models were trained using a variation of
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Persistent Contrastive Divergence [38] which performs an approximate gradient ascent on the

log-likelihood of data. The nonparametric estimate of V only added 20 additional parameters

to each model, and the gradient ascent learned these parameters simultaneously with the

parameters of the energy function. Details regarding the parametrization of V and the algo-

rithm for learning models from data can be found in Methods, and our code is available at

https://github.com/jhumplik/generative-neural-models.

The population responses were binary vectors s 2 {0, 1}N representing which neurons elic-

ited an action potential during a 20 ms time window. All responses were pooled across time

and repeats; hence, we did not utilize the repeat structure in any way during model inference.

For some analyses we examined the scaling of various quantities of interest with the population

size. To this end, we used our data to construct 30 smaller datasets as follows. We randomly

select 40 neurons from the total of 160 as the first dataset. Then we augment this dataset with

20 additional neurons to yield the second dataset, and we keep repeating this process until we

have a dataset of 140 neurons. This whole process is repeated 5 times, resulting in 5 datasets

for each of the 6 different population sizes. For each dataset, we set aside responses corre-

sponding to randomly selected 60 (out of 297) repetitions of the movie, and use these as test

data.

Semiparametric independent model

We start by considering one of the simplest models of the form Eq (3), the semiparametric
independent model:

pðs;α;VÞ ¼
e� V �

PN

i¼1
aisi

� �

Zðα;VÞ
: ð8Þ

If V were a linear function, the model would reduce to an independent model, i.e. a population

of independent neurons with diverse firing rates. In general, however, V introduces interac-

tions between the neurons that may not have a straightforward low-order representation.

When fitted to our data, the nonlinearity V turns out to be a concave function (see later sec-

tions on more complex models for a detailed discussion of the shape of the nonlinearity). Note

that if V had a simple functional form such as a low order polynomial, then the model Eq (8)

would be closely related to mean field models of ferromagnetism with heterogenous local mag-

netic field studied in physics.

Our first goal is to use this simple model to verify our intuition that the nonlinearity helps

to capture criticality. Many population patterns are observed several times during the course

of the experiment, and so it is possible to estimate their probability simply by counting how

often they occur in the data [19]. Given this empirical distribution, we construct a correspond-

ing Zipf plot—a scatter plot of the frequency of a pattern vs its rank. For systems which are

close to critical, this should yield a straight line with slope close to −1 on a log-log scale. We

repeat the same procedure with samples generated from a semiparametric independent model

as well as an independent model, which were both fitted to the responses of all 160 neurons.

Fig 2 shows all three scatter plots. The independent model vastly deviates from the empirical

Zipf plot; specifically, it greatly underestimates the probabilities of the most likely states. In

contrast, the learned semiparametric independent model follows a similar trend to that

observed in data. This does not mean that the semiparametric independent model itself is an

excellent model for the detailed structure in the data, but it is one of the simplest possible

extensions of the trivial independent model that qualitatively captures both global coupling

and the signatures of criticality.
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Since the semiparametric independent model is able to capture the criticality of the data

distribution, we also expect it to accurately model other features of the data which are related

to the globally coupled nature of the population. To verify this, Fig 3A compares the empirical

probability distribution of the total activity of the population K(s) = ∑i si to that predicted by

Fig 2. Semiparametric independent model reproduces the empirical Zipf plot. Each curve shows the

probabilities of population activity patterns, P(s), sorted in decreasing order on a log-log plot. To construct the

empirical Zipf plot, we directly sampled the frequencies of different patterns from data. To construct model

predictions, we used the same procedure but replaced real data with artificial datasets of the same size,

generated by drawing the samples from the corresponding model. Error bars are 3 SD (bootstrapped).

https://doi.org/10.1371/journal.pcbi.1005763.g002

Fig 3. Comparison of the semiparametric independent and the independent model. A) Probability distributions of the total activity of the population,

K(s) =∑i si, estimated from data and from model samples. Error bars are 3 SD (bootstrapped), with the model-generated sample size equal to that of the

data. B) Comparison of the firing rates estimated from the data and from the model samples. The firing rates predicted by the independent model should

exactly match the true firing rates. Error bars are 3 SD (bootstrapped). C) Comparison of the predicted pairwise covariance matrix elements estimated

from the model and from data, for the semiparametric independent and the independent models. The scatter of independent model covariance elements

around 0 illustrates the magnitude of the sampling noise.

https://doi.org/10.1371/journal.pcbi.1005763.g003
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the semiparametric independent model. The match is very accurate, especially when compared

to the same distribution predicted by the independent model. This result goes hand in hand

with the analysis in [39] which showed that interactions of all orders (in our case mediated by

the nonlinearity) are necessary to model the wide-spread distribution of the total activity.

The independent model is a maximum entropy model which constrains the mean

responses, hsii, of all neurons. In other words, neurons sampled from the model would have

the same firing rates as those in the data (up to sampling noise). Even though the semipara-

metric independent model is strictly more general, it does not retain this property when the

parameters α and the nonlinearity V are learned by maximizing the likelihood of data. Fig 3B

demonstrates this point: although the predicted firing rates are approximately correct, there

are slight deviations. On the other hand, the nonlinearity induces pairwise correlations

between neurons which is something the independent model by construction cannot do. Fig

3C compares these predicted pairwise correlations to their data estimates. While there is some

correlation between the predicted and observed covariances, the semiparametric independent

model often underestimates the magnitude of the covariances and does not capture the fine

details of their structure (e.g. the largest covariance predicted by the semiparametric indepen-

dent model is about 5× smaller than the largest covariance observed in the data). This is

because a combination of independent terms and a single nonlinearity does not have sufficient

expressive power, motivating us to look for a richer model.

Semiparametric pairwise model

One way to augment the power of the semiparametric independent model that permits a clear

comparison to previous work is by means of the semiparametric pairwise model:

pðs; J;VÞ ¼
1

ZðJ;VÞ
exp � V �

XN

i;j¼1

Jijsisj

 ! !

: ð9Þ

We fit this model to the responses of the various subpopulations of the 160 neurons, and we

compare the resulting goodness-of-fit to that of a pairwise (Eq (1)), K-pairwise (Eq (2)), and

semiparametric independent model (Eq (8)). We measure goodness-of-fit as the improvement

of the log-likelihood of data per neuron under the model relative to the pairwise model, as

shown in Fig 4A. This measure reflects differences among models rather than differences

among various subpopulations. The semiparametric pairwise model consistently outperforms

the other models and this difference grows with the population size. To make sure that this

improvement is not specific to this particular experiment, we also fitted the models to two

additional recordings from the salamander retina which were also collected as part of the

study [11]. One consists of 120 neurons responding to 69 repeats of a 30 second random

checkerboard stimulus, and the other of 111 neurons responding to 98 repeats of a 10 second

random full-field flicker stimulus. As shown in Fig 4B, the improvements of individual models

on these datasets are consistent with the ones observed for the population stimulated with a

natural movie.

The advantage of using likelihood as a goodness-of-fit measure is its universal applicability

which, however, comes hand-in-hand with the difficulty of interpreting the quantitative likeli-

hood differences between various models. An alternative comparison measure that has more

direct relevance to neuroscience asks about how well the activity of a single chosen neuron can

be predicted from the activities of other neurons in the population. Given any probabilistic

model for the population response, we use Bayes rule to calculate the probability of the ith neu-

ron spiking (si = 1) or being silent (si = 0) conditioned on the activity of the rest of the
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population (s−i) as

pðsijs� i;αÞ ¼
pðs;αÞ

pðsi ¼ 1; s� i;αÞ þ pðsi ¼ 0; s� i;αÞ
: ð10Þ

We turn this probabilistic prediction into a nonrandom one by choosing whether the neuron

is more likely to spike or be silent given the rest of the population, i.e.

siðs� i;αÞ ¼ argmax
si2f0;1g

pðsijs� i;αÞ: ð11Þ

In Fig 4C and 4D we compare such predictive single neuron models constructed from semi-

parametric pairwise, K-pairwise, pairwise, and semiparametric independent models learned

from the data for populations of various sizes. Specifically, we ask how often these models

would make a mistake in predicting whether a chosen single neuron has fired or not. Every

population response in our dataset corresponds to 20 ms of an experiment and so we can

report this accuracy as number of errors per unit of time. Predictions based on the semipara-

metric pairwise model are consistently the most accurate.

Fig 4. Semiparametric pairwise model outperforms other models. A) Out-of-sample log-likelihood

improvement relative to the pairwise model per sample per neuron averaged over subnetworks. Error bars

denote variation over subnetworks (1 SD, no errorbars for N = 160 since there is only one subpopulation of

that size in the entire dataset). The error in likelihood estimation is much smaller than the displayed error bars.

B) The same as in A) but for single populations from two different experiments–one in which the population is

stimulated with a random checkerboard stimulus, and the other where the population responds to a full-field

flickering. C) The test set error rate averaged over neurons for predicting the response of a neuron from the

activities of other neurons in 5 different subpopulations of 100 neurons. D) Average (across neurons) error

rate decrease achieved by using a semiparametric pairwise model instead of a K-pairwise model for

subpopulations of various sizes. Error bars denote 1 SD variation over subnetworks.

https://doi.org/10.1371/journal.pcbi.1005763.g004
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Fig 5A shows the nonlinearities of the semiparametric pairwise models that we learned

from data. In order to compare the nonlinearities inferred from populations of various sizes,

we normalize the domain of the nonlinearity as well as its range by the number of neurons.

Even though the nonlinearities could have turned out to have e.g. a sigmoidal shape, the gen-

eral trend is that they are concave functions whose curvature—and thus departure from the

linear V that signifies no global coupling—grows with the population size. The shape of these

nonlinearities is reproducible over different subnetworks of the same size with very little vari-

ability. To further visualize the increasing curvature, we extrapolated what these nonlinearities

might look like if the size of the population was very large (the black curve in Fig 5A). This

extrapolation was done by subtracting an offset from each curve so that V(0) = 0, and then fit-

ting a straight line to a plot of 1/N vs. the value of V at points uniformly spaced in the func-

tion’s domain. The plots of 1/N vs. V are only linear for N� 80, and so we only used these

points for the extrapolation which is read out as the value of the fit when 1/N = 0. To quantify

Fig 5. Properties of the semiparametric pairwise model. A) Plot of V (E) vs E, i.e. the inferred

nonlinearities of the semiparametric pairwise model. Curves are normalized by network size N and shifted

along the y-axis for readability. Error bars (1 SD) denote variation over different subnetworks. The black curve

is an extrapolation of the other curves to a large population size. B) The population size dependence of the

average absolute value of the nonlinearity’s second derivative. Error bars (1 SD) denote variation over

different subnetworks. C) Scatter plot of the couplings from a semiparametric pairwise model vs those from a

pairwise model fitted to the whole population of 160 neurons. D) Comparison of the covariances predicted by

the semiparametric pairwise model vs. those estimated from the training data. As an approximate guide for

the sampling noise, covariances estimated from test data are also compared to covariances estimated from

training data. Inset shows the same plot but with 10000 randomly sampled third moments E[sisjsk] such that i

6¼ j 6¼ k instead of the covariances.

https://doi.org/10.1371/journal.pcbi.1005763.g005
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the increasing curvature, Fig 5B shows the average absolute value of the second derivative of V
across the function’s domain.

The coupling matrix J of both the pairwise and the semiparametric pairwise models

describes effective interactions between neurons, and so it is interesting to ask how the cou-

plings predicted by these two models are related. While Fig 5C shows a strong dependency

between the couplings in a network of N = 160 neurons, the dependency is not deterministic

and, moreover, negative couplings tend to be amplified in the semiparametric pairwise model

as compared to the pairwise model. Similarly to the semiparametric independent model, there

is no guarantee that the semiparametric pairwise model will reproduce observed pairwise cor-

relations among neurons exactly, even though pairwise model has this guarantee by virtue of

being a maximum entropy model. Fig 5D shows that despite the lack of such a guarantee,

semiparametric pairwise model predicts a large majority of the correlations accurately, with

the possible exceptions of several very strongly correlated pairs. This is simply because the

semiparametric paiwise model is very accurate–the inset of Fig 5D shows that it can also repro-

duce third moments of the responses. A K-pairwise model also has this capability but, as

shown in Ref [11], a pairwise model systematically mispredicts higher than second moments.

Shape of the nonlinearity in critical models

Suppose we use the semiparametric pairwise model to analyze a very large population which is

not globally coupled and can be divided into independent subpopulations. The only way the

model in Eq (9) can be factorized into a product of probability distributions over the subpopu-

lations is if the function V is linear. Therefore, the prior knowledge that the population is not

globally coupled immediately implies the shape of the nonlinearity. Similarly, a prior knowl-

edge that the population is critical also carries a lot of information about the shape of the

nonlinearity.

We show in Methods that if the parameters α are known, then the optimal nonlinearity in

Eq (3) can be explicitly written as

VðEÞ ¼ log �rðE;αÞ � log �̂pðE;αÞ; ð12Þ

where �rðE;αÞ is the density of states which counts the number of patterns s whose energy is

within some narrow range [E, E + Δ]. The density of states is a central quantity in statistical

physics that can be estimated also for neural activity patterns either directly from data or

from inferred models [19]. Similarly, �̂pðE;αÞ is the empirical probability density of the

energy E(s; α) smoothed over the same scale Δ. Eq (12) follows from the relation

�̂pðE;αÞ / �rðE;αÞ exp ð� VðEÞÞ, i.e. the probability of some energy level is just the number

of states with this energy times the probability of each of these states (see Methods).

We would like to establish a prior expectation on what the large N limit of the nonlinearites

in Fig 5A is. Adapting the same normalization as in the figure, we denote �(s; α) = E(s; α)/N.

Changing variables and rewriting Eq (12) in terms of the empirical probability density of the

normalized energy �̂p� ð�Þ ¼ N �̂pð�N;αÞ yields

V ð�NÞ ¼ log �rð�N;αÞ � log �̂p� ð�Þ þ logN: ð13Þ

For a system where si can take on two states, the total number of possible activity patterns is

2N, and so we expect the log of the density of states to be proportional to N. If the system is crit-

ical, then by virtue of Eq (4) σ(log pN(s)) is proportional to N, and similarly we also expect

σ(E(s; α))/ N. This means that σ(�(s; α)) = σ(E(s; α))/N converges to some finite, nonzero

number, and therefore log �̂p� ð�Þ also stays finite no matter how large the population is. Taken
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together, for large critical populations, the first term on the right hand side of Eq (13) is the

only one which scales linearly with the population size, and hence it dominates the other

terms:

VðEÞ � log �rðE;αÞ: ð14Þ

One of our important results is thus that for large critical populations, the nonlinearity should

converge to the density of states of the inferred energy model. In other words, for critical sys-

tems as defined in Eq (4), there is a precise matching relation between the nonlinearity V (E)

and the energy function E(s; α); in theory this is exact as N!1, but may hold approximately

already at finite N.

To verify that this is the case for our neural population that has previously been reported to

be critical, we compare in Fig 6A the nonlinearity inferred with the semiparametric pairwise

model (Fig 5A) to the density of states estimated using a Wang and Landau Monte Carlo

Fig 6. Properties of the inferred nonlinearity for neural networks of increasing size. A) Comparison

between the inferred nonlinearity in the range of energies observed in the dataset and the log of the density of

states at the same energies, showing the increasing match between the two quantities as the population size,

N, increases. Both axes are normalized by the population size so that all curves have a similar scale.

Nonlinearity can be shifted by an arbitrary constant without changing the model; to remove this redundancy,

we set V (0) = 0 for all nonlinearities. B) The population size dependence of the average squared distance

between the density of states and the inferred nonlinearity. Since the nonlinearity can be shifted by an

arbitrary constant, we chose this offset so as to minimize the average squared distance. Error bars (1 SD)

denote variation over different subnetworks. C) Inferred nonlinearities map to latent variables whose

probability distributions can be computed and plotted for one sequence of subnetworks increasing in size

(colors). As the network size increases, the dynamic range of the latent variable distribution does as well,

which is quantified by the entropy of the distributions (inset).

https://doi.org/10.1371/journal.pcbi.1005763.g006
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algorithm [40] for a sequence of subpopulations of increasing size. As the population size

increases, the nonlinearity indeed approaches the regime in which our prediction in Eq (14)

holds. This convergence is further quantified in Fig 6B which shows the average squared dis-

tance between the density of states and the nonlinearity. The average is taken over the range of

observed energies. The nonlinearities are only specified up to an additive constant which we

chose so as to minimize the squared distance between the density of states and the

nonlinearity.

Mapping the nonlinearity to a latent variable

The link between global coupling and criticality is related to recent theoretical suggestions [28,

29], where global coupling between the neurons in the population emerges as a result of shared

latent (fluctuating) variables that simultaneously act on extensive subsets of neurons. In partic-

ular, Ref [28] theoretically analyzed models with a multivariate continuous latent variable h

distributed according to some probability density q(h), whose influence on the population is

described by the conditional probability distribution

pNðsjhÞ ¼
e�
P

j
hjO
ðNÞ
j ðsÞ

ZNðhÞ
; ð15Þ

where ZN(h) is a normalization constant, and OðNÞj ðsÞ are global quantities which sum over the

whole population. The authors showed that under mild conditions on the probability density

q(h) of h, and the scaling of OðNÞj ðsÞ with N, the sequence of models

pNðsÞ ¼
Z

qðhÞpNðsjhÞdh ð16Þ

is critical in the sense of Eq (4).

If the latent variable is one-dimensional, i.e. h = h, then the models in Eq (16) have exactly

the form of models in Eq (3) with E(s; α) = O(s), i.e. given a probability density q(h) of the

latent variable, we can always find a nonlinearity V (E) such that

1

ZðαÞ
e� VðEðs;αÞÞ ¼

Z 1

0

qðhÞ
e� hEðs;αÞ

Zðh;αÞ
dh: ð17Þ

The reverse problem of finding a latent variable for a given function V (E) such that this equa-

tion is satisfied does not always have a solution. The condition for this mapping to exist is that

the function exp(−V (E)) is totally monotone [41], which, among other things, requires that it

is convex. While our models allow for more general nonlinearites, we showed in Fig 5A that

the inferred functions V (E) are concave and so we expect this mapping to be at least approxi-

mately possible (see below).

The mapping in Eq (17) is based on a Laplace transformation, a technique commonly used

for example in the study of differential equations. Laplace transformations are also often used

in statistical physics where they relate the partition function of a system to its density of states.

While the mathematics of Laplace transformations yields conditions on the function V (E) so

that it is possible to map it to a latent variable (i.e., exp(−V (E)) must be totally monotone),

analytically constructing this mapping is possible only in very special cases. We can gain a lim-

ited amount of intuition for this mapping by considering the case when the latent variable h is

a narrow gaussian with mean h0 and variance σ2. For small σ2, one can show that

VðEÞ � h0E � s2ðE � E0Þ
2
; ð18Þ
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where E0 is the average energy if σ2 = 0, and the approximation holds only in a small neighbor-

hood of E0 (|E − E0|� σ). This approximation shows that the curvature of V (E) is propor-

tional to the size of the fluctuations of the latent variable which, in turn, is expected to

correlate with the amount of global coupling among neurons.

This relationship to global coupling can be understood from the right hand side of Eq (17).

When the energy function is, for example, a weighted sum of individual neurons as in the

semiparametric independent model of Eq (8), then we can think of Eq (17) as a latent variable

h (perhaps reflecting the stimulus) coupled to every neuron, and hence inducing a coupling

between the whole population. A non-neuroscience example is that of a scene with s represent-

ing the luminance in each pixel, and the latent h representing the lighting conditions which

influence all the pixels simultaneously.

We used the right hand side of Eq (17) (see Methods) to infer the shapes of the probability

densities of the latent variables which correspond to the nonlinearities in the semiparametric

pairwise models learned from data. These probability densities are shown in Fig 6C. A nota-

ble difference to the formulation in Eq (16) is that the inferred latent variables scale with the

population size; in particular, the inset to Fig 6C shows that the entropy of the inferred latent

variable increases with the population size. Entropy is a more appropriate measure of the

“broadness” of a probability density than standard deviation when the density is multi-

modal. Taken together with the results in Fig 4A, this suggests that global coupling is espe-

cially important for larger populations. However, it is also possible that the latents are

becoming broader because the model is trying to compensate for limited capacity, and that

the entropy of the latent would saturate if we had a more expressive energy function. Larger

datasets and/or further improvements in probabilistic models are necessary to make more

detailed conclusions.

Interestingly, the probability densities of the latent variables consist of two modes at

approximately h = 0.7 and h = 1.3. We hypothesize that these modes reflect a discrete-like

nature of the population dynamics which consist of bursts of activity interspaced with periods

of approximate silence. These bursts are demonstrated in Fig 7A where we show the time

dependence of the total network activity. Unfortunately, closer inspection reveals that the total

network activity cannot be used in a straightforward manner to classify the population as

active or inactive. The reason is that neurons are noisy and if we defined a population as inac-

tive when the total network activity is 0, then such definition is not robust to noise. In fact, the

probability distribution of the total network activity (Fig 3A) is such that there is no obvious

choice of a threshold, and so quantifying the discreteness of the population dynamics based on

the total network activity would be arbitrary.

To circumvent these problems and enable a robust classification of the population state as

active or inactive, we can use the most likely value of the latent variable given a population

response, i.e.

h�ðsÞ ¼ argmax
h

pðhjsÞ ¼ argmax
h

pðsjhÞqðhÞ ¼ argmax
h

qðhÞ
e� hEðs;αÞ

Zðh;αÞ
: ð19Þ

Fig 7A shows the time dependence of h�, and Fig 7B its probability density (estimated by col-

lecting h�(s) over all repeats and times). The probability density of h� has two modes sepa-

rated by an inaccessible region, so one can easily classify a population response s as active or

inactive based on which mode h�(s) belongs to. Fig 7C and 7D show that a population pat-

tern with, for example, 5 active neurons can have very different values for h�(s), demonstrat-

ing that any measure based on the total network activity would easily confuse which state

the population is in.
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Discussion

Criticality is a theoretical concept which depends crucially on how the probability distribution

over population activity patterns scales with the population size. Constructing this scaling

directly from data is complicated, and necessarily involves extrapolating to large population

sizes [10, 30]. As a consequence, answering the question whether a population is critical or

“how close to critical” it is, is difficult. Here we took a different approach—we used the theoret-

ical notion of criticality to guide our intuition about what models are useful for analyzing pop-

ulations that exhibit signs of criticality such as an approximate Zipf law. From the standpoint

of fitting statistical models, it is irrelevant whether or not the studied population is really criti-

cal given some operational realization of the large population size limit because our models

can be used either way, and their accuracy can be evaluated using standard model selection

techniques. In particular, our approach is agnostic to the origins of the signatures of criticality

which have been hotly debated [25–30, 42]. Our reasoning is thus very pragmatic: we on pur-

pose avoided the controversial (albeit interesting) issues of whether the observed critical

behavior in real data is “trivial” or not and what may be its mechanistic explanation, and

focused rather on making use of the observation itself to design better probabilistic models for

neural code.

This pragmatic approach is driven by the rapid development of experimental techniques

for recording the activity of large neural populations, which is posing a challenge for data anal-

ysis. The number of neurons that we can measure simultaneously is growing much faster than

Fig 7. The most likely value of the latent variable naturally defines two global population states. A) For every repeat of the stimulus and for

every time bin we estimate the most likely value of the latent (h*) given the population response at that time, as well as the total number of spiking

neurons in that response (K). The plot shows the trajectories of h* and K averaged across repeats. Error bars correspond to 1 SD. B) Probability

density of h*, i.e. the most likely value of the latent given the population response. C) A scatter plot of the total network activity vs. the most likely

value of the latent. h* naturally divides the population responses into two clusters. D) Probability distribution of the total network activity given this

global population state. While the most likely value of K for low h* is zero, the distribution has a tail that extends to K� 5.

https://doi.org/10.1371/journal.pcbi.1005763.g007
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the time period over which we can record from these neurons. Therefore, we might soon be in

a regime where the number of available samples is comparable to the population size. To make

meaningful conclusions from such datasets, our models will need to take maximal advantage

of the prior knowledge about the dependency structure among neurons. The prior knowledge

that the distribution of activity could be close to critical and that the population could be glob-

ally coupled are two macroscopic features of the neural code that future models should be able

to reproduce without extreme tuning of many parameters. Our semiparametric energy models

directly utilize this prior knowledge, and because the complexity of the nonlinearity is held

fixed for all population sizes, it can be easily used in models with arbitrary number of neurons.

While today’s neuroscience provides us with sufficient data to build accurate models of

neural populations, it is also important that these models generate new hypotheses and shape

the direction of future research. For example, our goal was not to trace the origins of the

observed Zipf law, but we nevertheless believe that the pursuit of these origins can only happen

in a data-driven context to which our models will further contribute. There are many toy mod-

els that reproduce Zipf law, several of which have been proposed in the neuroscience context

to additionally account for related signatures of criticality, e.g., the behavior of the heat capac-

ity. Some of these models invoked the particular structure of the observed pairwise correla-

tions, ascribed specific importance to fluctuating (latent) variables (see Discussion in [19])

which could (or not) be directly related to the stimulus itself, or suggested that the processes of

model construction, inference, or scaling to large N generate spurious signatures of criticality.

The issue is thus not the lack of possible explanations. Rather, it is that these explanations

account qualitatively for only one selected aspect of the actual data, while not truly testing

whether the proposed explanation is quantitatively consistent with all of the reported phenom-

ena and measured statistics. Here, we took seriously the idea that the signatures of criticality

could be due to a global coupling to a hidden (latent) fluctuating variable, as proposed and dis-

cussed in the context of a blowfly motion-sensitive neuron in Ref [28], and we have shown

that the proposed mechanism is viable in a model that precisely accounts for a real and well-

studied dataset [11].

It is important to stress that the identified latent variable is only an effective description of

the data, and so, without further experiments, we cannot interpret it in terms of some biophys-

ical mechanisms, nor can we claim, for example, that the population is critical because of this

latent variable. However, knowing that this latent variable is a useful statistic describing the

population should be a motivation for designing future experiments so that we can correlate it

with more detailed mechanisms on the level of neural circuits, and possibly gain insight into

its bimodal structure. It also suggests that we should analyze populations responding to various

stimuli so that we can understand the latent variable’s stimulus dependence. The scaling of the

latent variable shown in Fig 6C also suggests that we should reexamine whether we could find

even better description of the data with more than one latent variables. This could be done by

studying models with multiple or with multidimensional nonlinearities. Generally, these mod-

els have the form log p(s)/ V (E1(s), E2(s), . . .), and a particularly interesting special case is

when each “energy” function Ei is a simple linear projection of the responses as in the semi-

parametric independent model. These models offer an avenue for both improving the accuracy

and reducing the number of parameters. In light of the theoretical analysis in Ref [28], each

dimension of the nonlinearity could possibly be interpreted as a separate latent variable. While

we are not aware of general conditions which would guarantee that a multidimensional non-

linearity can be mapped to a multidimensional latent variable, intuition suggests that as the

dimension of the nonlinearity increases, the space of nonlinearities which allow for this inver-

sion becomes smaller. This means that if we fit a model with a general multidimensional non-

linearity to data, and we find that this nonlinearity can be mapped to a multidimensional
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latent variable, then it is an evidence that these latent variables can be correlated with actual

physical mechanisms which can be sought for in future experiments.

There exist alternative ways of modeling global coupling (and thus likely capturing signa-

tures of criticality) in neural populations. Hidden-Markov-Model-type (HMM) models have

been considered for the retinal data [43], where the discrete hidden states correspond to collec-

tive modes of activity that, due to noise in neural spiking, map probabilistically into observed

activity patterns of spiking and silence. In contrast, our model can be interpreted as having a

single (but continuous) hidden variable—although we empirically find that the distribution of

this latent variable is actually bimodal, highlighting the basic distinction between the “silent”

or “inactive” state of the retina, and the “active” state [44]. The HMM models were introduced

to capture more flexibly collective modes of activity first observed in pairwise and K-pairwise

models [10, 11]. Unlike the semiparametric pairwise model, they take into account the

observed temporal dynamics, and they are also parametrically richer. Furthermore, their

learned hidden states show interesting correspondence to the displayed stimuli even though

the model is a priori agnostic about the stimulus. On the other hand, the HMM models admit

no clear link to and interpretations of the signatures of criticality, which was our motivation in

this paper. Related to the HMMs, [45, 46] discuss another classes of accurate models which

capture the temporal dynamics of the population.

Unlike HMMs and related models, this paper is concerned with modeling the stationary

distribution rather than the precise time-dependence of the population. While this discards a

lot of information, and hence the resulting models are possibly less accurate, there are advan-

tages to focusing on stationary models. On the technical side, temporal models require more

parameters and associated decisions about how to represent the stimulus and its interactions

with the population, and so they are harder to scale to datasets with large numbers of neurons.

More importantly, however, it was precisely by disregarding the temporal information that the

ubiquity of criticality and the role of weak pairwise correlations [8] in neural populations were

discovered. It is thus possible that discarding the temporal information allows us to make

more general observations about neural codes. This is an important hypothesis. For example,

the models we consider in this work, as well as most of published models, are accurate only

when applied to data collected in a very narrow experimental context, and it is unclear if/how

much would these models generalize to novel stimuli/experimental conditions, nor is it obvi-

ous how to design experiments so that we can infer models which generalize as much as possi-

ble. While it remains to be tested, it is an intriguing hypothesis that stationary models have

more potential for generalization across experiments.

In the domain of stationary models, Restricted Boltzmann Machines (RBMs) and their

derivatives [34] are also classes of energy-based models for population activity that could cap-

ture global coupling by latent variables. RBMs are universal learners that, given sufficient data,

can reproduce any distribution—including a critical one; like HMM models, however, making

a generic link between their parameters and criticality appears difficult. We note that the RBM

structure is not incompatible with the structure of semiparametric energy-based models: one

could consider a “semiparametric RBM model,” where E in Eq 3 is defined by a RBM, whose

parameters are learned jointly with the nonlinearity, V (E).

A different class of models that has been demonstrated to capture criticality consists of vari-

ous derivatives of the dichotomized Gaussian model [26, 39, 47]. A comparison between the

dichotomized Gaussian, pairwise, and K-pairwise models on the same dataset as we consider

in this work was done in [11]. They showed that while the dichotomized Gaussian is compara-

ble to the pairwise model, the K-pairwise model, and hence also the semiparametric pairwise

model, are more accurate. The analysis in [48, 49] shows that the distribution of the total net-

work activity (as in Fig 3) can often be fitted using a generalization of the dichotomized
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Gaussian model in which the inputs are q-Gaussians, but they assume that all neurons are the

same and do not aim to model more detailed statistics of the neural responses. More recently

[50] discusses how to extend the dichotomized q-Gaussian model to heterogeneous popula-

tions. However, they only show how to use this model to match the observed means and pair-

wise correlations while keeping the q parameter fixed, and they do not discuss how to perform

maximum likelihood inference on all parameters simultaneously. Since these studies on the

dichotomized q-Gaussian model showed that the q parameter is relevant for statistics related

to global coupling, it would be an interesting research direction to develop a procedure for

maximum likelihood inference of this model, and compare it to the semiparametric pairwise

model.

The observations of criticality in real data are not specific to neuroscience. Datasets in

many other fields such as luminance in natural images [31], or amino acid sequences of pro-

teins [33] have been shown to exhibit Zipf law. In particular, models of the form Eqs (3) and

(17) have been used to model the statistics of small image patches under the name elliptically

symmetric distributions and Gaussian scale mixtures [51, 52] although the motivation for

using these models had nothing to do with criticality. These models are much easier to analyze

than the models we consider in this paper because the variables si are continuous rather than

discrete. Our discussion regarding Eq (14) and the prior expectations about the shape of the

nonlinearity is valid even in the continuous case. In particular, elliptically symmetric distribu-

tions are essentially the same as our semiparametric pairwise models, Eq (9), only with contin-

uous variables. Because si are continuous, we can analytically evaluate the density of states,

rðE; JÞ / EN
2
� 1; ð20Þ

and so the optimal nonlinearity for an elliptically symmetric distribution fitted to a large sys-

tem which exhibits criticality (e.g. image patches) is expected to be V (E) = (N/2 − 1) log E
+ const.

Another connection between our models and a substantial body of theoretical work is in

the context of nonextensive statistical mechanics. Physicists have considered models of the

form Eqs (3) and (17) as models of systems whose entropy grows sublinearly with the system

size [53]. It is difficult to make these connections explicit because nonextensive statistical

mechanics has been studied mostly through toy models rather than data-driven generative

models that we examine here; furthermore, in the toy models the latent variables are usually

assumed to converge to a delta function as the population size grows which is in stark contrast

with our findings in Fig 6. Nevertheless, deepening the connection between models inferred

from data, the maximum entropy formalism itself (e.g., considering the possibility that our

semiparametric energy models of Eq (3) can be derived from the maximization of a general-

ized version of the standard entropy), and nonextensive statistical mechanics is an interesting

topic for further research.

Methods

Relation of the nonlinearity to the probability density of the energy

Let ρ(E0; α) = ∑s δE0, E(s; α) count the number of states which map to the same energy E0. The

probability distribution of E(s; α) when s is distributed according to Eq (3) is

pðE0;α;VÞ ¼
X

s

pðs;α;VÞdE0 ;Eðs;αÞ ¼
rðE0;αÞe� VðE0Þ

Zðα;VÞ
: ð21Þ

Given data D ¼ fsðiÞgMi¼1
, let p̂ðE0;αÞ ¼ 1

M

PM
i¼1

dE0 ;EðsðiÞ ; αÞ be the data distribution of the energy,
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and let Oα be the image of E(s; α). The average log-likelihood of the data can be rewritten as

Lðα;VÞ ¼ � logZðα;VÞ �
1

M

XM

i¼1

VðEðsðiÞ;αÞÞ

¼ � logZðα;VÞ �
X

E02Oα

p̂ðE0;αÞVðE0Þ

¼ �
X

E02Oα

p̂ðE0;αÞ log rðE0;αÞ þ
X

E02Oα

p̂ðE0;αÞ logpðE0;α;VÞ;

ð22Þ

where the third line follows by substituting the logarithm of Eq (21).

Eq (22) has a simple interpretation. The last term, which is the only one depending on V, is

the average log-likelihood of the samples fEðsðiÞ;αÞgMi¼1
under the model p(E; α, V), and so, for

any α, the purpose of the nonlinearity is to reproduce the data probability distribution of the

energy.

Our restriction that V is a twice differentiable increasing function can be seen as a way of

regularizing learning. The last term in Eq (22) is the negative cross entropy between p̂ðE;αÞ
and p(E; α, V) and it is well known that this term is maximal if p̂ðE;αÞ ¼ pðE;α;VÞ. Accord-

ing to Eq (21), if V was arbitrary, then, for any α, we can satisfy this equality with any (possibly

infinite) function V such that

VðEÞ ¼ log rðE;αÞ � log p̂ðE;αÞ þ const: for all E 2 Oα: ð23Þ

If the energy function assigns distinct energies to distinct states, then the choice in Eq (23)

leads to a model which exactly reproduces the empirical distribution of data, and hence

overfits.

An alternative way of regularizing would be to assume that V is a piecewise constant func-

tion. In that case, the analog of Eq (23) is

VðEÞ ¼ log �rðE;αÞ � log �̂pðE;αÞ þ const:; ð24Þ

where, for every bin on which V is constant, the density of states �rðE;αÞ counts the number of

states whose energy maps to this bin divided by the bin width. Similarly, the empirical energy

density �̂pðE;αÞ counts the number of samples whose energy maps to this bin divided by the

bin width.

Learning the models

All models were trained using a variation of Persistent Contrastive Divergence [38] which per-

forms an approximate gradient ascent on the log-likelihood for any model of the form p(s; α)

= exp(−F(s; α))/Z(α), where F(s; α) is a computationally tractable function differentiable in

the parameters α, and Z(α) is a normalization constant. Given an initial guess of the parame-

ters α0, and a list of Ms samples drawn from p(s; α0), the algorithm can be summarized as

for t≔ 1 to L
αt = αt−1 + η(E[rα F(s; αt−1)]samplest−1 − E[rα F(s; αt−1)]data)
samplest = GIBBS

n (samplest−1, αt)

where L is the number of iterations, η is the learning rate, E[�]list denotes an average over

the list of states, and GIBBSn represents n applications of the Gibbs sampling transition

operator.

Pairwise and K-pairwise models were trained using η = 1, n = 2N, and with initial parame-

ters drawn from a normal distribution with 0 mean and 0.1 standard deviation. We iterated

Probabilistic models for critical neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005763 September 19, 2017 21 / 26

https://doi.org/10.1371/journal.pcbi.1005763


the algorithm two times, first with L = 10000, Ms = 3 × 104, then with L = 10000, Ms = 3 × 105.

Semiparametric independent and pairwise models were trained using η = 5 × 10−5 for the

parameters of the function V (see below), and η = 1 for all other parameters. We initialized the

model with parameters corresponding to the learned independent (pairwise) models, and

trained for L = 10000 iterations with Ms = 3 × 104 samples.

The function V is parametrized through a function W (see Eq (7)). We use piecewise con-

stant functions to parametrize W. Let [E0, E1] be an interval containing the range of energies

E(s; α) which we expect to encounter during learning. We divide the interval [E0, E1] into Q
non-overlapping bins of the same width with indicator functions Ii, i.e. Ii(E) = 1 if E is in the

ith bin, otherwise Ii(E) = 0, and we set WðEÞ �WðE; βÞ ¼
PQ

i¼1
biIiðEÞ. We used Q = 20 bins

in all experiments. This was a conservative choice: increasing Q did not result in a higher train-

ing or validation likelihood.

The integrals in Eq (7) can be carried out analytically for this choice of W yielding an exact

expression for V as a function of γ and β. For E< E0, we have V (E; γ, β) = γ1 + γ2(E − E0). For

E> E0 we have V (E; γ, β) = γ1 + γ2 f(E; β), where

f ðE; βÞ ¼
Z E

E0

exp
Z E0

E0

WðE00; βÞdE00
 !

dE0

¼
X½E�� 1

i¼1

exp D
Xi� 1

j¼1

bj

 !
exp ðDbiÞ � 1

bi

þ exp D
X½E�� 1

j¼1

bj

 !
exp ðb½E�ðE � ð½E� � 1ÞDÞÞ � 1

b½E�
:

ð25Þ

We define [E] as the number of the bin that contains E. If E> E1, then we define [E] = Q + 1,

and βQ+1 = 0.

Using this expression we can calculate the gradientsrα F(s; α) in the algorithm exactly.

This calculation is straightforward although the resulting expressions are cumbersome. For the

semiparametric pairwise model, we have Fðs; γ; β; JÞ ¼ V ð
PN

i;j¼1
Jijsisj; γ; βÞ. The gradient

with respect to the couplings is

@Fðs; γ; β; JÞ
@Jkl

¼ V 0ð
XN

i;j¼1

Jijsisj; γ; βÞsksl: ð26Þ

The gradients with respect to γ and β are just the gradients of V (E; γ, β) with respect to these

parameters and they are as follows:

@V ðE; γ; βÞ
@g1

¼ 1; ð27Þ

@VðE; γ; βÞ
@g2

¼ f ðE; βÞ; ð28Þ

@VðE; γ; βÞ
@bk

¼ g2

f ðE; βÞ
@bk

: ð29Þ
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If k> [E], then

@f ðE; βÞ
@bk

¼ 0: ð30Þ

If k = [E], then

@f ðE; βÞ
@bk

¼ exp D
X½E�� 1

j¼1

bj

 !
exp ðDb½E�ÞDb½E� � exp ðDb½E�Þ þ 1

b
2

½E�

: ð31Þ

If k< [E], then

@f ðE; βÞ
@bk

¼ exp D
Xk� 1

j¼1

bj

 !
exp ðDbkÞDbk � exp ðDbkÞ þ 1

b
2

k

þ D
X½E�� 1

i¼kþ1

exp D
Xi� 1

j¼1

bj

 !
exp ðDbiÞ � 1

bi

þ D exp D
X½E�� 1

j¼1

bj

 !
exp ðb½E�ÞðE � ð½E� � 1ÞDÞ � 1

b½E�
:

ð32Þ

Estimating likelihoods

Data likelihoods cannot be evaluated exactly because the normalization constants Z are intrac-

table. We resorted to Monte Carlo method known as thermodynamic integration in physics

[54], and annealed importance sampling in machine learning, to estimate the normalization

constants [55]. The initial model for annealed importance sampling was always the indepen-

dent model for which the partition function can be calculated exactly. The sampling procedure

consisted of 104 intermediate distributions which uniformly interpolated from the indepen-

dent model to the model of interest. Each partition function was estimated using 104 samples.

All reported likelihoods were evaluated on held-out data. A simple cross-validation also

showed that our models did not suffer from overfitting.

Estimating the density of states and the latent variables

Density of states was estimated using the Wang and Landau algorithm [11, 40]. The accuracy

parameter (the smallest increment size for the log of the density of states) was 10−7. The energy

range was estimated during the first few thousand steps of the algorithm. This range was divided

into * 104 bins. We decreased the increment size every * 108 iterations instead of checking

energy histogram flatness since the later is hard to do when some energy bins are inaccessible.

We inferred the probability densities of the latent variables by considering the model in Eq

(17) with fixed J which corresponds to the coupling matrix of the previously learned semipara-

metric pairwise model. The domain of the latent variable was set to [0, 5]. We approximated

the integral with a sum by dividing this domain into 400 bins, and the value of the probability

density q(h) was inferred by maximizing the likelihood of data subject to the constraint that

q(h) integrates to 1. To make the computation tractable, we needed an expression for Z(h; J).
This can be obtained from the estimated density of states ρ(E; J) of the energy as

Zðh; JÞ ¼
X

s

e� hEðs;JÞ ¼
Z

rðE; JÞe� hE dE: ð33Þ
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