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Abstract
Cognitive scientists have a long-standing interest in quantifying the structure of semantic memory. Here, we investigate whether 
a commonly used paradigm to study the structure of semantic memory, the semantic fluency task, as well as computational 
methods from network science could be leveraged to explore the underlying knowledge structures of academic disciplines 
such as psychology or biology. To compare the knowledge representations of individuals with relatively different levels of 
expertise in academic subjects, undergraduate students (i.e., experts) and preuniversity high school students (i.e., novices) 
completed a semantic fluency task with cue words corresponding to general semantic categories (i.e., animals, fruits) and 
specific academic domains (e.g., psychology, biology). Network analyses of their fluency networks found that both domain-
general and domain-specific semantic networks of undergraduates were more efficiently connected and less modular than the 
semantic networks of high school students. Our results provide an initial proof-of-concept that the semantic fluency task could 
be used by educators and cognitive scientists to study the representation of more specific domains of knowledge, potentially 
providing new ways of quantifying the nature of expert cognitive representations.
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Cognitive scientists have a long-standing interest in quanti-
fying the structure of semantic memory. Much research in 
the cognitive sciences is dedicated to empirical work that 
investigates the retrieval and organization of semantic memory 
(Anderson & Bower, 1980; Reder et al., 2009; Tulving, 1972), 
as well as methodological and computational work that focusses 
on quantifying or estimating memory representations (De Deyne 
& Storms, 2008; Jones & Mewhort, 2007; Landauer, 2007). In 
this paper, we investigate whether the combination of behavioral 
methods from cognitive psychology and computational methods 
from network science could be leveraged to quantify underlying 
knowledge representations of academic disciplines, such as 
psychology or biology.

Understanding the nature of domain-specific (or subject-
specific) knowledge structures is an important question within 
the educational sciences, where it is commonly recognized 
that students’ domain-specific knowledge should consist 

of a collection of coherently organized and interconnected 
concepts (Kinchin et al., 2000). However, obtaining quanti-
tative measurements of such conceptual structures is not 
straightforward. Given that students’ conceptual structure of 
a subject influences their learning and academic performance 
(Nesbit & Adesope, 2006), it is critical to find ways of 
measuring how the structure of domain knowledge develops 
with increasing expertise.

In the rest of the Introduction, we first briefly discuss the 
importance of measuring the knowledge structure of learners 
and consider how educational psychologists have attempted 
to capture these knowledge structures. We then review the 
ways in which cognitive psychologists measure and quantify 
semantic memory structure, with a focus on studies which 
use network science approaches. Finally, we focus on specific 
measures of network science used to quantify network 
structure and outline the study hypotheses.
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Knowledge representation of experts 
and novices

A core principle in expertise research is that the underlying 
knowledge representations of experts and novices are different 
(Chi, 2006; Gobbo & Chi, 1986; Persky & Robinson, 2017; 
Wolff et al., 2017). Specifically, experts are said to understand 
the deep structure of problems, and hence are able to flexibly 
use this deep structure to solve a wide variety of problems 
within their domain of expertise. On the other hand, novices 
tend to focus on superficial aspects of the problem (Salkowski 
& Russ, 2018). For instance, classic studies in cognitive 
psychology demonstrated that expert chess players have 
better memory for meaningful chess formations than novices 
do (Chase & Simon, 1973), and experts uncover the deep 
structure of physics problems, whereas novices fixate on 
surface characteristics of the problem (Chi et al., 1981). In 
nonacademic domains, expert rock climbers’ more accurate 
representation of action sequences and movements appear 
to underlie their better performance at cognitive tasks like 
remembering sequences of holds and moves (Whitaker et al., 
2020).

The idea that experts have more sophisticated cognitive 
structures is highly relevant to the domain of education. An 
important goal of education is to develop learners into flexible 
and adaptive problem solvers. Ideally, students learn about 
more than just a collection of disparate facts about a given 
topic. Their own conceptual structure of a domain of knowledge 
should reflect the deep, hierarchical, and  interconnected 
structure of that particular domain (Disessa & Sherin, 1998; 
Linn, 2006). Given that students’ conceptual structure of an 
academic subject influences their subsequent learning and 
academic performance (Driver & Erickson, 1983; Nesbit 
& Adesope, 2006), it would be useful to have some way of 
measuring the conceptual representations of learners. However, 
how would one go about measuring such representations?

The most straightforward approach is to simply ask students 
to depict their domain knowledge through concept mapping 
(Novak, 2010). Students list discrete concepts and then 
connect concepts by indicating a line between related ideas. 
Typically, concept maps are qualitatively evaluated for their 
visual characteristics that are thought to reflect expert-like 
organization (e.g., a “star” shape) or novice-like organization 
(e.g., a linear, sequential structure; Kinchin et al., 2000). More 
recently, researchers have attempted to quantitatively evaluate 
these concept maps as mathematical graphs (Koponen & 
Nousiainen, 2014; Koponen & Pehkonen, 2010; Siew, 2018) 
so that methods from network science could be used to gain 
further insights into learners’ conceptual representations. It 
is worth noting that the goal of investigating the organization 
of knowledge is somewhat different from summative 

assessments such as quizzes or tests that attempt to measure 
the existence or application of that knowledge (e.g., retrieval-
based learning; Roediger & Karpicke, 2006). Specifically, 
summative assessments typically focus on quantifying test 
performance (e.g., how many questions is the student able to 
answer correctly), which is taken as a proxy for knowledge 
that a learner possesses, whereas our approach emphasizes 
the underlying nature of that knowledge: How are concepts 
associated with a particular knowledge domain interrelated 
and organized within the learner’s long-term memory?

Taken together, the evidence suggests that the organization of 
knowledge among experts of a particular domain is a key factor 
for their better performance. This means that it is important 
to develop ways of measuring and quantifying knowledge 
structures so that we can delineate what is specifically different 
between experts and novices, and perhaps gain new ways of 
closing the gap between students who have a better or poorer 
grasp of the subject domain. In this paper we make use of a 
commonly used task in cognitive psychology (i.e., the semantic 
fluency or verbal fluency task) and methods from network 
science to uncover the conceptual structure of a learner’s 
knowledge.

Measuring knowledge structure 
with network science

Siew (2020) suggested that methods from cognitive psychology 
used to study semantic memory retrieval and representation 
could be potentially adapted to study the properties of expert 
and novice conceptual structures within the education sciences. 
Semantic memory is the part of long-term memory that stores 
facts and information about the world and is commonly 
conceptualized as a network of concepts that are connected 
based on associative relationships or shared features (Collins 
& Loftus, 1975; Smith et al., 1974). Knowledge about a given 
domain could also be conceptualized in a similar manner 
as students learn about discrete facts or information that 
are organized in some meaningful way in their long-term 
memory. If we assume that such knowledge can be reasonably 
represented as a network structure of nodes and edges, where 
nodes represent distinct knowledge units or concepts and edges 
(or links) depict a relationship between pairs of concepts, it is 
possible to leverage on recent advancements within the field of 
cognitive network science to gain new insights into knowledge 
representations (for a review of cognitive network science, see 
Siew et al., 2019).

In the cognitive sciences, there is a lot of interest in measur- 
ing and quantifying semantic memory structure as it leads 
to greater insights into topics ranging from vocabulary 
acquisition (Beckage & Colunga, 2019; Hills et al., 2009) to 
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cognitive decline (Wulff et al., 2019). To study the large-scale 
structure of semantic memory, cognitive scientists use network 
science approaches to analyze behavioral data from classic 
psychological tasks. For instance, there are citizen science 
projects that collect free associations (i.e., what are the first 
three words that come to mind for the concept “dog”?) through 
an online word association game—these free associations 
are commonly analyzed as semantic networks (De Deyne 
et al., 2019; Dubossarsky et al., 2017). Others have adopted a 
snowballing approach to collect free associations to estimate 
the semantic network structure of individuals (Morais et al., 
2013; Wulff et al., 2021). Others have used the verbal fluency 
or semantic fluency task (i.e., name as many members of the 
“animal” category) to estimate semantic network structures 
(Borodkin et al., 2016; Kenett et al., 2013).

Semantic fluency networks

In the semantic fluency task, participants generate as many 
category members as they can within a short period of time. 
A characteristic pattern in fluency responses is that people 
tend to list related concepts in close proximity, leading to 
clusters of closely related responses (Troyer et al., 1998). 
For instance, for the category of “animals,” a fluency list 
could be “dog, cat, mouse, pig, horse, cow.” The first three 
responses are house pets, whereas the next three responses 
are farm animals. Various network estimation methods are 
used to infer the underlying network structure based on the 
observed fluency data by assuming that a simple random 
walk mechanism is producing the fluency responses (for a 
detailed review, see Zemla & Austerweil, 2018).

Network science metrics, such as average shortest path 
length (ASPL; which indexes the number of steps needed to 
traverse the network), clustering coefficient (CC; which indexes 
the extent of local clustering in the network), and modularity 
(Q; which indexes the presence of community structure 
or subclusters in the network), can be used to characterize 
semantic network structure. Communities are subclusters 
of nodes in the network that are more interconnected within 
themselves, and less interconnected with nodes outside the 
community. For example, Kenett et al. (2014) found that the 
semantic network structure of individuals with higher creative 
ability was less hierarchical and less spread out as compared 
with individuals with lower levels of creative ability. In another 
paper comparing the semantic networks of monolingual and 
bilingual speakers of Hebrew, Borodkin et al. (2016) found 
that the semantic network of bilinguals showed greater levels 
of local connectivity and less modularity, suggesting that 
L2 vocabulary structure was organized differently from L1 
vocabulary.

In this paper, we use the semantic fluency task to estimate 
underlying the network structure of our participants for two 
reasons. First, the semantic fluency task is quick and easy to 
administer as compared with the free association task which 
requires the administering of hundreds if not thousands of 
cue words. An adapted version of the semantic fluency task 
could be reasonably administered in a classroom setting to 
take snapshots of students’ learning. Second, much recent 
work has been devoted to the development and validation 
of different network estimation methods from fluency data 
(Christensen & Kenett, 2019; Zemla & Austerweil, 2018). 
This has led to the availability of accessible toolkits and 
tutorials for analyzing such data (Zemla et al., 2020).

Aim of study and hypotheses

The aim of the present study is to use the semantic fluency task 
to quantify the knowledge representation of various academic 
subjects among undergraduate and high school students. It is 
presumed that undergraduates would be more of an “expert” 
in various academic subjects than high school students as the 
former group would have had more years of education and 
recently completed their high school education. If the fluency 
task is able to pick up group-level structural differences between 
the knowledge networks of these two groups, it suggests that 
the task could be used to quantify knowledge representations 
of individuals with greater or lower levels of expertise in an 
academic domain. Because previous studies have successfully 
analyzed semantic fluency data as semantic networks (e.g., 
Borodkin et al., 2016; Kenett et al., 2016), we wanted to apply 
the same techniques to a different domain (i.e., academic 
subjects) and to a participant population not commonly studied 
in the psychological literature.

We expected to find structural differences between high 
school and undergraduate group-level semantic networks 
inferred from subject-specific fluency data. The undergraduate 
networks should have characteristics of a more sophisticated, 
well-integrated knowledge structure. This is where the 
quantification of network structure using commonly used 
network science measures such as average shortest path 
length (ASPL), clustering coefficient (CC), and modularity 
(Q) can be particularly useful. Specifically, we expected 
the undergraduate networks to have lower ASPLs than high 
school networks, suggesting greater overall navigability of 
the network as fewer steps/shorter paths are required to move 
between different concepts in their network. We also expected 
the undergraduate networks to have lower Qs than high 
school networks, suggesting higher level of interconnectivity 
across subclusters or subdomains of knowledge. As it was not 
immediately clear if expert networks would display higher or 
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lower levels of local clustering among concepts, we did not 
have a specific prediction for CC. As for fluency networks 
of general semantic categories (i.e., animals and fruits), we 
did not expect to find differences as we reasoned that these 
should simply reflect domain-general knowledge that should 
be broadly similar across both groups.

Method

Participants

Fifty-five students (36 males, mean age = 16.7 years, SD = 1.03) 
were recruited from the National University of Singapore High 
School of Mathematics and Science (NUSH). The students’ 
grade levels correspond to  10th,  11th and  12th grades based 
on the North American high school system. Seventy-nine 
undergraduates (13 males, mean age = 21.1 years, SD = 1.59) 
were recruited from the National University of Singapore (NUS) 
and received either monetary reimbursement or credit towards 
fulfilling a course requirement for their participation. Thirty-five 
of the undergraduates were currently enrolled in the introductory 
psychology module, 15 had completed it during the course of 
their university education, one was a psychology minor, and 
remaining participants were psychology majors. All participants 
did not have any self-reported speech or language disorders. The 
study was approved by the Department of Psychology’s Ethics 
Review Committee at the National University of Singapore.

Materials and procedure

All participants completed the general semantic fluency lists 
first, followed by subject-specific semantic fluency lists. For 
the general semantic fluency lists, participants were asked to 
generate as many category members for the general semantic 
categories of animals and fruits. The order of the cue words 
presented was randomized for each participant. Animals 
and fruits are well-established general semantic categories 
widely used across studies of semantic fluency (e.g., Lonie 
et al., 2009; Zemla et al., 2020). Following this, participants 
completed the subject-specific semantic fluency lists where 
they were asked to generate as many concepts (in the form 
of single words or short phrases) that were related to a spe-
cific academic subject (i.e., biology, chemistry, mathematics, 
physics, psychology). For example, students presented with 
the cue word “biology” responded with “cell,” “life cycle,” 
or “body.” The order of presentation of subject-specific cue 
words was pseudo-randomized, the only constraint was that 
the cue word “psychology” could appear only after the first 
cue word.

Participants were given a maximum of 2 minutes to generate 
as many as responses as they could for each cue word. The 
procedure was as follows: the cue word was presented on a 
screen and participants entered their responses into a text box 
one at a time. Each response was programmed to fade from 
the screen after around 800 ms to avoid memory cuing from 
previous responses. Participants were instructed to refrain from 
repeating responses within each semantic fluency list or listing 
items with the same suffix (e.g., “cell” and “cells”). Due to the 
COVID-19 pandemic, data collection was conducted remotely 
via a custom-made web application.

Network estimation methods

Semantic fluency networks were constructed from the 
semantic fluency data and analyzed using a suite of R libraries 
specially developed for semantic network analysis (SemNA; 
Christensen & Kenett, 2019). SemNA contains three R 
packages (SemNetDictionaries, SemNetCleaner, and SemNet) 
and offers a single pipeline for preprocessing, estimating, and 
analyzing semantic networks from semantic fluency data. 
The analyses reported in this paper were conducted using the 
following versions of the R packages: SemNetDictionaries 
(Version 0.1.9), SemNetCleaner (Version 1.3.4), and SemNet 
(Version 1.4.4). First, fluency responses were cleaned using 
SemNetDictionaries and SemNetCleaner. The fluency data 
were first spell-checked and autocorrected using dictionaries, 
following which duplicate or inappropriate responses were 
removed. Finally, monikers or slightly different entries 
referring to the same concept were converted into a single, 
consistent label. For example, for the psychology lists, the 
responses “mental illness” and “mental disorder” were 
standardized as “mental disorder.” This process was carried 
out via a combination of automated and manual effort.

Thereafter, cleaned regular response matrices and binary 
response matrices were produced for all responses belonging 
to each fluency list, from which semantic fluency networks 
were constructed. Each regular response matrix consisted 
of participant numbers running down the rows, with each 
participant’s responses for that particular fluency list running 
across each row. Each binary response matrix consisted of 
participant numbers running down the rows, with columns 
representing unique responses across all participants for that 
particular fluency list. If participants had provided responses 
in particular columns, cells in the corresponding column 
were marked as “1”; if they did not, cells were marked as 
“0.”

In semantic fluency networks, individual nodes represented 
concepts or members of a certain category in memory, and 
edges represented the existence of an association between 
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pairs of concepts (Borodkin et al., 2016; Kenett et al., 2016). 
As discussed earlier, because fluency responses that occur 
close to each other also tend to be semantically related, it is 
possible to construct the semantic network given these inferred 
associations, and several methods have been developed for 
doing so (Christensen & Kenett, 2019; Zemla & Austerweil, 
2018). The SemNet package contains four network estimation 
methods: Community Network (CN), Naïve Random Walk 
(NRW), Pathfinder (PF), and Correlation-based networks 
(CR). Please see Appendix: Table 8 for a complete list of 
abbreviations used to refer to the network estimation methods 
and network measures discussed in this paper. We performed 
our analyses using each of the available methods as each of 
them offer different advantages (for additional details, see 
Zemla & Austerweil, 2018). It was also important to ascertain 
if different methods would converge on similar network 
representations given the same data. Below, we briefly describe 
each network estimation method used to generate the semantic 
networks.

Naïve random walk networks The naïve random walk oper-
ates on the assumption that responses are generated by tak-
ing an uncensored random walk on a semantic network (Jun 
et al., 2015; Lerner et al., 2009). Under this assumption, 
adjacent responses are more likely to be semantically closely 
related. An edge is created between each pair of adjacent 
responses in the semantic fluency list. A co-occurrence 
matrix is created whereby the number of co-occurrences of 
adjacent pairs across the regular response matrix is counted 
and a threshold is applied to it such that only adjacent pairs 
that co-occur at least as many times as the threshold are 
estimated to have an edge in the network. In the present 
analysis, a threshold of 3 was used as it was the default value 
in SemNet; our results were similar across thresholds of up 
to 4.

Community networks In the community network method, a 
semantic network is estimated using a co-occurrence matrix 
where two responses that are not necessarily adjacent but 
occur within a fixed window or distance from each word 
is counted as a co-occurrence (Goñi et al., 2011). This co-
occurrence matrix was derived from the cleaned regular 
response matrix for each fluency list. In the analyses reported 
below we used a window size of 2, as it was the default value 
in SemNet; our results were similar across different window 
sizes. These co-occurrences were then counted to infer if 
they were likely to have occurred by random chance. Using 
a 95% confidence interval from a binomial distribution, 
edges were created between responses that were significantly 
unlikely to occur together by random chance.

Pathfinder networks A binary response matrix was created 
whereby each row contained each participant’s responses for 
a list and the columns contained unique fluency responses 
across the participants for that list. Each cell was denoted 
with “0” if the participant did not provide that response and 
“1” if they had done so. A proximity matrix between every 
pair of responses in the binary response matrix was then 
computed (Schvaneveldt, 1990). Only the path with the 
shortest distance between every pair of nodes was retained, 
and the network was then estimated by using a set of edges 
that links all nodes in the network while minimizing the total 
distance of all edges in the network.

Correlation‑based networks Correlation-based network 
methods use a binary response matrix to estimate a semantic 
network based on co-occurrences of responses. An association 
measure between every pair of responses was computed using 
cosine similarity, producing an association matrix. As per 
common practice, only responses that were provided by at 
least two participants in each group were retained, in order to 
reduce spurious associations. Following that, responses were 
equated such that each group only contained the responses that 
were given by all other groups, which ensured that all groups 
had the same number of nodes, reducing confounding effects 
when making comparisons between networks (e.g., Borodkin 
et al., 2016). Note that this response equating step was only 
done for the correlation-based network estimation procedure 
in accordance with previous work that used this approach, 
and not for the other three network estimation methods. The 
Triangulated Maximally Filtered Graph (TMFG) method 
was implemented to connect the nodes in the network by 
maximizing the strength of their association to other nodes 
while making sure that the network is planar.

Network measures

After constructing networks from the various network 
estimation methods, we computed global network measures 
of the average shortest path length (ASPL), clustering 
coefficient (CC) and modularity index (Q) for each network 
to characterize its overall structure. The ASPL measures the 
average of the smallest number of steps needed to get from 
one node to another and is a measure of how efficiently a 
network can be navigated (Kleinberg, 2000). The CC refers 
to the probability that two neighbors of a randomly chosen 
node will also be neighbors of each other and is considered 
to be a measure of the level of local clustering in the network 
(Watts & Strogatz, 1998). The modularity of the network, Q, 
is a measure of the density of connections within communities 
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as compared with the density of connections between 
communities (Fortunato, 2010; Newman, 2006). It also 
indicates the quality of the community partitions; networks 
with higher values of Q have robust or well-defined community 
structure where the density of connections within communities 
is much higher as compared with the density of connections 
between communities (Newman, 2006). The Louvain method 
(Blondel et al., 2008) was used to compute modularity.

Network analyses

Each network estimation method was used to estimate a 
semantic network for the NUS and NUSH groups for all 
seven fluency lists (i.e., Animals, Fruits, Biology, Chemistry, 
Mathematics, Physics, Psychology), resulting in 56 separate 
networks (7 lists × 2 groups × 4 methods). Two types of 
analyses, random network analyses and bootstrap analyses, were 
employed to statistically compare the networks generated from 
the fluency data. In the first approach, random networks with 
the same number of nodes and edges as the estimated networks 
were generated, in order to determine if the network measures 
observed are indeed significantly different from what would 
be expected from randomly generated networks with similar 
properties (e.g., Beckage et al., 2011). Random networks were 
generated such that the number of connections to each node, or 
the degree sequence, was preserved so that the general structure 
of the network was maintained for a fair comparison. For each 
simulated random network, global network measures of CC, 
ASPL, and Q were computed. This process was repeated 1,000 
times for each network “type” (i.e., for all seven fluency lists, 
each student group [NUS and NUSH], and for all four network 
estimation methods). Global network measures (ASPL, CC, Q) 
were then computed for each group’s random networks, resulting 
in random reference distributions. A one-sample t test was 

conducted to see if network measures of the estimated networks 
were significantly different from the distribution of network 
measures of simulated random networks. A significant result 
would indicate that the structure of the semantic networks cannot 
be easily “recovered” through a random generation process.

The second type of analysis, the bootstrap method (Efron, 
1979), investigated if differences between the NUS and NUSH 
networks were statistically significant. We adopted a case-wise 
bootstrap approach whereby N number of participants were 
randomly sampled with replacement from the respective groups 
(where N was the number of participants). If two networks 
are indeed different from each other, then “partial” networks 
derived from a subset of participants should also be different 
from each other. For each sample, the same network estimation 
method was applied and global network measures (i.e., ASPL, 
CC, and Q) of that network were computed. This process was 
iterated 1,000 times for each network type, and global network 
measures for each group were then statistically compared using 
an analysis of covariance (ANCOVA) with number of edges 
included as a covariate to control for differences in network 
size. This was important to help control for confounds that 
might affect comparison between network measures of groups, 
as network measures can change depending on the ratio of 
edges to nodes of networks (van Wijk et al., 2010).

Results

Number of responses

Table 1 contains descriptive statistics for the number of semantic 
fluency responses and overall number of unique responses 
provided by each group of students for each cue word. For the 
chemistry and physics categories, there was no significant 
difference in the number of responses generated by NUS 

Table 1  Descriptive statistics for fluency responses

NUS = National University of Singapore students; NUSH = NUS High School students.

NUS NUSH

M SD Range Unique Response M SD Range Unique 
Response

Animals 31.98 7.25 14-44 292 25.41 12.5 3-50 395
Fruits 23.00 5.22 10-42 109 20.84 7.95 3-43 179
Psychology 19.05 6.33 6-38 581 1.35 6.34 3-27 305
Mathematics 21.28 8.35 7-62 440 18.25 6.98 3-36 329
Biology 21.54 8.87 6-43 580 18.41 10.0 2-50 403
Chemistry 20.03 8.09 4-42 465 17.94 7.59 2-36 385
Physics 18.86 11.7 3-86 401 19.00 8.18 3-45 353
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and NUSH students, both ps > .05. For the biology and fruits 
categories, the results were marginally significant, t(126) = 1.86 , 
p = .07 and t(127) = 1.86, p = .07 respectively, with NUS students 
producing slightly more words than NUS High students. For the 
animals, psychology, and mathematics categories, NUS students 
provided significantly more responses than NUS High students, 
t(131) = 3.83 , p = < .001, t(128) = 6.76, p < .001, and t(131) = 
2.18, p = .03, respectively.

For the general categories of fruit and animals, NUS stu-
dents produced fewer unique number of responses overall, as 
compared with NUS High students. In all academic subject 
categories, NUS students generated more unique responses 
than NUS High students, with the largest difference found 

for psychology, where NUS and NUS High students pro-
vided 581 and 305 unique responses, respectively.

Global network measures of estimated networks

Global network measures of ASPL, CC and Q values were 
computed for the semantic networks of the NUS students 
and NUS High students for each of the seven fluency lists, 
with each of the four network estimation methods (com-
munity, naïve random walk, pathfinder, correlation-based 
networks). Table 2 shows the global network measures for 
the estimated semantic networks constructed using differ-
ent network estimation methods. Generally, the estimated 

Table 2  Global network measures for fluency networks constructed using different network estimation methods for each fluency list and each 
group

CN = community network; NRW = naïve random walk; PF = pathfinder; CR = correlation-based networks; NUS = National University of Sin-
gapore students; NUSH = NUS High School students; ASPL = average shortest path length; CC = clustering coefficient; Q = modularity.

Network Measure CN NRW PF CR

NUS NUSH NUS NUSH NUS NUSH NUS NUSH

Animals
ASPL 5.604 9.145 2.870 4.236 3.526 2.063 2.888 3.896
CC 0.366 0.151 0.231 0.084 0.653 0.744 0.758 0.707
Q 0.787 0.777 0.293 0.468 0.065 0.063 0.566 0.704

Fruits
ASPL 5.353 4.701 2.332 3.429 4.200 3.035 2.284 2.679
CC 0.135 0.121 0.469 0.184 0.658 0.699 0.776 0.747
Q 0.626 0.617 0.154 0.347 0.063 0.068 0.426 0.514

Psychology
ASPL 5.072 2.000 4.222 4.783 1.725 1.601 2.800 2.726
CC 0.097 0.000 0.062 0.051 0.812 0.829 0.717 0.725
Q 0.645 0.219 0.513 0.596 0.032 0.007 0.511 0.514

Mathematics
ASPL 7.224 2.156 4.180 3.887 2.212 1.921 2.769 3.438
CC 0.158 0.557 0.103 0.076 0.732 0.780 0.747 0.708
Q 0.713 0.375 0.434 0.470 0.048 0.019 0.583 0.635

Biology
ASPL 6.935 5.209 4.147 4.417 1.870 1.736 3.760 3.380
CC 0.211 0.046 0.076 0.056 0.774 0.792 0.710 0.720
Q 0.781 0.653 0.500 0.533 0.032 0.020 0.656 0.642

Chemistry
ASPL 6.549 7.047 3.679 4.194 1.934 1.669 3.479 3.286
CC 0.262 0.357 0.108 0.048 0.769 0.787 0.709 0.723
Q 0.743 0.666 0.461 0.537 0.028 0.030 0.643 0.675

Physics
ASPL 4.736 2.457 3.744 4.083 1.965 1.795 3.263 3.097
CC 0.213 0.223 0.096 0.064 0.774 0.770 0.724 0.729
Q 0.611 0.321 0.424 0.489 0.037 0.019 0.617 0.616
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NUS networks had a higher ASPL and higher Q than esti-
mated NUS High networks, while there was no clear trend 
for CC. We note that this pattern runs counter to that of the 
bootstrapping analyses (see below) but wish to focus on the 
results of the bootstrapping analyses instead as the boot-
strapped networks provide a further indication of the level of 
variability or uncertainty surrounding the network measures 
given multiple samples of the data. On the other hand, the 
analysis thus far only provides a single point estimate of the 
network measures as seen in Table 2.

Random network analyses

Global network measures of ASPL, CC and Q computed 
for each semantic network was compared against the same 
network measures obtained from the random network simu-
lations. Recall that the goal was to assess if the estimated 
semantic networks are significantly different from that of a 
random network comprising of the same number of nodes 
and edges. The analysis revealed that most of the estimated 
semantic networks were indeed significantly different from 
the random network simulations, with very few exceptions 
(see Table 3; see also Appendix: Table 6 for results of the 
Bayesian analysis). This indicates that the structure of the 
estimated semantic networks is indeed meaningful (i.e., non-
random) and cannot be recovered simply from chance.

Bootstrapping analyses

In order to test if differences between the semantic networks 
of the two groups are statistically significant, bootstrapping 
analyses were conducted to obtain bootstrapped network 
distribution parameters, with 1,000 iterations for each net-
work type. Following that, bootstrapped network measures 
were statistically compared using an analysis of covariance 
(ANCOVA), with the number of edges included as a covari-
ate to assess whether bootstrapped network measures signifi-
cantly vary between the NUS and NUSH students. Across the 
bootstrapped networks, almost all comparisons were statisti-
cally significant (see Table 4; see also Appendix: Table 7 for 
results of the Bayesian analysis), with the following excep-
tions: CC for chemistry using correlation-based networks and 
ASPL for mathematics using the naïve random walk method.

In general, across most categories and network estima-
tion methods, NUS bootstrapped networks had a signifi-
cantly lower Q and lower ASPL as compared with NUSH 
bootstrapped networks. However, this pattern of lower Q 
and lower ASPL for the NUS networks did not hold when 
the networks were estimated using the pathfinder method. 
The pattern of results for CC varied depending on the net-
work estimation method. While results from the community 

network and pathfinder methods indicated that NUS net-
works had a significantly lower CC than NUSH networks, 
the naïve random walk and correlation-based network meth-
ods indicated that NUS networks had a significantly higher 
CC than NUSH networks.

The pattern of results for general categories (i.e., animals 
and fruits) are similar to that of the subject-specific categories 
(i.e., biology, chemistry, mathematics, physics, and psychology) 
across different network estimation methods, except for 
pathfinder networks. For pathfinder networks, while NUS 
networks had a larger ASPL and lower CC than the NUSH 
networks across most categories, NUS networks had a lower 
Q for general categories but a higher Q for subject-specific 
categories (excluding psychology).

To provide a qualitative comparison of network struc-
tures, network visualizations of the estimated fluency net-
works are provided in Fig. 1. Figure 1 depicts a variety of 
networks from each cue word, estimated using different net-
work estimation techniques, and includes network measures 
for each network for easy comparison. Overall, the seman-
tic networks of the NUS students appear to be visually less 
spread out and compartmentalized than that of the NUS 
High students, reflecting the lower Q and lower APSL of 
the NUS networks. This pattern is broadly consistent across 
various estimation methods and cue words.

General discussion

The goal of the present study was to analyze fluency responses 
as semantic networks of concepts to quantify the knowledge 
structure of students with relatively higher and lower levels of 
expertise in those subjects (i.e., undergraduate students who 
have relatively more “expertise” than high school students). 
Participants were asked to generate concepts related to different 
academic subjects (e.g., psychology and biology) and their 
fluency responses were analyzed as semantic networks whose 
structure were further quantified using network science metrics.

The results were somewhat consistent with our hypothe-
ses. We expected to find no difference in the domain-general 
networks (i.e., animals, fruits) of NUS and NUS High stu-
dents. We also expected that the structure of domain-specific 
networks (i.e., biology, physics, chemistry, mathematics, 
psychology) to reflect more efficient, well-integrated organi-
zation for the group with more expertise on those subjects 
(i.e., NUS undergraduates). In our analysis, we found that 
across both general and domain-specific cue words, boot-
strapped NUS networks had lower ASPL and lower Q than 
bootstrapped NUS High networks. This pattern of finding 
was largely consistent across networks estimated using dif-
ferent network estimation methods (except for pathfinder 
networks). For the CC measure, there was not a consistent 
pattern across cue words and network estimation methods.
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Table 3  Summary of results from the random network analysis

CN = community network; NRW = naïve random walk; PF = pathfinder; CR = correlation-based networks; NUS = National University of Sin-
gapore students; NUSH = NUS High School students; ASPL = average shortest path length; CC = clustering coefficient; Q = modularity. M = 
mean, SD = standard deviation.
**p < .01, *** p < .001.

Network Measures CN NRW PF CR

NUS NUSH NUS NUSH NUS NUSH NUS NUSH

Animals
ASPL.M 3.985*** 4.862*** 2.787*** 3.601*** 1.987*** 1.767*** 2.780*** 2.860***
ASPL.SD 0.085 0.326 0.019 0.035 0.003 0.001 0.038 0.026
CC.M 0.033*** 0.028*** 0.136*** 0.044*** 0.412*** 0.519*** 0.088*** 0.064***
CC.SD 0.011 0.021 0.005 0.004 0.002 0.001 0.011 0.009
Q.M 0.548*** 0.658*** 0.265*** 0.436*** 0.067*** 0.052*** 0.380*** 0.387***
Q.SD 0.013 0.021 0.005 0.006 0.002 0.001 0.012 0.011

Fruits
ASPL.M 3.946*** 3.952*** 2.393*** 2.957*** 2.057*** 1.921*** 2.473*** 2.487***
ASPL.SD 0.481 0.689 0.025 0.041 0.010 0.005 0.054 0.046
CC.M 0.053*** 0.049*** 0.309*** 0.130*** 0.381*** 0.510*** 0.150*** 0.136***
CC.SD 0.047 0.065 0.011 0.010 0.004 0.004 0.020 0.019
Q.M 0.602*** 0.583*** 0.216*** 0.342*** 0.110*** 0.087*** 0.357*** 0.361***
Q.SD 0.035 0.047 0.008 0.008 0.003 0.002 0.020 0.020

Psychology
ASPL.M 3.796*** 1.658*** 3.980*** 4.462*** 1.698*** 1.692*** 2.447*** 2.447***
ASPL.SD 0.334 0.373 0.044 0.104 0.001 0.001 0.047 0.049
CC.M 0.057*** 0.083*** 0.033*** 0.028*** 0.556*** 0.471*** 0.133*** 0.135***
CC.SD 0.038 0.276 0.004 0.006 0.001 0.001 0.022 0.021
Q.M 0.619*** 0.356*** 0.497*** 0.595** 0.039*** 0.041*** 0.365*** 0.364***
Q.SD 0.030 0.144 0.005 0.007 0.001 0.001 0.021 0.020

Mathematics
ASPL.M 4.354*** 2.290*** 3.510*** 3.682*** 1.773*** 1.747*** 2.639*** 2.671***
ASPL.SD 0.341 0.308 0.039 0.053 0.001 0.001 0.040 0.033
CC.M 0.039*** 0.178*** 0.062*** 0.052*** 0.521*** 0.492*** 0.108*** 0.088***
CC.SD 0.027 0.132 0.005 0.006 0.001 0.001 0.015 0.013
Q.M 0.634*** 0.380 0.424*** 0.476*** 0.047*** 0.047*** 0.373*** 0.380***
Q.SD 0.024 0.076 0.006 0.007 0.001 0.001 0.015 0.015

Biology
ASPL.M 4.709*** 4.453*** 3.856*** 4.070*** 1.736*** 1.726*** 2.781*** 2.765***
ASPL.SD 0.256 0.696 0.036 0.057 0.001 0.001 0.030 0.032
CC.M 0.028*** 0.038*** 0.034*** 0.031*** 0.548*** 0.491*** 0.074*** 0.079***
CC.SD 0.017 0.045 0.004 0.005 0.001 0.001 0.011 0.011
Q.M 0.660*** 0.640*** 0.473*** 0.526*** 0.039*** 0.041*** 0.386*** 0.385***
Q.SD 0.018 0.036 0.005 0.006 0.001 0.001 0.013 0.013

Chemistry
ASPL.M 4.319*** 3.609*** 3.585*** 4.024*** 1.731*** 1.707*** 2.725*** 2.727***
ASPL.SD 0.214 0.211 0.039 0.060 0.001 0.001 0.032 0.033
CC.M 0.034*** 0.051*** 0.055*** 0.034*** 0.537*** 0.503*** 0.080*** 0.084***
CC.SD 0.019 0.036 0.005 0.005 0.001 0.001 0.011 0.012
Q.M 0.602*** 0.527*** 0.434*** 0.524*** 0.043*** 0.044*** 0.382*** 0.381***
Q.SD 0.020 0.032 0.005 0.006 0.001 0.001 0.013 0.013

Physics
ASPL.M 3.630*** 2.636*** 3.509*** 3.783*** 1.735*** 1.725*** 2.712*** 2.689***
ASPL.SD 0.413 0.324 0.042 0.053 0.001 0.001 0.038 0.035
CC.M 0.066*** 0.143*** 0.063*** 0.044*** 0.523*** 0.516*** 0.093*** 0.093***
CC.SD 0.051 0.098 0.006 0.005 0.001 0.001 0.013 0.013
Q.M 0.572*** 0.446*** 0.427*** 0.483*** 0.046*** 0.046*** 0.382*** 0.378***
Q.SD 0.038 0.058 0.006 0.006 0.001 0.001 0.015 0.014
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What have we learned about knowledge 
representation?

Our analyses revealed that NUS networks had lower ASPL 
and lower Q than NUS High networks. Recall that ASPL is 
a global network metric that measures the average number 
of steps required to connect all pairs of concepts in the 
network. A lower ASPL value means that fewer steps are 
needed on average to connect from one concept to another. 
Hence, ASPL is an indicator of the ease of navigating 
across the entire network (Kleinberg, 2000). In the context 
of knowledge representation, the lower ASPL of the NUS 
networks may suggest that the knowledge representation 
of NUS students has a more easily or efficiently navigated 
structure than that of the NUS High networks.

In contrast to ASPL which is a macro-level network 
science measure, modularity, Q, is a meso-level measure that 
quantifies the quality of clusters or communities within the 
network (Newman, 2006). Within the context of knowledge 
representation, a lower value of Q indicates the presence 
of less segregated or less clearly defined communities of 
subtopics within a domain of knowledge. The lower Q of 
NUS networks as compared with NUS High networks 
suggests that NUS networks are less modular than the NUS 
High networks, such that there are more interconnections 
across sub-topics within the same domain of knowledge. 
Furthermore, the random network analyses indicate 
that the structure of the NUS and NUS High networks is 
“nonrandom.” In other words, the observed network structure 
cannot be recovered simply through random re-associations 
of the same concepts. Taken together, it appears that the 
network analysis was able to characterize the emergence of 
“expert” structure: the bootstrapped NUS networks appeared 
to be both more integrated (lower Q) but also more efficiently 
structured (lower ASPL). These results demonstrate how 
semantic network analysis can provide researchers with a 
quantitative way of describing various aspects of the structure 
of semantic memory and domain knowledge that would not 
have been possible otherwise.

The impact of additional years of education

The finding that NUS networks have lower Q and ASPL 
than NUS High networks seems to resemble that of 
previous studies by Kenett and colleagues who reported 
similar differences between the semantic fluency networks 
of individuals with higher levels of creative ability and the 
semantic fluency networks of individuals with lower levels 
of creative ability. Specifically, they found that the semantic 
network of individuals with higher creative ability had lower 
Q and lower ASPL than the network of individuals with 
lower creative ability (Kenett et al., 2014; Kenett et al., 

2016). In Borodkin et al.’s (2016) study, they reported that 
semantic fluency networks of L2 speakers had lower Q than 
the semantic fluency networks of L1 speakers. Given that we 
observed similar patterns for the undergraduate sample as 
compared with the high school sample, this may suggest that 
additional years of education, particularly within a university 
setting, could be important for developing flexible, abstract 
thought and promoting creative ability (Walker & Finney, 
1999). Broadly, these observations are generally aligned 
with empirical evidence supporting the idea that creative 
ability levels are in fact closely linked to the individual’s 
domain-specific knowledge and expertise levels, rather than 
their domain-general skills or traits (Baer, 1998, 2015). 
Perhaps a semantic network that is more “experienced” has 
the prerequisite structural features in which creative skill and 
ability could then emerge and develop from.

Diverse experiences associated with the college experience 
could also be another factor contributing to the flatter, less 
modular network structure of the NUS students. This could 
be a possibility given that previous work by Christensen et al. 
(2018) found that individuals with higher levels of openness 
to experience, a personality variable related to greater 
enjoyment and seeking out novel experiences, produced 
semantic networks that were more interconnected and flexible 
than individuals with lower levels of openness to experience. 
Another relevant example is given in work by Lydon-Staley 
et al. (2021), who showed that the curiosity disposition of 
participants was associated with different information seeking 
styles that led to structural differences in their knowledge 
networks. Specifically, participants who were more of a 
“busybody” explored diverse ideas, resulting in networks 
with longer path lengths and lower local clustering, whereas 
participants who were more of a “hunter” explored in a way 
that filled in gaps in their knowledge, resulting in networks 
with shorter path lengths and higher clustering (Lydon-Staley 
et al., 2021). One might expect university students in our 
study to have more of a “hunter” disposition, where they 
are beginning to specialize in domains that are of interest 
to them, and to some extent this is indeed reflected in the 
lower ASPL of their fluency networks as compared with the 
networks of high school students. Finally, it is important to 
emphasize that we are not claiming a causal relation between 
education level and network structure. We simply wished to 
point out parallels between the current finding and previous 
findings using a highly similar methodology. Longitudinal 
studies of individual semantic fluency networks across the 
learner’s education would be necessary for establishing 
such causal relations. Future work could potentially take 
inspiration from the extensive literature on the development 
and aging of semantic networks (Dubossarsky et al., 2017; 
Steyvers & Tenenbaum, 2005) to obtain deeper insights into 
the development of domain-specific semantic networks.
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Considering the limits of the semantic fluency task

The original goal of presenting cue words that are more spe-
cific than general semantic categories was to examine the 
possibility that the semantic fluency task could be used to 
measure the structure of specific domain knowledge within 
educational settings. However, a conservative interpretation 
of the present findings is that the behavioral task and/or the 
network analysis was in fact not sensitive to the type of cue 

word (general or specific) used in the fluency task, since the 
same pattern of finding was observed across both general 
and domain-specific cue words—NUS networks tended to 
have lower ASPL and lower Q than NUS High networks.

Consider the very nature of the semantic fluency task, 
which is to quickly generate as many instances of concepts 
related to a semantic category or a domain of knowledge. 
Such a paradigm necessarily prioritizes quick retrieval 
of accessible concepts involving a fast and somewhat 

Fig. 1  Visualizations of semantic fluency networks for the NUS (left) 
and NUS High (right) groups. CN = community network; NRW = 
naïve random walk; PF = pathfinder; CR = correlation-based net-

works; NUS = National University of Singapore students; NUSH = 
NUS High School students; ASPL = average shortest path length; CC 
= clustering coefficient; Q = modularity
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superficial search of memory, rather than executing a deep 
search of what one knows about a given topic. Hence, a 
possible interpretation is that the network structure inferred 
from fluency responses may reflect structural characteris-
tics of semantic memory in general, rather than structural 
characteristics of specific knowledge domains. Some sup-
port for this claim is supported by a frequency analysis of 
participants’ responses. As shown in Table 5, the responses 
that occurred most frequently tended to be general con-
cepts related to the subject and were quite similar across 
both groups of participants. In other words, the similarity 

of the fluency response profiles for both groups could indi-
cate that the semantic fluency task is primarily measuring 
general memory structure rather than specific knowledge 
representations. This notion is also supported by an analysis 
comparing the relative frequency of fluency responses from 
the two groups, where it is not obvious if either group is 
producing concepts that are more general or specific than the 
other group (see Appendix: Fig. 2). Additional work is nec-
essary to further evaluate the advantages and challenges of 
using the semantic fluency task to measure domain-specific 
knowledge.

Fig. 1  (continued)
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Comparison of various network estimation 
measures

An important methodological contribution of the present 
study lies in the application of four different network estima-
tion techniques to derive semantic network structure from 
fluency data. Previous papers in this area typically use a 
single method for network estimation. Hence, our present 
results provide a starting point to compare general differ-
ences in the structure of the estimated networks from these 
techniques, and potentially offer some suggestions and rec-
ommendations for future work in this area.

An overview of the network measures in Table 2 (and 
Fig. 1) provides the following initial observations: (1) CN 
and CR networks tend to be smaller in size than PF and 
NRW networks, and (2) PF and CR networks tend to be rela-
tively more “well-connected” than CN and NRW networks. 
These are in line with the two recommendations discussed 
by Zemla and Austerweil (2018). First, the estimated PF 
and NRW networks are much larger because they contain a 
node for each response in the data and both methods lead to 
the estimation of a single, fully connected network. On the 
other hand, the CN and CR methods do not have such con-
straints. Zemla and Austerweil (2018) point out that while 

Fig. 1  (continued)
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this constraint may be important for certain assumptions in 
psychological modeling, it may also lead to the creation of 
several spurious edges. Second, the relatively more “well-
connected” PF networks could be the result of a liberal 
edge creation criteria that minimized non-edge similarity, 
whereas the CN and NRW methods are relatively sparser due 
to a more conservative edge creation criteria that maximized 
edge similarity (see Zemla & Austerweil, 2018, for more 
details). Finally, CR networks tend to have relatively high 

local clustering, likely due to the way that the correlations 
of fluency response patterns are computed such that triplets 
of similar concepts tend to become easily connected in the 
resulting network.

In the present paper, we found consistent patterns in net-
work differences between the NUS and NUSH groups for 
the CN, NRW, and CR methods, with the PF method being 
more of the odd one out. We suggest that PF networks may 
be too “hyper-connected” such that the presence of too many 

Fig. 1  (continued)

Table 5  Top 10 most frequently listed responses across psychology, biology, and animal networks

NUS = National University of Singapore students; NUSH = NUS High School students.

Psychology Biology Animals

NUS NUSH NUS NUSH NUS NUSH

brain brain cell cell cat dog
behaviour mental disorder brain plant dog cat
mind depression DNA photosynthesis lion lion
Sigmund Freud mind heart animal tiger tiger
abnormal psychology mental health plant DNA bear fish
biology thought animal evolution pig bird
cognitive emotion photosynthesis ecology rabbit bear
development psychology anxiety mitochondria genetics cow human
memory behaviour nucleus respiration giraffe shark
statistics neuron organ mitichindria elephant pig
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spurious edges (due to the constraint of having to include all 
responses and connect them all in a single network, plus a 
highly liberal edge creation approach) may in fact mask the 
underlying knowledge structure of the two groups. However, 
we also highlight that more work is needed to fully under-
stand the strengths and weaknesses of each network estima-
tion approach so that the researcher can properly evaluate 
the results of the network analysis in light of these strengths 
and weaknesses.

Limitations and future directions

In this final section we review and discuss the limitations of 
the current study. First, sample sizes were less than expected 
due to the COVID-19 pandemic limiting our data-collection 
efforts. In particular, constraints on data collection led to 
fewer numbers of high school students in our sample than 
expected. The somewhat large difference in sample sizes 
for high school students and university students could have 
implications on the results of the network estimations; how-
ever, we have conducted additional bootstrapping analyses 
where sample sizes of the two groups were matched and 
found that differences in the structure of NUS and NUSH 
networks are not merely a by-product of the larger sample 
sizes of the NUS group (for more details please see Appen-
dix: Table 9). Nevertheless, it is important to emphasize that 
network estimation techniques are still in development and 
more research is needed to fully understand the impacts of 
unequal sample sizes. Given the current state of the art in 
semantic network analysis, we wish to simply highlight this 
potential limitation and point out that our raw data is availa-
ble on OSF for re-analysis when updated techniques that can 
take unequal sample sizes into account become available.

Remote data collection also became necessary which 
tends to reduce data quality and prevented us from conduct-
ing additional tests of cognitive and memory processes. In 
an ideal lab-based setting, it would have been feasible to 
include an entire battery of cognitive and working mem-
ory tasks. This is particularly relevant as it is known that 
semantic fluency task performance is dependent on control 
processes and working memory span (Amunts et al., 2020; 
Shao et al., 2014; Whiteside et al., 2016). Nevertheless, we 
felt that the current investigation still provided a reasonable 
first foray into examining the potential of semantic network 
analysis on measuring knowledge representations of students 
of different levels of experience. This approach could com-
plement qualitative approaches used to measure students’ 
knowledge structures, such as concept mapping.

Given our findings of a clear effect of additional years of 
education on semantic network structure, future compari-
sons of groups of students using the subject-specific fluency 

task will need to exert a high level of control on participant 
characteristics to enable meaningful expert–novice compari-
sons. One possible future direction would be to compare stu-
dent populations with the same level of education but who 
differ on their specific subject experience (e.g., same year 
undergraduates who have different degree specializations). 
Another direction is to conduct a longitudinal study where 
subject-specific fluency lists are completed at various stages 
of the student’s educational or university career. Finally, it 
would also be important to investigate if the group-level 
differences we have observed in the present paper can also 
be replicated at the level of individual semantic networks. 
We wish to highlight that individual network analyses are 
possible with Zemla and Austerweil’s (2018) snafu Python 
library, especially if each participant has provided multi-
ple fluency lists per cue word and reasonable measures are 
taken to reduce the computational cost of conducting such 
an analysis.

Conclusion

In closing, we wish to briefly highlight how the present 
study relates to, and contributes toward, our understanding 
of human cognitive universals. The semantic fluency task 
provides one measure of how people navigate and search 
their semantic memory (Hills et al., 2012). A key observa-
tion from the literature is that the way humans search for 
information in cognitive spaces is strikingly similar to the 
way animals forage for resources in physical spaces (Hills 
et al., 2008). This suggests the presence of search or forag-
ing mechanisms that are evolutionarily ancient. The present 
study builds on this idea by showing that generalized cog-
nitive search mechanisms are likely involved when (both 
WEIRD and non-WEIRD) humans search in both domain-
general (i.e., the semantic category of animals) as well 
as domain-specific knowledge spaces (i.e., the domain of 
physics).

To recapitulate, the current study found that the organi-
zation of general semantic memory and domain-specific 
knowledge representations was better connected and inte-
grated for students with more years of education, and hence 
more of an “expert” in various academic domains. Although 
further work is needed to understand the limits of using the 
semantic fluency task to probe the deep structure of expert 
representations, the current study also established that it 
is in principle possible to adapt the semantic fluency task 
to quantify knowledge representations of more specific 
domains. Our results have implications for researchers inter-
ested in characterizing the specific nature of expert cognitive 
representations.
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Appendix

Table 6  Bayes factors for random network analysis

We conducted Bayesian one-sample t tests to compare the network measures of 1,000 randomly generated networks against the network meas-
ures of the corresponding estimated networks. In all comparisons, we found that almost all Bayes factors were well above  1001 (several were of 
infinite values), indicating that the network structure of the estimated networks indeed differed from the distribution of random networks gener-
ated with the same number of nodes and edges, in line with the results of the frequentist approach reported in the main text. In order to improve 
the presentation of Table 6, we report  log10(Bayes factors).
1 Bayes factor is defined as the ratio of the likelihood of the alternative hypothesis (i.e., the estimated network measure is different from the ran-
dom network distribution) to the likelihood of the null hypothesis (i.e., the estimated network measure is not different from the random network 
distribution). Based on the recommendations by Lee and Wagenmakers (2014), a Bayes factor of 100 indicates very strong evidence for the 
alternative hypothesis.

Cue Network
Measure

CN.NUS CN.NUSH NRW.NUS NRW.NUSH PF.NUS PF.NUSH CR.NUS CR.NUSH

Animals ASPL ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
CC ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Q ∞ ∞ ∞ ∞ 482.942 ∞ ∞ ∞

Fruits ASPL ∞ 385.458 ∞ ∞ ∞ ∞ ∞ ∞
CC 691.173 400.607 ∞ ∞ ∞ ∞ ∞ ∞
Q 190.065 213.507 ∞ 157.612 ∞ ∞ ∞ ∞

Psychology ASPL ∞ 301.017 ∞ ∞ ∞ ∞ ∞ ∞
CC 366.662 37.247 ∞ ∞ ∞ ∞ ∞ ∞
Q 278.496 316.783 ∞ -0.390 ∞ ∞ ∞ ∞

Mathematics ASPL ∞ 82.422 ∞ ∞ ∞ ∞ ∞ ∞
CC ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Q ∞ -1.498 683.344 270.241 424.144 ∞ ∞ ∞

Biology ASPL ∞ 385.450 ∞ ∞ ∞ ∞ ∞ ∞
CC ∞ 11.690 ∞ ∞ ∞ ∞ ∞ ∞
Q ∞ 61.977 ∞ 418.016 ∞ ∞ ∞ ∞

Chemistry ASPL ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
CC ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Q ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Physics ASPL ∞ 129.436 ∞ ∞ ∞ ∞ ∞ ∞
CC ∞ 249.233 ∞ ∞ ∞ ∞ ∞ ∞
Q 355.613 ∞ 136.280 344.452 ∞ ∞ ∞ ∞

Table 6
Table 7
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Table 7  Bayes factors for bootstrapping network analysis

We conducted Bayesian ANCOVA to compare the network measures of bootstrapped networks derived from the NUS data against the network 
measures of bootstrapped networks derived from the NUSH data, while also including network size a covariate in the analyses. In all compari-
sons, we found that the Bayes factors were well above  1001, indicating that the network structure of the two groups indeed differed from each 
other, in line with the results of the frequentist approach reported in the main text. In order to improve the presentation of Table 7, we report 
 log10(Bayes factors) as well as the direction of the effect below the value.
1 Bayes factor is defined as the ratio of the likelihood of the alternative hypothesis (i.e., the network measure of the NUS group is different from the 
NUSH group) to the likelihood of the null hypothesis (i.e., the network measure of the NUS group is not different from the NUSH group). Based 
on the recommendations by Lee and Wagenmakers (2014), a Bayes factor of 100 indicates very strong evidence for the alternative hypothesis.

Cue Network
Measure

CN
(LogBF10)

NRW
(LogBF10)

PF
(LogBF10)

CR
(LogBF10)

Animals ASPL 1585.228 3057.829 3023.450 1873.075
NUS < NUSH NUS < NUSH NUS > NUSH NUS < NUSH

CC 1663.042 3301.982 2080.700 1984.934
NUS < NUSH NUS > NUSH NUS < NUSH NUS > NUSH

Q 1589.979 3803.511 115.905 2140.695
NUS < NUSH NUS < NUSH NUS < NUSH NUS < NUSH

Fruits ASPL 836.659 3145.994 1867.283 1580.171
NUS < NUSH NUS < NUSH NUS > NUSH NUS < NUSH

CC 1392.183 3137.106 184.239 1565.482
NUS < NUSH NUS > NUSH NUS < NUSH NUS > NUSH

Q 900.605 3685.277 630.557 1474.506
NUS < NUSH NUS < NUSH NUS < NUSH NUS < NUSH

Psychology ASPL 614.579 380.465 816.959 782.808
NUS < NUSH NUS < NUSH NUS < NUSH NUS < NUSH

CC 505.174 603.421 2075.389 85.708
NUS < NUSH NUS > NUSH NUS < NUSH NUS > NUSH

Q 852.508 1616.600 1866.104 1392.167
NUS < NUSH NUS < NUSH NUS > NUSH NUS < NUSH

Mathematics ASPL 22.084 157.585 1319.786 799.288
NUS < NUSH NUS > NUSH NUS > NUSH NUS < NUSH

CC 362.341 929.530 1490.692 691.917
NUS < NUSH NUS > NUSH NUS < NUSH NUS > NUSH

Q 348.620 1124.274 816.541 1206.306
NUS < NUSH NUS < NUSH NUS > NUSH NUS < NUSH

Biology ASPL 348.868 491.339 792.928 637.993
NUS < NUSH NUS < NUSH NUS > NUSH NUS < NUSH

CC 467.957 1001.467 1411.361 276.312
NUS < NUSH NUS > NUSH NUS < NUSH NUS > NUSH

Q 552.636 1071.332 663.916 1144.159
NUS < NUSH NUS < NUSH NUS > NUSH NUS < NUSH

Chemistry ASPL 653.549 1765.343 1740.241 548.370
NUS < NUSH NUS < NUSH NUS > NUSH NUS < NUSH

CC 808.564 1980.868 1480.638 3.523
NUS < NUSH NUS > NUSH NUS < NUSH NUS < NUSH

Q 876.994 2225.229 107.692 1114.650
NUS < NUSH NUS < NUSH NUS > NUSH NUS < NUSH

Physics ASPL 143.029 1309.520 1182.860 758.734
NUS < NUSH NUS < NUSH NUS > NUSH NUS < NUSH

CC 347.183 1313.321 677.129 297.930
NUS < NUSH NUS > NUSH NUS < NUSH NUS > NUSH

Q 172.122 1848.664 344.967 864.034
NUS < NUSH NUS < NUSH NUS > NUSH NUS < NUSH
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Table 8  Summary of abbreviations used in this paper

Network estimation methods Network science measures Other

community network (CN) average shortest path length (ASPL) Undergraduates from the National University of Singapore (NUS)
naive random walk network (NRW) clustering coefficient (CC) High school students from the National University of Singapore 

High School of Mathematics and Science (NUSH)
pathfinder network (PF) modularity index (Q)
correlation-based network (CR)

Table 9  Summary of sample size-matched network estimations

Network Measure CN NRW PF CR

NUS NUSH NUS NUSH NUS NUSH NUS NUSH

Animals
ASPL 6.91

(1.12)***
9.145 2.98

(0.06)***
4.236 3.42

(0.17)***
2.063 3.00

(0.14)***
3.896

CC 0.29
(0.04)***

0.151 0.19
(0.01)***

0.084 0.56
(0.02)***

0.744 0.75
(0.01)***

0.707

Q 0.77
(0.03)***

0.777 0.33
(0.01)***

0.468 0.22
(0.03)***

0.063 0.60
(0.02)***

0.704

Fruits
ASPL 3.65

(0.83)***
4.701 2.34

(0.06)***
3.429 4.82

(0.5)***
3.035 2.31

(0.06)***
2.679

CC 0.16
(0.09)***

0.121 0.41
(0.03)***

0.184 0.51
(0.03)***

0.699 0.76
(0.01)***

0.747

Q 0.51
(0.09)***

0.617 0.18
(0.01)***

0.347 0.28
(0.05)***

0.068 0.45
(0.02)***

0.514

Psychology
ASPL 3.20

(0.88)***
2.000 4.59

(0.18)***
4.783 1.70

(0.05)***
1.601 2.43

(0.14)***
2.726

CC 0.20
(0.12)***

0.000 0.05
(0.01)***

0.051 0.82
(0.01)***

0.829 0.72
(0.02)**

0.725

Q 0.44
(0.12)***

0.219 0.56
(0.01)***

0.596 0.05
(0.01)***

0.007 0.48
(0.03)***

0.514

Mathematics
ASPL 3.93

(1.1)***
2.156 4.34

(0.35)***
3.887 2.26

(0.1)***
1.921 2.97

(0.19)***
3.438

CC 0.27
(0.13)***

0.557 0.09
(0.01)***

0.076 0.74
(0.02)***

0.780 0.73
(0.01)***

0.708

Q 0.54
(0.11)***

0.375 0.47
(0.01)***

0.470 0.08
(0.01)***

0.019 0.58
(0.02)***

0.635

Biology
ASPL 5.07

(1.27)**
5.209 4.42

(0.14)
4.417 1.83

(0.05)***
1.736 3.38

(0.23)
3.380

CC 0.18
(0.07)***

0.046 0.06
(0.01)***

0.056 0.78
(0.01)***

0.792 0.72
(0.01)***

0.720

Q 0.64
(0.08)***

0.653 0.54
(0.01)***

0.533 0.06
(0.01)***

0.020 0.64
(0.02)***

0.642

Chemistry
ASPL 5.23

(1.35)***
7.047 3.86

(0.07)***
4.194 1.95

(0.06)***
1.669 3.42

(0.36)***
3.286

CC 0.24
(0.08)***

0.357 0.09
(0.01)***

0.048 0.77
(0.01)***

0.787 0.71
(0.01)***

0.723

Q 0.64
(0.07)***

0.666 0.49
(0.01)***

0.537 0.06
(0.01)***

0.030 0.63
(0.03)***

0.675

Physics
ASPL 2.94

(0.75) ***
2.457 3.89

(0.11) ***
4.083 1.97

(0.08) ***
1.795 3.02

(0.20) ***
3.097
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Due to the somewhat large discrepancy in the sample sizes of NUS and NUSH group, an additional bootstrapping analysis was conducted to 
determine if differences in the structure of NUS and NUSH networks could have been due to differences in sample sizes. Because the NUS 
group was much larger than the NUSH group, our approach was to randomly select N number of participants from the NUS group such that N 
was equal to the number of participants in the NUSH group for each cue word. We then obtained the estimated networks for the sample-sized-
matched-NUS data in the same manner as for the original set of analyses. This process was repeated 1,000 times and the descriptive statistics of 
the network measures of these simulated sample-size-matched-NUS networks are reported in Table 9.
One-sample t tests were then conducted to see if network measures of the estimated NUSH networks were significantly different from the distri-
bution of network measures of simulated sample-size-matched-NUS networks. As Table 9 shows, almost all of these statistical comparisons are 
significant, giving us some confidence to say that the differences in the structure of NUS and NUSH networks are not merely a by-product of the 
larger sample sizes of the NUS group.
CN = community network; NRW = naïve random walk; PF = pathfinder; CR = correlation-based networks; NUS = National University of Singapore 
students; NUSH = NUS High School students; ASPL = average shortest path length; CC = clustering coefficient; Q = modularity. Values represent 
distribution mean with standard deviations in parentheses.
** p < .01, *** p < .001.

Network Measure CN NRW PF CR

NUS NUSH NUS NUSH NUS NUSH NUS NUSH

CC 0.14
(0.14) ***

0.223 0.08
(0.01) ***

0.064 0.78
(0.02) ***

0.770 0.72
(0.01) ***

0.729

Q 0.41
(0.10) ***

0.321 0.47
(0.01) ***

0.489 0.08
(0.01) ***

0.019 0.59
(0.02) ***

0.616

Table 9  continued

Fig. 2  Visualizations of the relative frequency of fluency responses for all cue words across NUS and NUSH groups
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