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INTRODUCTION

Plastic and reconstructive surgery is one of the most diverse surgical sub-specialties. It encompasses
a wide variety of techniques including grafts, flaps, free-tissue transfers, and replantation of various
tissues ranging from nerve, vasculature, bone, muscle, and skin (1–3).

The goal in plastic surgery is to recreate both form and function of the resected or damaged
tissue while maintaining or refining aesthetic appearance, and respecting blood supply. By adhering
to these principles, the plastic surgeon is able to help optimize quality of life for the patient. Surgical
techniques in general are largely focused on mechanical repair of tissue with less attention devoted
to biological action. Despite incredible technical progress and innovations in surgical techniques,
there are multiple defects and injuries that would benefit from stimulation of the underlying tissue
biology to improve healing. Reconstructive surgery could greatly benefit from interplay with other
fields of research such as bio- and nanomaterials. The field of nanomedicine is unique in that the
size of the materials used allows researchers to have an effect on targeting and restoration at the
molecular level (4, 5). The advantage of such materials is that the building blocks, due to their
size and composition, have the ability to stimulate the repair of the body at a cellular level. More
specifically, the objective is to develop a nano- and bio-materials whose structure and composition
can mimic missing or damaged native biologic structures of the human body.

Though the traditional paradigm of tissue engineering includes the use of polymeric scaffolds,
co-cultured cells, growth factors, extracellular matrix components, and other bioactive molecules,
all integrated in a bioreactor, the field has recently seen the introduction of biomimetic materials
as a novel way to elicit tissue response without the need of a bioreactor. Biomimetic materials
capitalize on the body’s intrinsic mechanisms of healing due to their ability to trigger the
physiologic response of tissue specific resident cells tissue to undergo repair. The incorporation of
nanomedicine principles in the design of tissue engineering grafts shifts the focus of regeneration
to what is occurring at the cellular and molecular level as opposed to the larger spatial defect.

The marriage of nanomedicine and biomimetic tissue engineering presents a unique
opportunity for the field of plastic and reconstructive surgery. A synergistic approach using both
mechanical based reconstruction and restoration of damaged tissues with the help of biomimetic
materials could be a major step forward in the future of regenerative and restorative medicine.
In this paper, we will highlight specific areas in which these two fields can synergistically to
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solve clinical problems for the benefits of patients. The fusion
of the mechanical craftsmanship in plastic surgery and the
restorative properties of innate biological processes through
nano- and bio-materials has the potential to create superior
surgical outcomes compared to the outcomes that either field
would be able to achieve alone.

MANDIBULAR RECONSTRUCTION

Mandibular reconstruction is often necessary for repairing
defects due to oncologic resection or trauma. Methods
of reconstruction are determined based on location and
size of the mandibular defect, however, defects ≥6 cm are
typically reconstructed with vascularized bone (6). The free
fibula osteocutaneous flap is the workhorse donor site for
mandibular reconstruction due to its length, compatibility
for endosteal implants, and potential for skin islands if soft-
tissue reconstruction is needed (7–10). Currently, the use
of computer-aided design/computer-aided manufacturing
(CAD/CAM) has been shown to result in improved
function, morphology, and accuracy for complex segmental
mandibular reconstruction compared to traditional free-hand
techniques (11, 12).

Two of the most important goals in mandible reconstruction
are mechanical stability with precise bone replacement, and
osteointegration at the contact points between the native and
reconstructed mandible. Although CAD/CAM has increased the
sophistication of precise bone replacement, it has no effect on
osteogenesis and osteointegration besides more precise bone to
bone contact (13). A general approach to regenerative medicine
as it relates to mandibular reconstruction includes structurally
repairing the original defect and incorporation of the graft
through enhanced vascularization with the end goal of restoring
form, function, and innate biological activity.

Researchers have already begun exploring a nano-materials
approach to bone regeneration in an attempt to repair large
defects in the jaw, however, previous studies indicate that the
bony matrix does not seem to properly utilize exogenous growth
factors. For example, without nanotechnology BMP2 (bone
morphogenetic protein-2) has been used to help stimulate bone
growth, but led to devastating side effects including cancer,
spinal cord compression (due to soft tissue swelling), ectopic
bone formation, elevated bone resorption from overstimulation
of osteoclast activation, and induction of adiopogenesis instead
of the desired osteogenic process (14–21) Nanotechnology can
offer a more sophisticated angle by creating a scaffold seeded
with polymeric nanoparticles to facilitate optimal vascularization
and innervation ensuring the regenerated bone is functional and
integrated with the original structure of the face. For example,
by utilizing a nanoarray of gold, it is possible to immobilize
BMP-2, allowing a controlled release of BMP2 during the bone
regeneration process, while also minimizing the side effects
(22). Therefore, by seeding the scaffold with signaling factors,
we could be able to provide controlled spatial and temporal
delivery of these signaling molecules. This would allow plastic
surgeons to have additional control over the regeneration to

ensure adequate vascularization and structure. Not only could
release of molecules be optimized, but the implant could be
manufactured so that different spatial areas of the implanted
scaffold achieve a specific biological function by releasing factors
that are specific to the particular cellular response needed in
that area. The scaffold can be manufactured from a variety
of tissues including elastin, type I collagen/hydroxyapatite, or
type I collagen. The materials that the scaffold is made of
provides the mechanical and chemical stimuli to recruit the
bodies own cells to the site of repair, as well as differentiate
into bone. By optimizing vascularization and placing a focus on
the biological mechanism in tissue repair, while also perfecting
the shape of the scaffold to fit the natural contour of the
patient, the regenerated bone will be optimally integrated
within the native tissue, allowing function and form to be
significantly superior to current mandibular reconstruction
treatment options.

BURNS AND SKIN REGENERATION

One of the primary techniques utilized by plastic surgeons to
reconstruct burns include skin grafts—either full-thickness skin
grafts (FTSG) or split-thickness skin grafts (STSG). Because skin
grafts are harvested from the donor site without a blood supply,
recipient site vasculature and ability to undergo angiogenesis
is critical to skin graft survival. FTSG include the entire
epidermis and dermis whereas STSG consist of the epidermis
and varying degrees of dermis (23). FTSGs are limited to small
defects due to the need to primarily close the donor site.
Though autografts are considered the gold standard for skin
reconstruction, it is not always feasible to use an autograft
due to limited quantity of tissue availability for larger defects.
However, STSG can cover larger defects because the donor
site is left with dermis components to heal secondarily.{Braza,
2020 #57} In addition, the STSG can undergo more contraction
and color changes compared to FTSG making it a favored
technique (22).

The use of various skin substitutes and other biological
components to alleviate limitations of autografts is a promising
area of research. For example, Recell R©, a non-cultured
autologous skin cell spray has been used successfully as an
adjunct to skin grafting in treating more severe burns or used
alone for treatment of donor-site wounds. The suspension
contains all cell-types (keratinocytes, papillary dermal fibroblasts,
Langerhans cells and melanocytes) which can aid in faster
healing, regimentation, and less scaring (24). However, the
introduction of non-autologous materials into the body may
result in an immune response and for a variety of other reasons
is less reliable compared to an autograft.

Various low-level efforts at tissue engineering have included
cultured expanded cell lines of autologous keratinocytes. These
can then be “re-applied” in various ways to the wound. The
disadvantage of these techniques is that they lack dermis and
adnexal structures, are limited in thickness, and lack structural
integrity (25). Early efforts aimed at using bio-printing to create a
skin substitute are underway but suffer from the same drawbacks.
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These techniques are relatively primitive in comparison to the
capabilities in modern tissue engineering and there is a sizable
cost associated with culturing cells and utilizing bio-printing
technology (26). For example, there is a huge limitation of
whether enough cells can be readily generated to bio-print the
necessary skin constructs. However, the upside to using materials
at the nanoscale is the possibility to repair wounds quicker
and more efficiently due to stimulation of the body’s innate
regenerative processes.

Synthetically derived polymers, defined here as materials that
have been cultured ex-vivo or derived from a source other
than the patients themselves, are being used as commercially
available skin substitutes. These skin substitutes are composed
of various materials including porcine and bovine collagen,
shark chondroitin, cadaveric dermis, neonatal foreskin, cultured
autologous epidermis (CAE) keratinocyte sheets or cell spray,
and fibroblasts seeded onto a 3D hyaluronic acid derived scaffold
or synthetic polymer membrane (27). However, though these
products do have natural components such as hyaluronic acid,
they have limitations including poor vascularization, failure to
integrate, scarring, and immune rejection due to the addition
of various skin substitutes (27). In addition, they require the
patient to have limited movement during treatment, which
is not always practical (28–31). In contrast, naturally derived
polymers could have superior clinical function because they are
more biocompatible, have lower immunogenicity, and could be
resorbed over time as the newly deposited tissue gets remodeled
(26, 32).

The development of a 2D monolayer for skin regeneration
is not a novel research aim from the regenerative medicine
field. However, researchers have recently started to capitalize
on biomaterials in order to regenerate all three layers of the
human epidermis. Developing a 3D model of skin is challenging
as it involves the incorporation of different cells such as
endothelial cells, Langerhan cells, and melanocytes. By using
nanoparticles to stimulate the cells within the human body, it
is possible to allow specific cells to produce the building blocks
needed for skin regeneration. This regenerated skin could have
superior bio-compatibility, lower immunogenicity, and lead to
superior outcomes.

In addition, future biomimetic tissue engineering strategies
need to focus on regenerating skin that has optimal color
and texture, minimal scarring and inflammation, appropriate
vascularization, and incorporation of nerve regeneration to
minimize sensory parenthesis. The main factors that need to be
achieved for a 3D in vivo skin scaffold are biodegradable material,
evasion of immune response, and inclusion of growth factors or
biomimetic substances to induce angiogenesis (32, 33).

Utilizing techniques found in nanotechnology would be
beneficial to create a scaffold that provides mechanical cues
to the construct such as directionality, porosity, and fiber
size. For example, a common technique in nanotechnology is
electrospinning. This technique creates long nano-fibers that
can be embedded with antimicrobials or anti-inflammatories.
In addition, keratinocyte-targeted lipid nanoparticles have been

developed that can facilitate delivery of oligonucleotides to a
wound or keratinocyte damaged site. Plastic surgeons currently
using tissue-engineered grafts for wound repair are having
problems with getting the keratinocytes to attach securely
to the wound bed. Nanotechnology and biomimetics could
help improve graft-survival by stimulating basement membrane
formation and angiogenesis via small molecule stimulation (33).

When the entire thickness of skin is damaged, there is a
plethora of inflammatory cells that may clear nanoparticles
that are needed for tissue repair. However, by modifying
the surface of the nanoparticles, nanoparticles may avoid
clearance by macrophages. Such modifications include using
anti-microRNAS to increased Dicer, thereby downregulating
p21-Waf1/Cip1 expression (34). P21-Waf1/Cip1 expression is
important in the regulation of activated T-cells, and therefore by
decreasing its expression the inflammatory response would also
be decreased (35).

Finally, in nanomedicine, previous research has led to the
development of nano-scale films that were able to sense the
mechanical stimuli of and the forces acting on the skin.
These films could potentially be used to monitor and map
the spatiotemporal mechanical properties necessary for skin
regeneration. In addition, the use of a film could be used to sense
the healing process throughout the regeneration process in order
to tailor drug or surgical treatments on a personalized medicine
level. For example, if the film sensed that a patient was taking
more time to heal a skin wound, additional drug treatments could
be infused to continue the regeneration process. Serendipitously,
nanowires provide a high degree of sensitivity to provide the
appropriate tunability necessary for skin regeneration. The use of
these films in plastic surgery would allow the physician to follow
in real time the process of skin restoration to fine-tune the healing
process and achieve superior outcomes.

CONCLUSION

Though the field of plastic surgery has made impressive
advancements, there are still many improvements that could be
made. By capitalizing on the techniques found in nanomedine,
surgeons could be better equipped to restore function and achieve
superior outcome. By harnessing the expertise of tissue engineers,
biologists, material scientists, and plastic surgeons, the ability to
design materials, implants and drug-eluting nanoparticles that
can be quickly translated to the clinic becomes a realistic goal
in the future. Studies are needed in the pre-clinical realm to
translate from bench to bedside in order to further understand
how to apply nanomedicine to the field of plastic surgery.
Ultimately, collaboration of experts in these different fields will
allow plastic surgeons to transform and advance the field, while
vastly improving surgical outcomes.
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