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Background: Electronic health record (EHR) systems contain a large volume of

texts, including visit notes, discharge summaries, and various reports. To protect the

confidentiality of patients, these records often need to be fully de-identified before

circulating for secondary use. Machine learning (ML) based named entity recognition

(NER) model has emerged as a popular technique of automatic de-identification.

Objective: The performance of a machine learning model highly depends on the

selection of appropriate features. The objective of this study was to investigate the

usability of multiple features in building a conditional random field (CRF) based clinical

de-identification NER model.

Methods: Using open-source natural language processing (NLP) toolkits, we annotated

protected health information (PHI) in 1,500 pathology reports and built supervised NER

models using multiple features and their combinations. We further investigated the

dependency of a model’s performance on the size of training data.

Results: Among the 10 feature extractors explored in this study, n-gram, prefix–suffix,

word embedding, and word shape performed the best. A model using combination

of these four feature sets yielded precision, recall, and F1-score for each PHI as

follows: NAME (0.80; 0.79; 0.80), LOCATION (0.85; 0.83; 0.84), DATE (0.86; 0.79; 0.82),

HOSPITAL (0.96; 0.93; 0.95), ID (0.99; 0.82; 0.90), and INITIALS (0.97; 0.49; 0.65). We

also found that the model’s performance becomes saturated when the training data size

is beyond 200.
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Conclusion: Manual de-identification of large-scale data is an impractical procedure

since it is time-consuming and subject to human errors. Analysis of the NER model’s

performance in this study sheds light on a semi-automatic clinical de-identification

pipeline for enterprise-wide data warehousing.

Keywords: clinical text de-identification, protected health information, NLP, named entity recognition, de-

identification, conditional random field, data warehousing

INTRODUCTION

Clinical texts are vital components of electronic health records
(EHR) and can be an enriched knowledge source for medical
research. However, text-based medical records often contain
potential patient identifiers and confidential information that
must not be shared with third parties for ethical and legal
reasons. The Health Insurance Portability and Accountability
Act (HIPAA) in the United States requires removing patient-
protected health information (PHI) from the medical records
before sharing for secondary use (1). The PHI items include
name, geographic location, phone number, social security
number, medical record number, etc. (2, 3). The manual de-
identification process of large-scale data is time-consuming,
expensive, prone to error, and impractical. Therefore, a reliable
automated de-identification system of clinical documents can be
exceedingly valuable for healthcare research.

The application of natural language processing (NLP) on
electronic health records (EHR) has a significant impact
on biomedical and healthcare-related research. Named entity
recognition (NER) is a fundamental task of clinical NLP.
NER is the process of identifying entities of interest in a
text. Although clinical NLP has been an area of increasing
interest among researchers in recent years, NER is still a
challenging task. A medical record consists of both coded data
and unstructured texts. While the de-identification of coded data
is straightforward, the de-identification of unstructured texts
is posed with many challenges. For instance, lack of clinical
narrative corpora because of privacy concerns is one major
predicament in de-identifying clinical documents.

Most of the initial NER systems deployed rule-based
approaches (4, 5). For classification and identification of named
entities (NE), these systems utilized information lists as well as
rules-based on syntactic-lexical patterns (6, 7). These approaches
are considered to be highly efficient since they exploit language-
related knowledge (8). On the other hand, these methods are
expensive, domain-specific, and require human expertise in the
domain. Hence, the rule-based system built for one domain
cannot be transferred to another domain. These limitations have
shifted the interests of researchers toward machine learning-
based approaches.

There have been extensive efforts by researchers to explore
machine learning algorithms in clinical NER. Many researchers
have undertaken various strategies taking advantage of the
existing infrastructure of machine learning algorithms to
improve system performance. Existing literature shows the use
of an ensemble of multiple machine learning methods (9, 10),

hybrid machine learning models with high confidence rules
(11), unsupervised model using clustering algorithms (12–14)
in clinical NER applications with supervised machine learning
algorithms engendering the best-performing systems.

There are multiple machine learning algorithms available
to build a clinical NER model, such as conditional random
fields (CRF), maximum entropy (ME), structured support vector
machines (SVM) (15–17). These models are based on predefined
features representing the multidimensional aspect of a text
dataset exploited by learning methods to generate a model.
CRF has been used in multiple top-ranked supervised NER
models. However, supervised NER is highly sensitive to the
proper selection of features. This motivated us to investigate how
the performances of the de-identification models vary when built
using different set of features.

In this study, we used pathology reports to build and test our
de-identification model. Compared to radiology reports, clinical
notes, and discharge summaries, information in pathology
reports retains its value over a long time (18). The diagnoses in
pathology reports form the base of many vital clinical research
studies. For our de-identification model, non-small cell lung
cancer (NSCLC) pathology reports were used. Lung cancer
accounts for 27% of all the cancer deaths in the United States
(19). NSCLC is the most lethal form of cancer globally as
it causes more death than other forms of cancer combined
(20). Hence, in cancer-related research, pathology reports of
NSCLC patients have a unique position among other clinical
documents. This study aims to determine the utility of features
in building a CRF-based de-identification model using NSCLC
pathology reports. The key contributions of this study are two-
fold: (i) Firstly, our investigation will be helpful in choosing the
proper set of features to build a de-identification NER model
from a wide range of features at one’s disposal, and (ii) secondly,
we also propose a framework of a semi-automatic clinical de-
identification pipeline which can play a significant role in an
enterprise-wide data warehousing.

METHODS

Dataset
We extracted 1,500 advanced (NSCLC) pathology reports of
421 patients from the University of Missouri Health Care EHR.
All the patients were diagnosed with IIIB or a higher cancer
stage with a diagnosis period between 2010 and 2018. The
dataset consisted of four types of pathology reports, including
cytology, surgical, thromboelastography, and peripheral blood
smear. In this study, we identified six types of PHI from
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these unstructured text reports. The PHIs were NAME, DATE,
HOSPITAL, LOCATION, PHONE, INITIALS, and ID number.

NLP Toolkit
An NLP software, MITRE Identification Scrubber Toolkit
(MIST), was used to annotate the PHIs in the pathology reports
(21). These reports went through a two-step annotation process
for tagging the protected health information as defined by
HIPAA. At the first step, a data annotator manually annotated
the reports. In the second step, a second annotator reviewed each
report andmade corrections if there was an error.Moreover, once
the second annotator validated the first stage of the annotation, a
python code was used to replace the annotated PHI items with
relevant tags. For example, all the identified names and dates
were replaced by [NAME] and [DATE], respectively. These de-
identified text reports were reviewed again by a third reviewer
to ensure that we have a completely annotated gold standard
repository. If the third reviewer found any error, the second
annotator was asked to fix it. Supervised NER models were built
and tested by using this gold standard dataset.

Another NLP toolkit, Clinical Language Annotation,
Modeling and Processing (CLAMP), was used to build the
NER model (22). CLAMP enabled us to build a model by
training Conditional Random Field (CRF) with multiple features
both individually and as a combination of any number of
those features.

The entire experiment was divided into two stages: Identifying
the best feature set and determining the minimum size of the
training set to achieve the best performance.

Identifying Best Feature Set
In the first stage of our experiment, the objective was to
determine which features make the NER model perform the
best in annotating the aforementioned PHIs. Figure 1 shows the
workflow of this stage of the experiment. A total of 10 features
were explored in this study and a model was built using all of
the manually annotated reports (n = 1,500) by extracting each
of these features. The model was validated by applying the 5-
fold cross-validation technique. The performances of all of the 10
models were evaluated by calculating the performance measures,
such as precision (P), recall (R), and F1-score (F1). Based on the
values of the performance measures, the best performing features
were identified. Furthermore, we investigated the possibility of
improving the model’s performance by using a combination of
features. Therefore, we built two more models, the first one by
combining all the features and the second one by combining the
best performing features. The following describes the features we
explored in our study.

Brown Clustering (BC), a class-based language model, is
a hierarchical clustering algorithm that aims to maximize
the mutual information of bigrams by clustering words. The
significance of the hierarchical nature of clustering is that the
word class can be chosen at several levels in the hierarchy. It
enables the compensation for poor clusters with few words (23).

N-gram (NG) exploits the co-occurrence of other items before
and after a named entity. Depending on the application, these
items can be letters, syllables, or words. In a 2-gram model, the

FIGURE 1 | Workflow of the 1st stage of the experiment: identifying the best

feature set.

left and right neighbors of these annotated entities are checked,
and the frequency of each pair of such neighbors is counted (24).
The prefix–suffix (PS) feature is the prefix and suffix of words
that can represent a specific type of NE.

Random Indexing (RI) is a dimensionality reduction method
that compresses word-context co-occurrence matrices (25). In
this method, each document or context is associated with
an index vector, which is a sparse random vector with high
dimensionality. Each word is also associated with a high
dimensional vector of integers called a distributional vector.
Initially, distributional vectors are set to zero, and whenever a
particular word is encountered in a context, the distributional
vector of that word is updated by adding the index vector of
that context. Hence, words with similar distributional vectors are
considered semantically related (25).

Section (S) feature is the section where a named entity
exists. Sentence pattern (SP) uses CLAMP built-in rules and
distinguishes the pattern of a sentence. Word Embedding (WE)

is similar to BC and RI as it is a type of distributed word
representation feature generated on unlabeled data. In discrete

word embedding (DWE), character level features are extracted
at word level from a distributed representation, and it does
not require knowledge of the syntactic or semantic structure
of language (26). Word Shape (WS) identifies whether a word
begins with an English letter, number, etc., or not.Word regular

expression (WRE) is the regular expression patterns of words
that may indicate a specific type of named entity.

Determining the Minimum Size of Training
Set
In the second stage, our goal was to observe the dependency
of the model’s performance on the variation of the number of
training data and determine the minimum number of training
data required to achieve the highest F1-score. The workflow of
this stage of the experiment is shown in Figure 2. We split the
entire dataset randomly into training pool and test data with
3:1 ratio. Multiple models were built using variable numbers of
training data from the training pool. Using the best feature sets
derived from the first stage, multiple models were built using a
varying number of data points as part of the training process.
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On the first iteration, only 10 training data were used to build a
model. On the subsequent iterations, the number of training data
in the training set was increased (20, 50, 100, 200, 300, 400, 500,
600, 700, 800, 900, and 1,000). The same set of test data was used
to evaluate the performance of all the models.

RESULTS

The performance measures to identify the best feature set are
presented in Tables 1, 2. Table 1 shows precision, recall, and F1-
score achieved for each PHI item by each feature. As expected,
not all the features were equally effective in recognizing the
named entities. NG outperformed all other features in annotating
most PHI items by achieving the highest performance measures,
as shown in Table 1. For instance, the model trained by NG
yielded the highest performance measures (precision = 0.80,

FIGURE 2 | Workflow of the 2nd stage of the experiment: determining the

minimum size of training set.

recall = 0.78, and F1-score = 0.79) in identifying NAME. PS
and WS achieved the second-highest precision value (0.79). The
second highest recall and F1-score (0.77 and 0.78, respectively)
by WE. Similarly, NG again achieved the highest performance
measures in identifying LOCATION. Although PS and WE had
the same precision values as NG, their recall values and F1-
score were less. A glance at the table confirms the consistent
performance of NG across most of the PHI items.

However, NG did not yield the highest performance measures
in some cases. For example, the values of recall and F1-score in ID
were much less for NG than others.WS had the highest recall and
F1-score of 0.81 and 0.89, respectively, and PS took the second
position with 0.80 and 0.88, respectively. Similarly, NG could not
perform well to predict INITIALS, as shown by its low precision.
The above results showed that no single feature can be relied on
to build a de-identification NER model. By analyzing the results
presented in Table 1, we concluded that the best performing
features were NG, PS, WE, and WS.

Table 2 compares the performance of the models trained by
the combination of all the features and four best-performing
features. The table shows no significant difference in the values
of performance measures of these two models. In most cases, the
combination of all features yielded a slightly higher value than
the combination of the best four. For example, precision, recall,
and F1-score of all feature combinations were 0.81, 0.80, and 0.81
for NAME, respectively, whereas the best four combinations had
values of 0.80, 0.79, and 0.80, respectively. On the other hand, the
best four combinations yielded higher precision, F1-score (0.99

TABLE 1 | Precision, Recall, and F1-score achieved by the models trained by individual feature for each PHI.

PHI Performance measure BC NG PS RI S SP DWE WE WS WRE

NAME P 0.57 0.80 0.79 0.40 N/A N/A 0.58 0.78 0.79 0.34

R 0.36 0.78 0.75 0.21 0 0 0.44 0.77 0.75 0.06

F1 0.44 0.79 0.77 0.28 0 0 0.50 0.78 0.77 0.11

LOCATION P 0.78 0.85 0.85 0.81 N/A N/A 0.84 0.85 0.84 0.10

R 0.72 0.82 0.81 0.75 0 0 0.75 0.81 0.80 0.01

F1 0.75 0.84 0.83 0.78 0 0 0.79 0.83 0.82 0.01

DATE P 0.74 0.85 0.85 0.72 N/A N/A 0.76 0.84 0.85 0.80

R 0.45 0.78 0.78 0.45 0 0 0.45 0.77 0.78 0.70

F1 0.56 0.82 0.81 0.55 0 0 0.56 0.80 0.82 0.74

HOSPITAL P 0.82 0.95 0.95 0.78 N/A N/A 0.90 0.95 0.95 0.05

R 0.77 0.93 0.92 0.74 0 0 0.85 0.93 0.92 0.01

F1 0.79 0.94 0.93 0.76 0 0 0.88 0.94 0.93 0.01

PHONE P N/A 0.95 0.95 0.94 N/A N/A 0.93 0.94 0.95 0.94

R 0 0.94 0.94 0.94 0 0 0.94 0.94 0.94 0.94

F1 0 0.94 0.94 0.94 0 0 0.94 0.94 0.94 0.94

ID P 0.98 0.99 0.97 N/A N/A N/A 0.64 0.92 0.98 0.96

R 0.02 0.78 0.80 0 0 0 0.03 0.78 0.81 0.29

F1 0.04 0.87 0.88 0 0 0 0.06 0.84 0.89 0.44

INITIALS P 0.91 0.96 0.97 0.98 N/A N/A 0.91 0.90 0.97 0.70

R 0.08 0.48 0.45 0.06 0 0 0.12 0.19 0.46 0.10

F1 0.14 0.64 0.62 0.13 0 0 0.22 0.32 0.62 0.02

The highest and the second highest values of each performance measure for each PHI are marked by red and green colors, respectively.
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and 0.98), than those of all feature combinations (0.98 and 0.89)
for ID. Similarly, the best four combinations had higher recall
and F1-score (0.49, 0.65) than all feature combinations (0.47 and
0.64) for INITIALS.

The results from the second stage of the experiment in which
we investigated the variation of model performance with training
set size are presented in Figure 3. Instead of considering all the
performance measures, we evaluated the model’s performance
based on the F1-score. As Figure 3 suggests, F1-score was initially
low but increased as the number of training data increased
and eventually reached a saturation level for all the PHI items.

TABLE 2 | Precision, Recall, and F1-score achieved by the models trained by all

the features and four of the best performing features.

PHI Performance

measure

All features

combined

NG, PS, WE, and

WS combined

NAME P 0.81 0.80

R 0.80 0.79

F1 0.81 0.80

LOCATION P 0.87 0.85

R 0.84 0.83

F1 0.85 0.84

DATE P 0.86 0.86

R 0.78 0.79

F1 0.82 0.82

HOSPITAL P 0.95 0.96

R 0.94 0.93

F1 0.95 0.95

PHONE P 0.97 0.95

R 0.96 0.94

F1 0.96 0.95

ID P 0.98 0.99

R 0.82 0.82

F1 0.89 0.90

INITIALS P 0.98 0.97

R 0.47 0.49

F1 0.64 0.65

For all PHI items, except LOCATION and INITIALS, F1-score
got saturated after reaching a training sample size of 200.
For LOCATION, initially, a saturation level was achieved after
reaching a training sample size of 200, but the performance
deteriorated for 700 training data and again came back to
saturation level after 800. Although the exact reason for such
aberrant behavior is unknown, a possible explanation could be
the encounter of a complex training batch where the LOCATION
context was somewhat different from other training batches. For
INITIALS, the performance of our model was not satisfactory
since the highest F1 value achieved was 0.64. While for all
other PHI items, the lowest F1-score was 0.74 (NAME) after
the first round of training with 10 data, it was about 0.31
for INITIALS. Such performance discrepancies would require
further investigation.

DISCUSSION

This study was designed in two stages. At the first stage, we
evaluated the performance of the machine learning algorithm,
CRF, by using multiple features and determining the features that
performed the best in annotating PHI in pathology reports. CRF
is an algorithm that has been used in most of the top ranked NER
systems. Since the performance of a supervised machine learning
model depends largely on the selection of features, the objective
of this experiment was to find out the best features that facilitate
model’s performance in recognizing the named entities.

We found that all the models trained by both the individual
features and a combination of the features had a low F1-
score for INITIALS. This poor performance can be attributed
to the nature of the entity. In the pathology reports we used,
INITIALS appeared mostly in isolated positions with no left
or right members, making it difficult to contextualize. It is
an indication that supervised NER models cannot be reliable
for such out-of-context entities and would require further
research on feature extraction. Although, it performed poorly
in annotating INITIALS, this model outperformed few reported
models in annotating other entities. A study that used MIST
and an in-house system with pre-processing and post-processing

FIGURE 3 | Variation of performance (F1-score) of CRF model with the size of training data for (A) LOCATION, DATE, HOSPITAL, PHONE, NAME, ID, and (B)

INITIALS.
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FIGURE 4 | Framework for automatic clinical de-identification pipeline.

steps reported an F1-score of 0.77 for LOCATION and 0.92
for PHONE NUMBER (27). Another study that compared the
performance of three different tools: Amazon Comprehend
Medical PHI, Clinacuity’s CliniDeID, and the National Library
of Medicine’s Scrubber on two of the publicly available corpora:
2014 and 2016 i2b2 de-identification challenge corpora reported
a maximum F1-score of 0.92 (2014), but a lower score of 0.88 on
2016 corpora in annotating ID (28).

The pathology reports in this study had various identifiers,
but all the identifiers were not the PHI item, ID. Similarly, there
were multiple abbreviations which were not INITIALS. Many of
these identifiers and abbreviations were used to identify various
specimens. Table 2 shows that for these two PHI items, the
precision value was significantly higher than the recall. While
annotating ID, the best four features yielded a precision of 0.99,
whereas the recall value was 0.82. Which means that our model
correctly identified 82% of all the IDs and 99% of the items
that were identified as ID were actually the IDs. Similarly, a
precision of 0.97 and a recall of 0.49 mean that even though
only 49% of the INITIALS were correctly identified, 97% of
the items identified as INITIALS were truly the INITIALS. A
closer inspection of Table 2 reveals that for all of the PHI
items, our model yielded a higher precision value than the
recall. Such consistent higher precision values indicate that the
model using the best four features may not be able to identify
all the true PHI items, but majority of the identified items
were correct.

At the second stage of the experiment, our objective was to
determine the dependency of the model (using the best four
features) on the size of the training dataset. The result of this
analysis showed that the performance of the model reached a
saturation point after 200 training data. After this point, no
significant variation was observed in the model output with
increased training data size. In this analysis, one interesting
thing was that even for very few training data (n = 20), the
model yielded a minimum F1-score of 0.74 (NAME) for all the
entities except INITIALS. The model produced an F1-score of
0.95 for PHONE NUMBERS with only 20 training data. Such
high F1 values for small training data size suggest the efficacy of
appropriate features.

Results presented in Table 2 show no significant difference
among the values of performance measures yielded by all-
features-model and best-four-features-model. Table 1 shows that
S and SP failed to annotate any PHI items and overall, all the
features were outperformed by the best four features. Therefore,
the high values of the performance measures of the all-features-
model can exclusively be attributed to the best four features.
Moreover, the use of the combination of all features made
the training process more time-consuming. Hence, based on
our analysis, it can be concluded that NG, PS, WE, and WS
are the best features in building a clinical de-identification
NER model.

The analysis done in this study provides us with the
significant knowledge required to maintain a data warehouse.
Here, we present a framework for a clinical de-identification
pipeline for enterprise-wide data warehousing which is illustrated
in Figure 4. A subset of the raw clinical reports will be
manually annotated, which will serve as the gold standard
repository, a reliable, and accurate reference of the warehouse.
These annotated data will be used in training the ML
algorithm to build a NER model, which is the core unit
of this pipeline. The model adds the automation feature
to this pipeline as it will annotate the raw text reports
without manual labor. The task of the de-identification unit
is to replace the annotated entities either with information
describing the type of entities ([NAME], [ADDRESS], [DATE],
and [IDENTIFIER], etc.) or pseudonyms by applying master
crosswalk. For enterprise-wide data warehousing for clinical
text, the quality of the de-identification pipeline, in terms of
prediction accuracy, has to be monitored periodically, and
performance drift needs to be calibrated as well. The performance
of the model will periodically be evaluated by reviewing a
subset of the auto-annotated clinical reports. These reports
will be manually corrected and added to the repository for
performance calibration. Periodical performance evaluation and
correction ensure the reliability of this automated clinical de-
identification pipeline.

A limitation of this study is that it was conducted using
only one type of clinical narrative from a single source. The
organization of the reports may significantly vary depending on

Frontiers in Digital Health | www.frontiersin.org 6 February 2022 | Volume 4 | Article 728922

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Paul et al. Clinical De-identification Model

the type and source of the reports, whichmay change the values of
the performance measures. Moreover, some of the high values of
the performance measures, in this study, may be attributed to the
homogeneity of the data. A future study on more heterogeneous
corpora from multiple sources may confirm whether or how the
performance of the models will vary.

CONCLUSION

In this study, we built CRF-based NER models for clinical de-
identification by using multiple features and their combinations.
Our objective was to evaluate the performance of these models
and find out the best performing features. By exploiting the
feature extracting function provided by the CLAMP toolkit,
we concluded that the best-performing feature extractors are
n-gram, prefix–suffix, word embedding, and word shape. We
did further analysis to observe the dependency of the model
on the number of training data, and we noticed that a
saturation level is reached beyond 200 training data. Based on
the results of these analyses, we presented a framework for
the clinical-deidentification pipeline, which facilitates enterprise-
wide data warehousing.
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