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Abstract 

Background  Thyroid cancer is a common thyroid malignancy. The majority of thyroid lesion needs intraoperative fro-
zen pathology diagnosis, which provides important information for precision operation. As digital whole slide images 
(WSIs) develop, deep learning methods for histopathological classification of the thyroid gland (paraffin sections) 
have achieved outstanding results. Our current study is to clarify whether deep learning assists pathology diagnosis 
for intraoperative frozen thyroid lesions or not.

Methods  We propose an artificial intelligence-assisted diagnostic system for frozen thyroid lesions that applies prior 
knowledge in tandem with a dichotomous judgment of whether the lesion is cancerous or not and a quadratic judg-
ment of the type of cancerous lesion to categorize the frozen thyroid lesions into five categories: papillary thyroid 
carcinoma, medullary thyroid carcinoma, anaplastic thyroid carcinoma, follicular thyroid tumor, and non-cancerous 
lesion. We obtained 4409 frozen digital pathology sections (WSI) of thyroid from the First Affiliated Hospital of Sun 
Yat-sen University (SYSUFH) to train and test the model, and the performance was validated by a six-fold cross valida-
tion, 101 papillary microcarcinoma sections of thyroid were used to validate the system’s sensitivity, and 1388 WSIs 
of thyroid were used for the evaluation of the external dataset. The deep learning models were compared in terms 
of several metrics such as accuracy, F1 score, recall, precision and AUC (Area Under Curve).

Results  We developed the first deep learning-based frozen thyroid diagnostic classifier for histopathological WSI 
classification of papillary carcinoma, medullary carcinoma, follicular tumor, anaplastic carcinoma, and non-carcinoma 
lesion. On test slides, the system had an accuracy of 0.9459, a precision of 0.9475, and an AUC of 0.9955. In the papil-
lary carcinoma test slides, the system was able to accurately predict even lesions as small as 2 mm in diameter. Tested 
with the acceleration component, the cut processing can be performed in 346.12 s and the visual inference predic-
tion results can be obtained in 98.61 s, thus meeting the time requirements for intraoperative diagnosis. Our study 
employs a deep learning approach for high-precision classification of intraoperative frozen thyroid lesion distribution 
in the clinical setting, which has potential clinical implications for assisting pathologists and precision surgery of thy-
roid lesions.
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Background
Pathological diagnosis provides a theoretical and practi-
cal basis for the diagnosis, treatment and prevention of 
diseases through the study of the causes and pathogen-
esis of diseases and the morphological structure of the 
diseased organism during the disease process. The pro-
duction of hematoxylin and eosin (H&E) sections usually 
takes about three days to get the diagnosis result from the 
initial taking of specimen [1]. The number of patholo-
gists is limited globally [2], and the lack of pathologists 
in hospitals has resulted in senior pathology doctors 
completing residents’ work. Nevertheless, the surgeon 
needs to know the information about the lesion as soon 
as possible to adjust the surgical plan. This requires rapid 
sectioning to obtain efficient diagnostic results from 
pathologists [3], and intraoperative frozen sectioning 
is the most widely used method [4]. It is a procedure in 
which the tissue cut during surgery is frozen in a frozen 
sectioning machine to allow for rapid cooling of the tis-
sue through low-temperature conditions and then for 
production. Frozen sections are obtained during the pro-
cess and are a significant guide to surgical treatment such 
as benign or malignancy for the patient’s lesion which 
might not match the original diagnostic surgical plan, 
and then affect the operation procedure [5]. On the con-
trary, many primary care hospitals have limited clinical 
experience in issuing frozen pathology reports because 
of a severe shortage of pathologists, which often makes it 
difficult to meet clinical needs.

Over recent years, the application of deep learning 
artificial intelligence approaches in digital pathology 
has shown excellent results, both in the broad applica-
tion of different tissue diseases such as liver cancer [6, 
7], breast cancer [8–10] and esophageal cancer [11, 12] 
and in the optimization and updating of cellular tissues in 
detection [13], segmentation [14] and classification [15] 
methods, all of which show great potential. For exam-
ple, deep learning methods enable networks for Digital 
whole slide images (WSIs) lymphocyte measurement and 
segmentation tasks simultaneously [14]; artificial intel-
ligence approaches for lung cancer histopathology clas-
sification by supervised or weakly supervised strategies 
[16]; deep learning for prediction from H&E images of 
follicular thyroid tumors [17]; and differential diagnosis 
of follicular thyroid tumors based on histopathological 
images using deep learning techniques [18]. However, 
existing deep learning methods for histopathological 
classification of thyroid cancer have been studied with 
paraffin-embedded H&E sections WSIs, but ignore the 
significance of intraoperative frozen sections. In this 
study, we attempt to develop a deep learning-based 
five-class classifier for identifying a broader and more 
detailed range of thyroid lesions. We refined the frozen 

sections’ analysis into five classification problem classes 
through differences in the histological characteristics of 
different cancers, including papillary thyroid carcinoma 
(PTC), follicular thyroid tumor (FTT), medullary thyroid 
carcinoma (MTC), anaplastic thyroid carcinoma (ATC), 
and non-cancerous thyroid lesion (NTC). ResNet [19], 
multi-processing, TensorRT [20], and graphics process-
ing units (GPUs) were used to improve efficiency. To 
validate the performance, efficiency, and sensitivity of 
clinical applications, comparative model experiments, 
prior knowledge cascade experiments, time-cost acceler-
ation analyses, and visualization of the effects of applica-
tions were carried out.

Due to the high resolution of digitized frozen slices, 
which can reach 100,000 × 100,000 pixels, direct com-
plete WSIs processing with large-scale down-sampling 
loses many detailed features, which is not conducive to a 
classification approach regarding morphological features. 
Also training a convolutional neural network (CNN) on 
the whole slide tissue image (WSI) is computationally 
tricky to achieve. Cropping WSIs into tiles for analysis is 
a standard solution for studying histopathological WSIs 
by training a tiles-level classifier and later performing 
tiles fusion in an Expectation-Maximization (EM) man-
ner to summarize the prediction results and obtain an 
effect map of the whole slice prediction [21]. Wei et  al. 
[22] used sliding windows over the entire slide to gener-
ate small tiles and classified each tile by a neural network. 
They used heuristics to determine the primary and sec-
ondary histological patterns across the slide so that labels 
for different regions could be obtained.

In this study, the high accuracy performance and 
interpretability of our proposed system served as our 
primary goal. Against this backdrop, we ensured the 
accuracy of the tissue regions of candidate training 
tiles by double manual annotation of regions of interest 
(ROIs) by pathologists and pathologists. Then we seg-
mented the localized tissue regions into small tiles and 
simulate real clinical diagnostic scenarios by a cascade 
diagnostic system to diagnose the presence of a can-
cerous lesion and subdivide the type of the cancerous 
lesion to predict the category of each tidbit separately. 
The final classification criterion was a fusion recovery 
of the entire tiles of the pathology slices, using a heu-
ristic to identify the significant and minor histological 
patterns across the WSI. In addition, we confirmed the 
performance sensitivity of our system with test results 
of papillary thyroid microcarcinoma and different scale 
thermograms with accelerated plug-ins to speed up 
the diagnostic inference of the system. Our system not 
only allows for a more detailed classification of thyroid 
lesions but also allows for the system’s sensitivity to 
localize suspicious lesions, saving diagnostic time and 
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cost and assisting the pathologist in making a diagnosis 
in copious ways. The main contributions of this paper 
can be summarized as follows:

•	 A tile-supervised WSI-label learning-based classifica-
tion and diagnosis system for frozen thyroid lesions 
is designed. We propose a Two-step cascade diag-
nostic system (TSCD), which utilizes a priori knowl-
edge cascading into a five-classification diagnostic 
system that fits the clinical diagnostic scenarios, and 
for the first time achieves fine-grained classification 
of lesions, realizes a high-accuracy classification task 
and demonstrating advanced performance.

•	 We conducted a systematic working test on papillary 
thyroid microcarcinoma alone. To ensure the accu-
racy of clinical application, we strictly selected cases 
with lesion sizes within 1 cm, and the results showed 
that a lesion size of 2 mm could be accurately local-
ized.

•	 A diagnostic acceleration component is designed, 
this acceleration component accelerates the process-
ing from multi-processing of data to TensorRT accel-
eration of model inference, reducing consumption 
time to 729.37% of the original speedup. In addition, 
this component can be embedded in all tiles-based 
classification inference models for broad applicability.

•	 A multi-scale thermographic visualization of the 
system is proposed to test the sensitivity, which is 
reflected by the selection of different scales of lesion 
areas from different cases to visualize the system’s 
identification results due to the high resolution of the 
WSI.

•	 For the consideration of the clinical application of the 
diagnostic system, a heuristic strategy of tumor pri-
oritization based on thresholds is proposed to clarify 
the diagnostic process by thresholding the WSI pri-
mary and secondary tissues in a heuristic manner to 
promote the development of deep learning methods 
for the clinical application of frozen histopathological 
images.

•	 A database of frozen thyroid digital pathology sec-
tions was established, and the developability of deep 
learning in frozen sections was confirmed by design-
ing a deep learning model to analyze data and assist 
in diagnosing pathology library data.

Methods
In this section, we will describe the preparation of data, 
the selection of deep learning models, composition of 
acceleration components, and the generation of the sys-
tem for the final frozen diagnosis of thyroid lesions from 
several perspectives.

Slides collection and categorization
We collected frozen thyroid sections from the First Affili-
ated Hospital of Sun Yat-sen University to form a library 
of frozen thyroid digital pathology sections Four certi-
fied pathologists independently reviewed the organized 
frozen thyroid sections. The diagnosis was determined 
with the aid of the results of paraffin-embedded H&E 
sections and immunohistochemistry staining sections. In 
order to ensure the accuracy of the data, three rounds of 
screening were conducted sequentially through diagnos-
tic pathology reports, four pathologists, and two patholo-
gists in the process of selecting the data, and finally the 
data that were all approved were selected. Figure 1 shows 
the morphology of five types of typical thyroid sections, 
Fig. 2 shows their high magnification histopathology, and 
Table 5 lists the clinical management of different thyroid 
lesions. It can be seen that differentiating the types of 
thyroid cancer can facilitate efficient and targeted clini-
cal diagnosis and help patients heal better. This study was 
approved by the Ethics Committee of the First Affiliated 
Hospital, Sun Yat-sen University.

Thyroid cancer is divided into papillary thyroid cancer, 
medullary thyroid cancer, anaplastic thyroid cancer and 
follicular thyroid cancer. However, if a follicular thyroid 
tumor is determined to be benign and less than 1 cm in 
diameter, it can be treated with an observation instead of 
follow-up surgery [23]. Follicular thyroid cancer which is 
malignant follicular thyroid tumor requires demonstra-
tion of capsular and/or vascular invasion. Ultrasound, 
puncture, intraoperative frozen pathology, and even post-
operative paraffin-embedded pathology may only par-
tially guarantee accuracy [24]. So there exists a tendency 
for various findings to be benign but may be malignant, 
so it is not easy to fully determine whether it is benign 
or malignant. Therefore, our classification tends to be 
divided into five parts: papillary carcinoma, follicular 
tumor, medullary carcinoma, anaplastic carcinoma, and 
non-cancer lesion, where the noncancer frozen section 
consists of data from nodular goiter, chronic lymphocytic 
thyroiditis (CLT), and subacute thyroiditis (ST) together.

WSI datasets
 The database of frozen thyroid WSIs we created con-
sisted of 4409 frozen thyroid sections from the First 
Hospital of Sun Yat-sen University (SYSUFH) and the 
First Affiliated Hospital of Sun Yat-sen University (FAH-
SYSU), covering 3873 cases diagnosed as PTC, FTT, ATC, 
MTC or NTC, and the inclusion criteria for the dataset 
were that each frozen section was able to be included in 
the above categories. Before WSI annotation, all sections 
were observed by two senior pathologists at SYSUFH 
through microscopy, including immunohistochemically 
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stained Sects. [25, 26] used as an aid to diagnosis. The 
diagnostic reports of all cases were also checked as a way 
to determine the accuracy of the collected data. Slides 
were then scanned with the Slide Scan Imaging System 
SQS-600P scanner at 40x magnification and digitized 
into SDPC format. For an unbiased evaluation, classifica-
tion was performed according to the 5th edition of WHO 
thyroid tumor classification criteria. For the scanned dig-
itized pathology slides, four pathologists first annotated 
WSI for regional ROI, and two pathologists then checked 
the annotated slides with at least seven years of clinical 
experience in the pathology department of SYSUFH to 
ensure the accuracy of the annotated information.

We collected three batches of frozen thyroid slices for 
database development, and all the data in the library 
were used in our system’s training validation and testing. 
It contained 4409 thyroid frozen sections (PTC, 2300; 
FTT, 225; MTC, 49; ATC, 7; NTC, 1904) for model con-
struction, randomly divided into training and testing 11 
groups in a 10:1 ratio. Of these, 2894 (PTC, 1479; FTT, 
224; MTC, 49; ATC, 7; NTC, 1135) were used to con-
struct the model, 127 (PTC, 127) were used to evaluate 
the sensitivity of the model to small cancers, and 1388 
(PTC, 694; FTT, 1; NTC, 769) were used in the external 
test set to evaluate the system’s generalization ability. The 

number of follicular variant of papillary thyroid carci-
noma (FVPTC) cases was 135, containing 163 WSIs, or 
3.49% of 3873 cases, and 3.70% of 4409 WSIs, and non- 
invasive follicular thyroid neoplasm with papillary-like 
nuclear features (NIFTP) The number of cases was 11, 
containing 14 WSIs, representing 0.28% of 3873 cases 
and 0.32% of 4409 WSIs.

Based on the patch cropping method, 105622 papil-
lary carcinoma patches, 42644 follicular tumor patches, 
27491 medullary carcinoma patches, 8507 anaplastic 
carcinoma patches, and 215418 non-cancerous lesion 
patches were cropped from the training slides used for 
system construction. Of these, 78343 papillary carcinoma 
patches, 42407 follicular tumor patches, 27491 medullary 
carcinoma patches, 8507 anaplastic carcinoma patches, 
and 118895 non-cancerous lesion patches were cropped 
from the training slides used for model construction 
and the rest of the patches used for testing, as shown in 
Table 1.

Data pre‑processing
The pathology slide scanner used to obtain the WSIs was 
the SQS-600P slide scanning imaging system from Shen-
zhen Shengqiang Technology Co. (Shenzhen, China). The 
labeling software is also the digital pathology reading 

Fig. 1  Frozen section examples WSI, A for papillary thyroid carcinoma nodule, B for medullary thyroid carcinoma nodule, C for follicular tumor 
nodule, D for anaplastic carcinoma nodule, and E for all non-cancerous frozen section slides WSI, from top to bottom, for nodular goiter, chronic 
lymphocytic thyroiditis, and subacute thyroiditis
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software ImageViewer provided by Shenzhen Sangqiang 
Technology Co., Ltd, version DPVIEW V2.0.1.0927. We 
use a supervised approach to train the model, which 
requires us to annotate the ROI region carefully.

The pathologists manually annotated the specific 
histopathological thyroid tissue types in each WSI 
by using colored irregular shapes, and the annotated 
WSIs were reviewed by two pathologists to ensure the 
accuracy of the annotation. The colored irregularly 

annotated regions were cut at the tile level after ROI 
region annotation to provide the tissue details of the 
cut patches, as shown in Fig.  3. Different categories 
of tiles obtained by cropping are shown in Fig.  4. All 
processing was performed at a magnification of 40x, 
based on a pixel scale of 0.2065 μm. We traversed all 
manual annotations by reading the SDPL file (the file 
generated by manual annotation). Use the multiplicity 
of the rectangle marked in the blank area as the refer-
ence coordinate system, and calculate the ratio of the 
reference coordinate system to the absolute coordinate 
system using the screen position of the colored outline, 
and then deflating the annotated points to the reference 
coordinate system, taking the center point of the anno-
tation as the distribution of tiles is described in Table 1.

Deep neural networks
According to the research content and its applicability, 
what we need is a neural network framework with high 
accuracy while ensuring low cost. The more commonly 
used neural network backbones include ResNet19, 
DenseNet [27], EfficientNet [28], ShuffleNet [29], etc. 
In addition, with the extension of the transformer to 
the computer vision (CV) field, the generic backbone 
network Swin-Transformer [30] is also showing supe-
rior performance in vision tasks such as image genera-
tion, medical image segmentation, etc. performance. 
We choose ResNet101 as the backbone network for his-
topathology classification tasks. The residual structure 
of ResNet is proposed to solve the problem of network 
degradation, and the gradient disappearance or explo-
sion has been translated by normalized initialization, 
etc. The model can make learning less and more man-
ageable, thus ensuring sure accuracy while reducing 
the cost. And Resnet101 is used for our histopathology 
classification task by replacing the last fully connected 
layer with five outputs representing papillary thyroid 
carcinoma, medullary carcinoma, follicular tumor, 
anaplastic carcinoma, and non-carcinoma lesion, 
respectively. For training, testing and optimization, we 
divided all the datasets into a training set, a validation 
set, and a test set. Although we used more than 399682 
patches of data for system development, we still trained 
the thyroid patch model by transfer learning from 
models pre-trained on the ImageNet recognition task. 
By initializing the pre-trained model, the patch classi-
fier can achieve better performance. At the same time, 
we also fine-tune models such as Swin Transformer, 
EfficientNet-B5, and GoogLeNet [31] using the same 
data and settings as Resnet101 and also test the models 
using the same test set to make qualitative comparisons 
among different kinds of model results.

Fig. 2  High-magnification histopathology, a listed as WSI at 20x 
magnification, b listed as WSI at 40x magnification, and c listed as WSI 
at 80x magnification, from top to bottom, PTC, MTC, FTT, ATC, NG, 
CLT, ST
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A priori knowledge and classification cascade
In image classification tasks, a priori knowledge can be 
obtained by pre-training on large-scale image datasets 
[32]. Through pre-training, the model can learn the 
basic features and patterns of the images, and the intro-
duction of a priori knowledge as pre-training weights 
can effectively improve the accuracy and efficiency of 
image classification. Modeled after the actual diagnos-
tic process of clinical thyroid freezing, the TSCD sys-
tem was designed as a categorization cascade of two 
classification cascades for the presence of cancerous 
lesions and a categorization cascade of four classifica-
tion cascades for subdivided lesion types. However, 
the pre-training dataset ImageNet [33] used now has a 
feature extraction method that does not fit the pathol-
ogy image, and the training data of the two parts of 
the cascade model is not as much as that of the five-
classification model, which is insufficiently fine-grained 
for the classification task. In order to make the cascade 
model have similar feature extraction ability as the five-
classification model and fit the pathological images of 

thyroid lesions, the five-classification baseline model’s 
is used as the pretrain model of the cascade model.

Network training and implementation details
Our training, validation and testing data are not pub-
licly available due to strict controls on medical manage-
ment and strict policies on sample privacy. Even though 
we have acquired several 399062 tiles for the model 
training process, we still apply transfer learning to our 
network model training to obtain better performance. 
By initializing the network with the default weights 
transferred from the ImageNet dataset, the entire net-
work is fine-tuned to fit our data target better. The ini-
tial learning rate is set to 0.00003 and the optimizer is 
Adam. Momentum and attenuation are both set to 0.9. 
dynamic data enhancement, including horizontal flip or 
in the vertical direction, color dithering includes auto-
matic adjustment of luminance in the range of (0.65, 
1.35), automatic adjustment of contrast in the field of 
(0.5, 1.5), automatic adjustment of automatic saturation 
adjustment, and 0.3 size adjustment for hue to increase 

Table 1  Statistical information of the dataset used for model development testing. The dataset was categorized into three subsets, 
dataset A, dataset B and dataset C, depending on the purpose

Dataset A was used for model development and evaluation. Dataset B is used to evaluate the sensitivity of the model on tiny cancers. Dataset C is used as an external 
test set to evaluate the system generalization capability. Datasets A, B were obtained from the First Affiliated Hospital of Sun Yat-sen University (FAH-SYSU), and 
dataset C was obtained from the East Hospital of the First Affiliated Hospital of Sun Yat-sen University

DA Dataset A, DB Dataset B, DC Dataset C, C Case, W WSI, P Patch

Dataset PTC FTT MTC ATC​ NTC SUM

C W P C W P C W P C W P C W P C W P

DA 1266 1479 78343 185 224 42407 43 49 27491 7 7 8507 986 1135 118895 2487 2894 275643

DB-Small 101 127 3220 - - - - - - - - - - - - 101 127 3220

DC-East 619 694 24059 - - - - - - - - - 591 769 96757 1285 1388 120816

SUM 1986 2300 105622 186 225 42644 43 49 27491 7 7 8507 1577 1904 215418 3873 4409 399682

Fig. 3  Diagram of the process of cropping WSI into tiles. a shows the WSI of the original frozen thyroid nodule, and b shows the annotation 
of the contours by the pathologist, the green contour is the ROI area, i.e., the area with lesions and non-cancerous areas can also be present 
in the slides with lesions. figure (c) shows the tiles obtained by cropping from the annotated section, the number of patches obtained by cropping 
is proportional to the area of the annotated area
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the data variation. To improve the learning charac-
teristics of convergence, pixels were rescaled from 0 
to 255 to 0–1 by dividing by 255, and the Z-score was 
normalized using the mean (0.485, 0.456, 0.406) and 
STD (0.229, 0.224, 0.225). The training process lasts 40 
epochs, and the optimization model with the most neg-
ligible loss is saved and used. We used the deep learn-
ing framework PyTorch 1.10.2 to implement all CNN 
models, and an NVIDIA GeForce RTX 3090 GPU with 
24 GB of memory was used for CNN model training 
and evaluation. Training ResNet18, ResNet34 models 
took about 32 h, and Resnet50 model took about 44 
h, and ResNet101 model took about 48 h. GoogLeNet 
model took about 28 h. Swin Transformer model took 
about 67 h. EfficienNet-B5 took about 47 h. Vision-
Transformer took about 88 h. AlexNet, DenseNet121, 
VGGNet-16, ShuffleNet-v2 models took about 16 h, 36 
h, 43 h and 25 h.

Tile splitting and prediction
For the sake of achieving the integrity of tissue details 
and clarity of morphological features, we cut the labeled 
area into non-overlapping tiles of 224*224 pixels in size. 
Tiles were filtered with the criterion of 50% or more of 
class-labeled components to obtain a dataset with a high 
degree of lesion fit from both WSI and tile-level perspec-
tives. We use our deep learning system to perform clas-
sification prediction for these tiles from manually labeled 
regions. After obtaining the initial tile-level class labels, 
we perform WSI fusion according to our tiles fusion 
strategy to get the WSI-level label prediction, which is the 
auxiliary lesion diagnosis result. Figure  5 illustrates the 
diagnostic flow chart of a whole frozen thyroid section.

Whole‑slide label inferencing with tiles fusion
Since the network outputs are tile-level predictions, 
the final diagnosis must be integrated into WSI-level 

Fig. 4  Different categories of tiles obtained by cropping, A for PTC, B for FTT, C for MTC, D for ATC, and E for NTC, with a pixel size of 224 × 224
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forecasts. In general, the prediction results of slice-level 
WSI are aggregated to decide the classification based on 
tiles, which depend on the category to which the maxi-
mum probability belongs. Classical integration meth-
ods include averaging [34] and voting [35] procedures, 
which use more straightforward strategies to combine 
the predictions of individual learners. The majority vot-
ing method [36] is based on the classification results of a 
single classification model. It uses the principle of minor-
ity rule to determine the category labels predicted by the 
model, that is, by the number of tiles in each category and 

assigning the entire WSI to the one label with the highest 
number of corresponding types. The other is the average 
pooling method, where the probabilities of each category 
are summed and the slide labels are derived from the 
maximum average class probabilities [37].

In our data, tissue components of non-cancerous cat-
egories and other tumors may coexist in one WSI. For 
example, papillary thyroid cancer and non-cancerous 
parts are distributed in different regions of the same 
WSI. Still, the final label of one WSI is attributed to only 
one category. Inspired by the work of Li et  al. [38], we 

Fig. 5  Deep learning-based diagnostic workflow for frozen thyroid lesions. The pipeline contains five modules: a WSI pre-processing section, b 
Resnet101 network structure, c optimal system experimental results, d WSI reconstruction visualization, and e Grad-CAM (Gradient-weighted Class 
Activation Mapping) heat map visualization
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propose a threshold-based approach to compound the 
results based on the majority voting method incorporat-
ing a threshold division of pathological tissue priorities. 
When we encounter multiple tiles class labels co-located 
in a single WSI, equal treatment of tumor-containing and 
non-cancerous WSIs will result in the neglect of micro-
scopic cancerous lesions and serious misclassification 
of the patient’s diagnosis, such that the results we pre-
dict will not fit the requirements for putting into practi-
cal clinical use. Therefore, to improve the priority level 
of tumor-containing WSIs and enhance the sensitivity 
of the system to tumor regions, we propose a heuristic 
strategy based on threshold tumor priority, as shown 
in Fig.  6. Firstly, we set the threshold value according 
to the severity of lesions, because PTC, ATC, FTT, and 
MTC are all tumor types except the NTC category, so the 
threshold value of NTC is set to 95%. In contrast, all the 
rest of tumors are not differentiated by a threshold value. 
In addition, the pixel size of the tiles we selected was 
224 × 224. Such a size is small even when compared with 
the lesion diameter of papillary thyroid microcarcinoma. 
As shown in Fig. 6, in our work for the prediction of WSI 
of papillary thyroid microcarcinoma with a lesion diam-
eter ≤ 10 mm, the size of the lesion in the visualization 
result can be cropped to 20 tiles with continuity. There-
fore, the category of this WSI was determined as NTC 
only when the weight of NTC exceeded a threshold value 
of 95% and the number of regional continuity tiles (RCT) 
was less than 20. In addition to the above, if there was 
a coexistence of NTC and other categories, all different 
categories were used as the main tissue component, and 
the same was valid for label selection. The task classifica-
tion we implemented in this study is based on the visual 
features observable at the cellular or partial tissue level 

on the image tiles scale, so this strategy of fusing tiles is 
used.

Acceleration components
Due to the time-specific nature of intraoperative diagno-
sis, efficient diagnostic results need to be given in a short 
period of time, so we designed an acceleration compo-
nent to enhance the diagnostic efficiency, and the com-
ponent includes multiprocessing for cutting tiles and 
TensorRT to accelerate the inference.

Multiprocessing for cutting tiles
In the program of cutting tiles, multiple processes [39] 
can be run at the same time through the multi-process 
module, each process has its own independent execu-
tion space and resources, and can handle multiple tasks 
at the same time, here we use 9 processes, compared to 
the original time to get a single tile can now be obtained 
9 tiles, in order to improve the concurrency and response 
speed of the system.

Diagnostic reasoning acceleration
PyTorch [40] is an open-source deep learning frame-
work that can be used to build and train neural network 
models. ONNX (Open Neural Network Exchange) [41] 
is an open deep learning model exchange format that 
can be used to share and convert models between dif-
ferent deep learning frameworks. TensorRT [42] is 
an NVIDIA provided high-performance deep learn-
ing inference engine that can be used to accelerate the 
inference process of deep learning models. Our initial 
system was trained to obtain PyTorch models, and in 
model inference, to speed up the inference process, we 
converted Pytorch to ONNX files via the torch.onnx.

Fig. 6  Athreshold-based tumor-first frozen section diagnostic method for the thyroid is proposed
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export() function, after which we used the TensorRT 
Python API to build the TensorRT engine with ONNX 
models, as depicted in Fig.  7 conversion flow so that 
high performance inference can be achieved in Ten-
sorRT using PyTorch-trained models.

Evaluation Metrics
In our experiments, the accuracy, precision, recall, and 
F1 score were used to evaluate the performance of our 
proposed method and the state-of-the-art techniques 
[43]. In the assay method, the actual category value and 
the prediction were the same and both were positive, 
then TP (True Positive); if both were negative, then 
TN (True Negative); the actual category value did not 
agree with the prediction and the prediction was posi-
tive, then false positive (FP) if the forecast was negative, 
then false negative (FN). Based on these basic defini-
tions, additional evaluation metrics (Accuracy [A], Pre-
cision [P], F1-Score [F1], Recall [R], Specificity[S], TPR 
[True Positive Rate], FPR [False Positive Rate]) of the 
frozen thyroid tissue diagnostic test can be introduced 
as follows.

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

(3)
2

F1
=

1

P
+

1

R

(4)TPR = Sensitivity = Recall =
TP

TP + FN

Results
Patch‑based classification
In the twelve experimental ones of the Convolutional 
Neural Networks (CNN) model, the model’s perfor-
mance is optimized by fine-tuning the model. Among 
them, Resnet34, Resnet50 and Resnet101 models per-
form close to each other in the fine-tuned training mode, 
but Resnet101 shows a slight lead. Table 2; Fig. 8 offer a 
qualitative comparison between the system backbone 
network Resnet and other classical deep learning models. 
These results compare and validate the superior results of 
selecting the Resnet34, Resnet50 and Resnet101 models 
for the classification of frozen thyroid lesions by trans-
fer learning, and the final visualization of the whole slice 
prediction is in excellent agreement with the ground. 
The absolute consistency of the entire prophecy is also 
extremely high.

Three backbone models were selected for the cas-
cade test since the performance differences on the 
five-category baseline of Resnet34, Resnet50 and 
Resnet101model were small. Figure  9 compares the 
evaluation of Accuracy [A], Precision [P], F1-score [F], 
and Recall [R] of the direct cascade with ImageNet as 
the pre-training model and the TSCD system with the 
five base classifications of thyroid lesions as the pre-
training model under the three models metrics. The 
experimental results show that whether it is Resnet34, 
Resnet50 or Resnet101 model, the evaluation indexes 
from BASE classification to direct cascade to pre-
train cascade system are incremental effect, as this 
can prove the validity of our proposed cascade system 
modeled on clinical diagnosis. Since the cascade of the 

(5)Specificity =
TN

TN + FP

(6)FPR = 1− Specificity =
FP

TN + FP

Fig. 7  TensorRT accelerates the PyTorch model inference process, which consists of three steps:(1) export the PyTorch model to an ONNX file, (2) 
build the TensorRT Engine, and (3) deploy the TensorRT Engine
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five classifications of thyroid lesions as a pretrained 
model yielded more accurate results than the direct 
cascade using ImageNet as a pretrained model, and 
the overall performance of the cascade of Resnet101 
outperformed that of the other models in the system, 
we ultimately chose Resnet101 as the model that con-
stitutes the backbone of our TSCD system for diag-
nosing frozen thyroid lesions. The final test results 
of our TSCD system were 94.59% ± 3.55% in Accu-
racy, 94.75% ± 3.02% in Precision, 94.59% ± 3.44% in 
F1-score, 93.20% ± 2.16% in Recall, and the value of 
AUC was 99.55% ± 0.35% (Table 3).

Internal and external test sets
Internal and external test sets were selected to evaluate 
the generalization ability of the diagnostic system. The 
external test set mainly focuses on the two categories of 
papillary thyroid cancer and non-cancer, which is due to 
the imbalance in the distribution of thyroid lesions them-
selves, with papillary cancer accounting for a much larger 
proportion than other lesions. Therefore, we selected the 
binary classification model for the presence of cancer in 
the first part of the TSCD system to be used to test the 
effectiveness of the diagnostic system on an external test 
set. At the same time, we divided the internal data origi-
nally used to test the five-classification diagnostic system 

Table 2  Average test ACC, Precision, F1-Score, recall with standard deviation on test dataset

Model Accuracy Precision F1-score Recall AUC​

ResNet18 0.9257 ± 0.0352 0.9277 ± 0.0285 0.9254 ± 0.0342 0.9007 ± 0.0200 0.9920 ± 0.0040

ResNet34 0.9365 ± 0.0244 0.9389 ± 0.0206 0.9367 ± 0.0232 0.9178 ± 0.0278 0.9938 ± 0.0038
ResNet50 0.9348 ± 0.0319 0.9373 ± 0.0271 0.9344 ± 0.0298 0.9140 ± 0.0139 0.9933 ± 0.0053
ResNet101 0.9370 ± 0.0317 0.9392 ± 0.0264 0.9369 ± 0.0303 0.9170 ± 0.0366 0.9938 ± 0.0048
GoogleNet 0.9086 ± 0.0409 0.9111 ± 0.021 0.9083 ± 0.0257 0.8760 ± 0.0217 0.9860 ± 0.0050

EfficientNet-B5 0.9089 ± 0.0344 0.9134 ± 0.0252 0.9085 ± 0.0305 0.8750 ± 0.0177 0.9873 ± 0.0063

Swin-Transformer 0.9085 ± 0.0314 0.9109 ± 0.0284 0.9065 ± 0.0238 0.8697 ± 0.0217 0.9877 ± 0.0057

Vision-Transformer 0.9055 ± 0.0284 0.9080 ± 0.0219 0.9030 ± 0.0284 0.8650 ± 0.0237 0.9773 ± 0.0077

AlexNet 0.8819 ± 0.0441 0.8856 ± 0.0245 0.8801 ± 0.0380 0.8357 ± 0.0230 0.9795 ± 0.0115

DenseNet121 0.9128 ± 0.0277 0.9150 ± 0.0176 0.9119 ± 0.0242 0.8757 ± 0.0226 0.9882 ± 0.0052

VGGNet-16 0.9302 ± 0.0352 0.9315 ± 0.0312 0.9298 ± 0.0340 0.9067 ± 0.0173 0.9917 ± 0.0057

ShuffleNet-v2 0.8631 ± 0.0428 0.8688 ± 0.0282 0.8631 ± 0.0407 0.8041 ± 0.0197 0.9723 ± 0.0133

Fig. 8  Comparison of classification effects. It can be seen from the figure that Resnet34, Resnet50, Resnet101 are higher than other models in all 
four evaluation indexes
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into two categories for the comparison test between the 
internal and external test sets. The test results are shown 
in Fig.  10. The accuracy of our model on the external 
test set reaches 99.37% ± 0.15%, and the accuracy of the 
internal test data is slightly lower than the external data 
set because the complexity of the internal data is greater 
than that of the external test set, but the overall effect is 
still as high as 97.62% ± 0.58%. The accuracy of our diag-
nostic system is 97.62%±0.58% for the binary classifica-
tion of cancer or not, and 99.37%±0.15% for the external 
test set, which shows the strong generalization ability of 
our system.

Visualizing predictions with heatmaps
Grad-CAM (Gradient-weighted Class Activation Map-
ping) can assist in analyzing the regions of interest of the 
system for a given class, and we also verify whether we 
have learned the correct features or information through 
the regions of interest of the network in turn. We use 
Grad-CAM to draw the heat map of Fig. 11. From these 
heat maps, we can find that our system achieves accurate 
localization and recognition of the regions that we clas-
sify for attention.

Slide‑level performance
To obtain the predictions on the whole slide image, we 
mapped the system predicted tile-level results onto the 
original frozen sections, with different color blocks rep-
resenting different categories. Figure  12 selected slices 
with different labels, the original WSI, the pathologist 
annotated WSI and the system slice-level prediction 

results are plotted, which visually shows the high agree-
ment between our system classification prediction area 
and the pathologist annotated area.

Test on papillary thyroid microcarcinoma
To test the sensitivity of the system and for more accu-
rate results in clinical use, we developed a sensitivity 
testing strategy for papillary thyroid microcarcinoma. 
we screened papillary thyroid microcarcinoma by lesion 
diameter and used them to test the system’s sensitivity. 
We screened 101 frozen WSIs of papillary thyroid micro-
carcinoma, whose lesion diameters were all within the 
range of 1 cm, and obtained more than 3000 tiles by crop-
ping them and inputting them into the system for testing. 
And obtained visualization results displayed in Fig.  13, 
which can accurately identify the cancerous regions, veri-
fying the accuracy of the system.

As can be seen from Slide-level diagnosis Fig. 13, our 
system can accurately identify cancerous lesions even in 
the face of lesions as small as 2 mm in diameter when 
testing papillary thyroid microcarcinoma cases.

Multi‑scale Thermographic visualization
We proposed a multi-scale heat map visualization, which, 
due to the high resolution of WSIs, the lesion areas of 
different cases and different scales were selected, as in 
Fig.  14, we chose the WSIs of four papillary carcinoma 
cases and cropped the four WSIs at different scales, 
and the pixel sizes obtained were 224 × 224, 512 × 512, 
1120 × 1120, 2240 × 2240 in order, and the results of the 
system in different scale tiles for grad-cam heat map 

Table 3  Average test ACC, Precision, F1-Score, recall with standard deviation on cascade system

Model Accuracy Precision F1-score Recall AUC​

ResNet34 0.9365 ± 0.0244 0.9389 ± 0.0206 0.9367 ± 0.0232 0.9178 ± 0.0278 0.9938 ± 0.0038

ResNet50 0.9348 ± 0.0319 0.9373 ± 0.0271 0.9344 ± 0.0298 0.9140 ± 0.0139 0.9933 ± 0.0053

ResNet101 0.9370 ± 0.0317 0.9392 ± 0.0264 0.9369 ± 0.0303 0.9170 ± 0.0366 0.9938 ± 0.0048

ResNet34_direct _cascade 0.9381 ± 0.0268 0.9404 ± 0.0253 0.9384 ± 0.0267 0.9216 ± 0.0149 0.9947 ± 0.0023

ResNet50_direct _cascade 0.9429 ± 0.0350 0.9446 ± 0.0312 0.9430 ± 0.0343 0.9227 ± 0.0361 0.9952 ± 0.0038

ResNet101_direct _cascade 0.9419 ± 0.0307 0.9447 ± 0.0276 0.9422 ± 0.0304 0.9273 ± 0.0315 0.9955 ± 0.0035

ResNet34_pretrain_cascade 0.9385 ± 0.0321 0.9412 ± 0.0289 0.9389 ± 0.0314 0.9233 ± 0.0290 0.9945 ± 0.0035

ResNet50_pretrain_cascade 0.9448 ± 0.0409 0.9465 ± 0.0351 0.9448 ± 0.0398 0.9309 ± 0.0188 0.9953 ± 0.0053

ResNet101_pretrain_cascade 0.9459 ± 0.0355 0.9475 ± 0.0302 0.9459 ± 0.0344 0.9320 ± 0.0216 0.9955 ± 0.0035

(See figure on next page.)
Fig. 9  Better performing comparison in cascade system. The top three comprehensive performances of the above models are selected 
for a more visual comparison. a Comparison of the metrics performance of the three selected models on base classification and TSCD system. b 
Confusion matrix at the tile level predicted by the basis of the three models. c ROC curves and their AUC values for the three models on the base 
categorization and the TSCD system under cross-validation. It can be seen that Resnet101_pretrain_cascade is superior to other models in every 
index
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Fig. 9  (See legend on previous page.)
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Fig. 10  The first part of the TSCD system, i.e., the dichotomous classification of the presence or absence of cancer, was selected for the test. 
The first row shows the effects on the internal test set originally used to construct the diagnostic system, and the second row shows the effects 
on the external test set obtained from the East Hospital of the First Affiliated Hospital of Sun Yat-sen University. The effects on the four metrics 
Accuracy [A], Precision [P], F1-score [F], Recall [R], the confusion matrix, and the AUC performance are shown from left to right

Fig. 11  Grad-cam heat map visualization of tumor classification, a tile level visualization for papillary carcinoma, b tile level visualization for follicular 
tumor, c tile level visualization for medullary carcinoma, and d tile level visualization for anaplastic carcinoma
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visualization [44], reflecting the sensitivity of the sys-
tem. Figure 14 shows the classification effect of our deep 
neural network system in the form of a Grad-CAM vis-
ual thermal map. Even when faced with tiles of different 
scales, the diagnostic system was able to pinpoint the 
area where the tumor was located.

Accelerated component results in diagnostic time cost
After the optimization, excluding the necessary time 
to read and store the image brought by the hard-
ware, the average time to cut the whole WSI is reduced 
from 2899.89s to 346.12s, which is an 837.83% speed 
improvement. The average inference time of the model’s 

individual WSIs is reduced from 343.84s to 98.61s, which 
is a 348.69% speed improvement. The system’s overall 
inference and diagnosis time is reduced from 3243.73 s 
to 444.73s, an improvement of 729.37%, as shown in the 
details in Table  4. As intraoperative freezing has very 
strict time requirements, doctors need to accurately 
grasp the freezing time to ensure the safety and effec-
tiveness of the procedure. The shortened time helps the 
effective intraoperative diagnosis, thus further improving 
the efficiency and success rate of the surgery.

The primary time cost of WSI analysis lies in the 
data processing and prediction results of the WSI and 
its visualization generation. the level down-sampling 

Fig. 12  From left to right, the slide-level visualization (performance) of PTC, MTC, FTT, ATC, and NTC tissue predictions are shown. The first row 
shows the original slides, the second row shows the annotated WSIs with closed blue curves depicting the ROIs annotated by the pathologist, 
and the last row shows the corresponding WSI prediction visualization

Fig. 13  Test of papillary thyroid microcarcinoma, the example of papillary thyroid microcarcinoma with lesion size of 2 mm in diameter, A original 
WSI, B manually labeled ROI, C Slide-level visualization display, the result can accurately identify the cancerous area
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factor in the WSI pyramidal storage structure is 2, 
and the annotated ROI size is one-fourth of the slide 
height and width, Then the size of the ROI region is 
10,000 × 10,000 pixels in the level 2 slide image, which 
corresponds to 40,000 × 40,000 in level 0 of the WSI, 
and the size of the tiles extracted by the CNN model 
is 224 × 224.A frozen slide was scanned using a slide 
scanning imaging system SQS-600P scanner, and the 
time from getting the frozen slide to scanning to obtain 
the WSI was within two minutes. The scanned WSI 
can be directly processed by our system first by crop-
ping the whole WSI into tiles of 224 × 224 size, and the 
cropped tiles are directly input for the entire slide pre-
diction module in the system for visualizing the effect, 
the whole process is strictly controlled within 10 min, 
which can well assist the pathologist’s diagnosis.

Discussion
Up to now, histopathology is still the gold standard for 
pathology doctors to diagnose diseases, and its devel-
opment from slides under the light microscope to digi-
tal pathology images shows the significance of artificial 
intelligence in medical treatment. As the incidence of 
thyroid cancer is increasing year by year worldwide, the 
advancement of AI-assisted approaches to update it has 
received widespread attention.

Reasons for classification task selection
In recent years, there has been good development in the 
field of research on the artificial intelligence-assisted 
diagnosis of the thyroid, but almost the vast majority 
of the findings have focused on paraffin Sects. [45–48], 
and few studies have been performed on frozen sections 

Fig. 14  Grad-cam heat map visualization of different scales of tumor classification, illustration of papillary thyroid carcinoma. The pixel size of figure 
(a) is 224×224, figure (b) is 512×512, figure (c) is 1120×1120, and figure (d) is 2240×2240

Table 4  Time consumed by the diagnostic system under the acceleration components

A1: Original cutting time, A2: Multi-process cutting time, B1: Pytorch Model, B2: ONNX Model, B3: TensorRT Model. B1, B2, B3 are the system inference times under different 
models. Numbers 1–10 are randomly selected WSIs for different cases, and the first item in each category in the Reduction factor is the original comparison object

1 2 3 4 5 6 7 8 9 10 Average Reduction factor

A1 723.01s 3791.32s 1556.64s 6710.05s 1210.97s 1644.73s 2179.73s 3791.19s 2474.71s 4916.52s 2899.89s -

A2 86.52s 434.15s 194.45s 764.17s 150.5s 205.9s 278.42s 464.65s 307.37s 575.1s 346.12s 837.83%

B1 86.61s 306.98s 123.46s 1258.66s 96.52s 133.79s 194.68s 376.91s 303.8s 556.98s 343.84s -

B2 33.41s 106.67s 48.27s 388.03s 43.12s 42.77s 54.32s 127.82s 76.34s 159.96s 108.07s 318.16%

B3 30.17s 85.14s 58.03s 388.97s 31.08s 40.16s 49.89s 100.88s 66.35s 135.46s 98.61s 348.69%

A1 + B1 809.62s 4098.3s 1680.1s 7968.71s 1307.49s 1778.52s 2374.41s 4168.1s 2778.51s 5473.5s 3243.73s -

A1 + B2 756.42s 3897.99s 1604.91s 7098.08s 1254.09s 1687.5s 2234.05s 3919.01s 2551.05s 5076.48s 3007.96s 107.84%

A1 + B3 753.18s 3876.46s 1614.67s 7099.02s 1242.05s 1684.89s 2229.62s 3892.07s 2541.06s 5051.98s 2998.5s 108.18%

A2 + B1 173.13s 741.13s 317.91s 2022.83s 247.02s 339.69s 473.1s 841.56s 611.17s 1132.08s 689.96s 470.13%

A2 + B2 119.93s 540.82s 242.72s 1152.2s 193.62s 248.67s 332.74s 592.47s 383.71s 735.06s 454.19s 714.18%

A2 + B3 116.69s 519.29s 252.48s 1153.14s 181.58s 246.06s 328.31s 565.53s 373.72s 710.56s 444.73s 729.37%
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of thyroid cancer in clinical surgery [38, 49]. The only 
articles that are available only address the benignity and 
malignancy of nodules in thyroid sections, and the man-
agement of different thyroid cancers in clinical surgery is 
exceptionally variable [50, 51], as shown in Table 5.

Due to time constraints in surgery, protocols for differ-
ent thyroid cancers must be adjusted and determined as 
soon as possible. Therefore, to solve the practical clinical 
problem, we designed a five-class classifier for frozen thy-
roid lesions, through which we can cover a broader range 
of thyroid lesions and assist pathologists in obtaining 
efficient results. Since thyroid cancers are morphologi-
cally distinct, such as papillary thyroid carcinoma nuclei 
showing variations in size and shape, such as enlarge-
ment, lengthening, overlapping and crowding, our deep 
learning model centers around morphological features 
for the classification task.

Development of a database of frozen thyroid WSIs
We built a Frozen Thyroid WSIs Database with 3873 
cases, 4409 frozen thyroid slices containing WSIs for 
papillary thyroid cancer, medullary carcinoma, anaplas-
tic carcinoma, follicular tumor, nodular goiter, chronic 
lymphocytic thyroiditis, and subacute thyroiditis. All 
the data in the database were used in our diagnostic sys-
tem, of which 2894 were used for system building. The 
creation of the Frozen Thyroid WSIs Database lays the 
foundation for research into rapid intraoperative diagno-
sis, introducing deep learning into the surgical process. 
In addition, the database broadens the idea of integrat-
ing artificial intelligence into clinical care and confirms 
the potential of deep learning approaches in the freezing 
field. We will also continue to collect samples by enrich-
ing the database in terms of sample types and numbers in 
the future.

Distinction between FVPTC and NIFTP
In the classification diagnosis, distinguishing between 
NIFTP and FVPTC is crucial for the improvement of 

model accuracy. FVPTC and NIFTP have partial simi-
larity in pathological features, but still have obvious dis-
tinguishing features. Nuclei in FVPTC are usually larger, 
heteromorphic, and irregular, whereas nuclei in NIFTP 
are more regular, smaller, and relatively homogeneous in 
shape. The follicular structure in FVPTC may appear dis-
rupted, misshapen, or atypically arranged and have more 
microstructural variations. The follicular structure in 
NIFTP usually remains relatively regular and organized 
and lacks significant disruption or heterogeneity [52–55]. 
These pathological feature differences can be effectively 
learned and utilized by deep learning models to achieve 
better results in classification tasks.

Patch size selection
Our proposed system is a neural network model based 
on tiles classification so the selection of tiles has a par-
ticular influence on the model results to a large extent. 
We use tiles of 224 × 224 pixels in size, which firstly 
ensure that there is no significant loss of image infor-
mation, and secondly, our model is mainly based on 
the extraction of morphological features for classifica-
tion learning, and the selected tiles are also as detailed 
as possible to show each morphological feature to assist 
in making a reliable diagnosis. By comparing the per-
formance of the benign and malignant classification 
work done by Li et al. [38], the size of the tiles selected 
by them is 2392 × 2392, and the average accuracy of our 
results presents better results under the same model 
action, which is also reflected in the tiles-based classi-
fication model, where our tiles size selection can better 
capture the morphological features of the lesion. In addi-
tion, the chosen tiles size allows the model to diagnose 
a single thyroid slide within 5 min in most cases, satis-
fying the time requirement. Therefore, considering the 
perspective of clinical application, the size of this tile can 
fulfill both the model feature extraction needs and the 
diagnostic time limit, thus better diagnosing from the 
standpoint of simulated pathologists.

Table 5  Diagnostic modalities of different cancerous lesions of the thyroid gland

Subsets Clinical Method 

PTC If the cancer is still confined to the gland and there is no metastasis in the cervical lymph nodes, all of the affected glands together 
with the isthmus can be excised, and most of the contralateral gland can be excised. Additional cervical lymph node dissection is not neces-
sary. If there is metastasis in the cervical lymph nodes, the lymph nodes on the affected side should be removed simultaneously.

FTC In follicular carcinoma, even if the cancer is confined to one side of the gland, both glands should be excised together with the isthmus. If 
no cervical lymph node metastasis exists, cervical lymph node dissection is not required.

MTC The scope of surgery for medullary carcinoma is to remove all the glands on both sides with the same isthmus. Since medullary carcinoma 
appears early with cervical lymph node metastasis, the affected side or both cervical lymph nodes should be removed simultaneously.

ATC​ Anaplastic carcinoma overgrows and has high malignancy, usually infiltrative growth, and the possibility of surgical resection is slight. To 
prevent respiratory difficulties caused by cancer development, tracheotomy can be performed and the comprehensive treatment of surgery, 
chemotherapy and radiotherapy can be used.
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As the number of cases of different lesions is relatively 
unbalanced, this may have some impact on the general-
izability of the study’s findings and the limitations of its 
practical application. One of the goals of the study is to 
generalize to a wider population or context to strengthen 
the validity and reliability of its practical application. We 
will continue to collect samples, firstly, to contain a rela-
tively small number of instances, such as the part of ana-
plastic carcinoma; secondly, to collect some external data 
sets, and combine the two aspects with improving the 
robustness and generalization ability of the model.

Assistant to pathologists
Our work demonstrates that deep learning can have a 
fine-grained aid to the intraoperative frozen section clas-
sification diagnostic work, which helps pathologists to 
develop surgical strategies efficiently. On the one hand, 
our system can analyze digital pathology sections while 
the pathologist is studying frozen sections under a light 
microscope, visualizing the distribution of lesions and 
areas of cancer by a grad-cam heat map or tiles fusion. 
The two complement each other and work together to 
improve the accuracy of the pathologist’s judgmental 
findings. On the other hand, our system can also com-
plement the pathologist’s diagnosis with specific details, 
for example, in areas easily missed, thus complementing 
each other. However, the deep learning approach is used 
only to aid the pathologist’s diagnosis and cannot directly 
replace the pathologist’s independent work.

Conclusion
In this paper, we propose a deep learning model clas-
sification system based on tiles to build a Frozen Thy-
roid WSIs Database, which is the first work on the fine 
classification of frozen thyroid carcinoma slices and the 
first digital database for frozen slices. We finally used 
the Resnet101 model as the final development model 
by comparing multiple models. We tested our data 
through the diagnostic system and obtained a high 
accuracy result of 94.59%±3.55%. Meanwhile, we pro-
posed sensitivity tests for both systems to reflect the 
system’s accurate control of cancer diagnosis by pool-
ing multiple scales. In addition, to consider the clinical 
application, we developed a threshold-based tumor-
first heuristic strategy for dividing WSI primary and 
secondary tissues by double thresholds, which meets 
the actual clinical needs. Finally, our study can diagnose 
typical WSIs images within 10 min, confirming the effi-
cient performance of our system. Our work is consist-
ent with the application to clinical scenarios in terms of 
the breadth of classification coverage of frozen thyroid 

sections, the accuracy of model results, the efficiency 
of diagnosis and the consistency with experienced 
pathologists, and it has significant implications for clin-
ical diagnosis. In future work, we will also enrich the 
number of frozen digital databases and extend them to 
other tissue-frozen sections to build a multi-tissue sys-
tem for intraoperative rapid frozen sections.
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