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Abstract: Hydraulic fracturing using water-soluble polymers has been extensively used to enhance the
productivity of oil and gas wells. However, the production enhancement can be significantly impaired
due to polymer residue generated within the proppant pack in the created fractures. This work
describes an approach to establish a suitable fracturing fluid cleanup process by characterizing
broken polymer residues generated from the use of different gel breaker types. Commonly
used gel breakers such as inorganic oxidizers (bromate and persulfate salts), specific enzymes,
and acids were evaluated in this work. The influence of each gel breaker was examined using
High-Pressure/High-Temperature (HP/HT) rheometer, aging cells, zeta potential, Gel Permeation
Chromatography (GPC), and Environmental Scanning Electron Microscope/Energy Dispersive X-ray
Spectroscopy (ESEM/EDS). Experiments were performed on a carboxymethylhydroxypropyl guar
(CMHPG) fracturing fluid at temperatures up to 300 ◦F. The developed GPC methodology showed
that the size of the broken polymer chains was mainly dependent on the type of gel breakers
used. Moreover, laboratory tests have revealed that some gel breakers may negatively influence the
performance of polymeric clay stabilizers. Additionally, this work showed damaging precipitations
that can be generated due to the interactions of gel breakers with H2S.

Keywords: fracturing fluid; breakers; GPC; oxidizer; enzyme; polymer residue; polymeric clay stabilizer;
elemental sulfur

1. Introduction

Hydraulic fracturing treatments have been used as one of the main stimulation techniques to
enhance the productivity of low-permeability oil and gas formations [1–3]. These treatments have been
applied in relatively shallow to deep hot formations with depth more than 20,000 ft [4,5]. They have
also been successfully applied using water salinities up to seawater and even produced water [6–8].
One of the key factors that affect the success of hydraulic fracturing treatments is the selection of
fracturing fluids and their additives. Optimum fracturing fluids have rheological properties such that
it initially provides sufficient viscoelastic properties for fracture initiation and propagation, it is able to
suspend proppant into the created fracture, and later it decomposes to a low viscosity fluid at the end
of the treatment to allow for fracturing fluid cleanup and hydrocarbon production [9].

There are several fracturing fluids that have been used in fracturing treatments. These fluids
can be divided into two main groups, namely oil-based and water-based fracturing fluids. Oil-based
fracturing fluids are gasoline gelled with aluminum carboxylates, soaps, viscous refined oils, phosphate

Polymers 2020, 12, 2722; doi:10.3390/polym12112722 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-2506-2131
http://www.mdpi.com/2073-4360/12/11/2722?type=check_update&version=1
http://dx.doi.org/10.3390/polym12112722
http://www.mdpi.com/journal/polymers


Polymers 2020, 12, 2722 2 of 22

esters or gelled crude emulsions [10–16]. They were used to prevent damage to formations containing
water-sensitive clays. With the introduction of clay stabilizers such as potassium chloride, water-based
fracturing fluids provided a safer, lower HSE (health, safety, and environment) footprint, and cheaper
alternative to oil-based fracturing fluids. Recent developments in clay stabilizer technologies have
successfully replaced temporary salt-based clay stabilizers with more permanent polymeric clay
stabilizers. Polymeric clay stabilizers are short molecular weight polymers, positively charged, and are
able to cover negatively charged clays; preventing them from migrating and inducing formation
damage when low salinity water is used.

A typical water-based fracturing fluid contains a polymer thickening agent, clay stabilizer,
crosslinker, buffer system, and a gel breaker. Different polymers have been used as thickeners, such as
starches and cellulose derivatives [17–19]. However, the most common fracturing fluid polymers are
guar gum and its two main derivatives hydroxypropyl guar (HPG) and carboxymethyl hydroxypropyl
guar (CMHPG) due to their high performance, relatively low price, and wide availability [20–25].

Guar gum and its derivatives provide sufficient rheological properties for proppant transport and
leak-off control. These rheological characteristics can be reached with a lower concentration of guar
gum when crosslinkers are used. There are two main types of crosslinkers: boron-based crosslinkers
and metallic crosslinkers and they have been studied extensively by many authors throughout the
years [26–36]. These two types of crosslinkers can be used individually or in combination to complement
the weaknesses of each other [37,38].

Besides the fracturing fluid rheological properties, its chemical breakage and cleanup characteristics
are critical for maintaining a high fracture conductivity. Gel breakers are used to reduce the viscosity
of fracturing fluid either by cleaving polymer molecules into smaller fragments or by de-crosslinking
the network, which involves removal or rather chelation of the crosslinking molecules [39,40].

Gel breakers can be used in its “live” or encapsulated form. Breaker encapsulation technologies
provide some control over the breaker active ingredient release rate. Therefore, the encapsulation
provides a delayed activation especially at higher temperature conditions preventing aggressive
reactions, early screen outs and corrosion to the tubular [41–46]. Due to the many factors that can
influence the encapsulated breaker release rate, “live” breakers with no encapsulation were used
throughout this work to consistently compare the gel breakers. To break the polymer molecule, three
main gel breaker chemical families are typically used in the field: enzymes, oxidizers, and acids [47–49].

Enzymes are monomeric or oligomeric proteins that contain hundreds of amino acids. They can
fold to form 3D structures that act as catalysts targeting specific bonds in the polymer, causing it to
break into smaller fragments, thus, reducing the viscosity of the fracturing fluid. They only target
specific chemical bonds in the polymer through a lock and key mechanism, posing a lower risk of side
reactions with other additives or the tubular. They are also not consumed by breaking the polymer
and will continue to act until they are denatured. Denaturing is the process where the enzyme loses its
conformation and shape irreversibly, making it inactive and unable to function, commonly resulting in
precipitation. Enzyme denaturing can occur due to several reasons such as high temperature (>150 ◦F),
low or high pH conditions (pH < 4 or pH >10), extreme changes in salt concentrations, presence of
solvents and the presence of transitional metals such as iron or zirconium [50–52]. Some enzymes
have also been known to reduce activity between 8 < pH < 10 or in the presence of calcium chelating
agents [53]. However, there are many recent techniques that can be used to enhance the performance
of enzymes under the harsh oil and gas field environments. These techniques include the adaptation
of enzymes from organisms that live at a much higher temperature, addition of specific ions such
as calcium to help strengthen the enzyme structure, enzyme mutation treatments that can enhance
the molecular structure (addition of disulfides bridges, increasing hydrogen bonding, increasing
internal hydrophobicity), the use of organic additives, and increased pressure to help stabilize the
enzyme [54–56].

Enzymes typically used to reduce the viscosity of crosslinked polysaccharides are from the
glycoside hydrolase family. They catalyze the hydrolysis reaction of the β-1,4 glycosidic bond between the
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mannose molecules in the polysaccharide backbone to produce simple sugars such as monosaccharides
or disaccharides that are soluble in water. Some examples of enzymes used in the oilfield include
Amylase, Cellulase, Hemicellulase, Pectinase, and Mannanase [57].

Oxidizers, on the other hand, work by producing active radicals that can randomly attack
hydrogens placed in the polymer structure, as seen with CMHPG in Figure 1. The attack can result in
either breaking the mannose backbone into soluble sugars or breaking apart the galactose side chains,
producing insoluble residues [48,58].
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Figure 1. Hydrogen atoms in red are sites on the polymer that can be attacked by oxidizer radical molecules [48].

These radicals are generated at specific temperature conditions. Persulfate salts are typical
low-temperature gel breakers (120 ◦F < T < 200 ◦F); due to high reactivity at higher temperatures,
whereas bromate salts are used for higher temperature applications (T > 200 ◦F) [49]. Unlike enzymes,
the generated radicals are hard to control, limited in quantity, and will get consumed by the different
additives in the fracturing fluid. They are also able to react with the tubular, causing corrosion.

Acid gel breakers work in a similar manner to oxidizers; they can break the polymer molecule
through hydrolysis reactions in acidic conditions resulting in a variety of insoluble materials. Acid gel
breakers can also be used to de-crosslink borate-based fracturing fluids by reducing the amount of
monoborate ions (MBI) in solution due to the reduction in pH [59].

Reinicke et al. provided a review of the potential formation and fracture damage processes that
result from chemical, physical, and thermal interactions between fracturing fluids and formation
components, including fluids and rock constituents [60]. Optimal gel breakers must generate minimum
unbroken gel residues to avoid causing any damage to the propped fracture [61].

This paper will provide (1) an overview of typical gel breaker analysis, (2) detailed polymer
breakage analysis using Gel Permeation Chromatography (GPC), (3) polymeric clay stabilizer
performance analysis in the presence of gel breakers, and (4) gel breaker-induced precipitation
in the presence of H2S.
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2. Materials and Methods

2.1. Materials

The fluid used in this work is a 45 lb/1000 gal CMHPG based fracturing fluid. The additives were
mixed in the laboratory using typical concentrations used in the oilfield. The fracturing fluid consisted
of CMHPG polymer, a high-temperature stabilizer, and a dual crosslinker (borate/zirconium), which
were all provided by a service company and used as received, Table 1. Persulfate, bromate, enzyme,
and acid “live” gel breakers were supplied by several service companies and were used as received for
zeta potential, rheological measurements, GPC, and compatibility experiments. Two polymer clay
stabilizers and KCl were supplied by several service companies and used as received for the GPC and
zeta potential tests. The compositions of the tested additives are shown in Table 2.

Table 1. Fracturing fluid formula.

Chemical Concentration

Polymer
(CMHPG) 45 ppt

High-temperature stabilizer
(Sodium Thiosulfate) 9 gpt

Zr-crosslinker
(Zirconium Triethanolamine) 0.8 gpt

B-crosslinker
(Potassium Metaborate) 0.1 gpt

Table 2. Used additives composition.

Additive Main Component

Acid breaker Chlorous acid

Bromate gel breaker Sodium bromate

Persulfate gel breaker Diammonium peroxidisulfate

Enzyme gel breaker Mixture of 1,6-α-D-galactosidase
and endo-1,4-β-mannosidase

Polymeric clay stabilizer 1 Hydroxyalkyl alkylammonium chloride

Polymeric clay stabilizer 2 Polyquaternary amine

Salt clay stabilizer KCl

2.2. Fluid Preparation

To prepare the 45 lb/1000 gal crosslinked fracturing fluid, 4.32 g of CMHPG was added to 800 mL
of tap water (<500 ppm). The fluid was mixed at 400–800 RPM using a blender to create a visible
vortex for 20 min. Following that, 7.2 mL of the high-temperature stabilizer was added and mixed
at 400–800 RPM for 5 min. Liquid gel breakers were added at this point as required (Acid: 2 gpt
or Enzyme: 5 gpt), while solid gel breakers were added directly to the final crosslinked sample
in the viscometer (Persulfate: 8 ppt or Bromate: 8 ppt). The pH was adjusted to 10 using NaOH.
The crosslinkers were then included by adding 0.64 mL of zirconium crosslinker followed by 0.08 mL
of borate crosslinker while mixing at 400–800 RPM. Samples of 52 mL were used for the rheometer
tests, and samples of 250 mL were used for the High-Pressure/High-Temperature (HP/HT) aging cell
tests that were further used for GPC analysis.

Zeta potential, H2S compatibility tests, and specific additive compatibility tests did not include
CMHPG or the dual crosslinkers; they were strictly between gel breakers and clay stabilizers, or gel
breakers and H2S.
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2.3. Experimental Equipment

2.3.1. HP/HT Rheometer

The HP/HT rheometer was used to measure the apparent viscosity of the gelling samples under
different shear rates and temperature ranges. The apparent viscosity is defined as shear stress applied
to a fluid divided by the shear rate. The apparent viscosity value for non-newtonian fluids vary
depending on the shear rate used. This viscometer utilized a standard R1/B5 bob and rotor combination,
which requires a sample volume of 52 cm3. The viscometer uses a sliding carbon block for dry heating,
and the temperature sensor is mounted on the stator/bob to control sample temperature. A pressure of
1000 psi was applied to prevent the boiling of the samples at high temperatures. Nitrogen gas was
used because it is inert towards the fluid.

Viscosity measurements were performed under different shear rates to simulate the flow of the
fracturing fluid through production tubular, perforations, and inside the created fracture following the
standard ISO13503-1 testing schedule for a duration of 2.5 h [62]. The shear rate range was 100 s−1 with
varying low shear ramps in the schedule, while the temperature was set at 300 ◦F. Around 25 mL of
fracturing fluid was placed into the rheometer cup, followed by adding solid gel breakers (if required)
in the middle, and the remaining 27 mL of the fracturing fluid was then added. This method was
used to ensure complete contact between the gel breakers and the fracturing fluid since the quantity of
breakers used in each test is extremely low.

2.3.2. HP/HT Aging Cell

The HP/HT aging cells were mainly used to prepare the fracturing fluid samples for gel permeation
chromatography analysis. The cells were also used to age the fluids for the zeta potential tests. These
experiments were carried out in 250 mL glass bottles that were inserted to the HP/HT cells, pressurized
by nitrogen to 400 psi and heated to 200–300 ◦F for 0.5–48 h.

2.3.3. Gel Permeation Chromatography

A simplified representation of a GPC column and its corresponding results is shown in Figure 2.
An analysis is typically done using known molecular weight standards to determine the peak molecular
weight of polymer fragments being measured. Jackson et al. showed that peak molecular weight
(Mp) is a representation of the most abundant molecular weight in the sample [63]. A curve fit can
be done with the calibration points to extend the range beyond the standards being used. However,
these values would not be as accurate as the values within the known standard values. For that reason,
only values report within the sizes of the standards used are reported in this work.
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The developed aqueous gel permeation chromatography (GPC) method was applied to determine
the Mp and the distribution profile of crosslinked 45 lb/1000 gal polymer samples treated with gel
breakers. About 150 mg of each sample was dissolved in 5 mL of 0.05 M NaNO3. The diluted samples
were shaken with a mixer at 300 rpm for 30 min. Then, the samples were directly injected into the
GPC system. The standard solutions for calibration of the GPC column were prepared by dissolving
2 mg of each pullulan standard in 1 mL of 0.05 M NaNO3 in separate vials. The standard solutions
were dissolved for 1 h to achieve complete dissolution of the polymer with occasional shaking. Eight
pullulan calibration standards with the following peak molecular weights (Mp) values: 21,100; 47,100;
107,000; 194,000; 344,000; 708,000; 1,220,000 and 2,350,000 g/mol were used for the calibration of the
column. All the GPC separations were carried out on a PL aquagel-OH MIXED-H (7.5 × 300 mm,
8 µm) column. The mobile phase was 0.05 M NaNO3. The flowrate throughout the separation was
maintained at 0.8 mL/min.

A separate aqueous GPC method was developed to determine the peak molecular weight (Mp)
and the distribution profile of heated and gel breaker-treated clay stabilizer polymer samples. All the
treated samples were filtered through a 0.45 µm hydrophilic syringe filter before the analysis with
GPC. Polyethylene glycol standards with a peak molecular weight (Mp) 106; 194; 282; 420; 610; 1010;
1480; 4040; 7830; 16,100; 21,300, 34,890, 47,100; 107,000; 194,000 and 344,000 g/mol were used for the
calibration of the column. All samples were separated on a PSS NOVEMA Max (300 × 8 mm, 10 µ)
100 Å columns. The mobile phase was 0.05% formic acid, with a maintained flowrate of 0.8 mL/min.

All GPC separations for both sets of samples were carried out on an Agilent 1260 series
high-performance liquid chromatography with a binary pump, a degasser, an auto-sampler, and a
refractive index detector. Instrument control and GPC data analysis were performed through the
OpenLAB and Cirrus software, respectively.

2.3.4. Zeta Potential

The zeta potential was measured by using micro electrophoresis. Changes in zeta potential were
measured for illite crushed samples in solutions containing different clay stabilizers. Each sample was
prepared by weighing out 1 g of illite particles suspended in a total of 250 mL of DI water (resistivity of
18 Ω.cm). Each of these suspensions were ultrasonicated for 30 min in a sonic bath. Following that,
clay stabilizers and gel breakers were added to the samples (Persulfate: 8 ppt; Bromate: 8 ppt; Acid:
2 gpt; Enzyme: 5 gpt), shaken by hand, and aged for 24 h at 200–300 ◦F using aging cells as required.
After aging, the samples were shaken by hand and stood at room temperature (77 ◦F) for another 24 h
to reach equilibrium prior to analysis. The supernatant was then used for analysis.

The used electrode assembly was conditioned in 1 M NaCl using 350 cycles. This conditioning
procedure produces a uniform black coating on the electrodes, which is vital for zeta potential analysis
of suspensions in high ionic strength solutions.

The particle suspension was added as required to the cuvette at a 45◦ angle to avoid trapping air
bubbles between the electrodes. Visual inspection for bubbles on the surface of the cuvette or between
the electrodes is required to ensure proper measurements. Air bubbles can often be dislodged by gently
tapping on a hard surface. The cuvette was then placed in the instrument and allowed to equilibrate to
the measurement temperature of 77 ◦F for a period of 5 min.

2.3.5. Sour Environment Compatibility Tests

Several tests were conducted to investigate the interaction of gel breakers with H2S at 77 ◦F.
The H2S compatibility tests were conducted using a closed system loop. H2S was generated by reacting
1 g of iron sulfide (FeS) with 10 mL of 10 wt% HCl in an Erlenmeyer flask, the generated H2S gas was
then diverted to a second flask containing a solution of 200 mL of DI water (resistivity of 18 Ω.cm) and
the gel breaker at the desired concentration (Persulfate: 8 ppt; Bromate: 8 ppt; Acid: 2 gpt; Enzyme:
5 gpt). After exposing the solution to H2S gas, the H2S was then diverted to a third flask containing
200 mL of 5 wt.% of cadmium sulfate (CdSO4), where the unreacted H2S was scavenged completely
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into solid cadmium sulfide (CdS). The setup is shown in Figure 3. The H2S experiments lasted 4 h,
and the middle flask solution was then filtered through 0.2 µm filter paper and washed with DI water
to determine if there was any precipitation. The same experimental procedure was conducted several
times to assess the interaction of H2S with typical fracturing fluid gel breakers as a function of the gel
breaker type.
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2.3.6. Environmental Scanning Electron Microscope

The environmental scanning electron microscope (ESEM) with integrated ultra-thin window energy
dispersive X-ray detector was utilized to perform comprehensive compositional characterizations of
precipitations resulting from gel breaker interactions in sour environments. The samples were first
prepared by filtering the precipitation out of solution using a 0.2 µm filter paper. After that, the samples
were dried at 140 ◦F in the oven for 24 h. The Environmental Scanning Electron Microscope/Energy
Dispersive X-ray Spectroscopy (ESEM/EDS) data are required to identify the minerals in the sample.

3. Results and Discussion

3.1. Fracturing Fluid Viscosity Tests

The fracturing fluid and gel breaker viscosity were first measured to determine the general
influence of different gel breakers at 300 ◦F. The viscosity of the fracturing fluid without any gel
breaker was averaging 350 cP after 2 h at 300 ◦F and 100 s−1 shear rate. The fracturing fluid viscosity
after 2.5 h at the same temperature with bromate, acid, and enzyme gel breakers were 20, 50, 130 cP,
respectively, Figure 4. This test shows that all gel breakers are effective in breaking this fracturing
fluid. Although the fracturing fluids containing bromate or acid were low in final broken viscosity
values, when the fluids were taken out from the viscometer, the remaining effluents contained portions
of the crosslinked fluid that were left unbroken. This has also been observed in several previous
gel breaker evaluation tests that exhibited low viscosity yet still contained a significant amount of
unbroken fracturing fluid residue, Figure 5. Further tests were conducted using GPC to understand
the influence of each breaker type.
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(oxidizers and acids), yet they still exhibited low final viscosity (<50 cp @ 100 s−1).

3.2. Fracturing Fluid Polymer-Gel Breaker GPC Analysis

Several samples of the high temperature fracturing fluid were aged using HP/HT cell for 0.5,
2, 4, and 24 h at 200 ◦F with persulfate and at 300 ◦F with bromate, acid, and enzymes. Visually,
in the absence of gel breakers, the crosslinked samples remained crosslinked and showed no obvious
reduction in the viscosity upon tilting after 24 h. The samples that contained gel breakers showed a
significant visual reduction in viscosity at all tested time periods.

After the crosslinker fracturing fluids were broken by the gel breakers, the samples were visually
inspected for polymer residue. The fracturing fluid samples in the presence of bromate, persulfate or
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acid gel breaker that were tested for 24 h were not homogenous. Clumps of polymer were separated
from the less viscous water phase. The degree of residue and separation was highest in the samples
containing acid gel breakers and the least in the samples containing enzyme gel breaker, Figure 6.Polymers 2020, 12, x FOR PEER REVIEW 9 of 23 
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at 200–300 ◦F.

After completing the visual inspection, the samples were tested thoroughly using GPC to analyze
and compare the effect of persulfate, bromate, acid, and enzyme gel breakers on the fracturing fluid
polymer. The goal of this test was to compare the approximate broken polymer size in all gel breaker
solutions at different time intervals. The peak molecular weight size in different gel breaker treated
samples at 4 h were from highest to lowest: enzyme, acid, persulfate, bromate, Figures 7–9. The samples
that were aged for 24 h showed that the peak molecular weight comparison from highest to lowest
was the following: acid, bromate, persulfate, enzyme, Figure 10.
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It was noted that the bromate gel breaker reactions stopped after around 4 h, as the molecular
weight of the broken crosslinked polymer did not change noticeably. The persulfate and acid breakers
continued performing after 4 h but did not produce the smallest molecular weights. However,
the enzyme was fully functional after 24 h and contributed to the lowest final peak molecular weight
compared to all other gel breakers, Figure 11 and Table 3.
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Table 3. Peak molecular weight values of fracturing fluid polymer with gel breaker samples.

Sample, Concentration Mp 0.5 Hours
(g/mol)

Mp 2 Hours
(g/mol)

Mp 4 Hours
(g/mol)

Mp 24 Hours
(g/mol)

Persulfate gel breaker
(8 ppt) @200 ◦F 1,518,323 501,571 516,813 244,990

Bromate gel breaker
(8 ppt) @300 ◦F >2,350,000 >2,350,000 386,069 383,142

Acid gel breaker
(2 gpt) @300 ◦F >2,350,000 >2,350,000 1,142,500 458,188

Enzyme gel breaker
(5 gpt) @300 ◦F 234,276 248,669 1,651,134 12,428

Hydrated Polymer
@77 ◦F >2,350,000

It was also noted that for the enzyme-treated sample, the peak molecular weight has shifted to a
larger molecular range at 4 h of the gel breaker treatment. This could be due to the method of enzyme
attack. The enzyme attaches to a polymer strand while cleaving the glycosylic bonds and does not
leave until the polymer is completely broken [48]. Therefore, in this case, the enzymes could have
broken many long-chain polymers initially, which resulted in low peak molecular weight values at
short aging periods. After 4 h, the initially attacked polymers would have been broken into a variety of
sizes, leaving the majority of polymer remaining to be long-chained and relatively unbroken polymers.
By the end of the 24 h, the enzyme would have the time to break all the chains relatively equally
into much smaller parts, which resulted in a lower peak molecular weight compared to the other
gel breakers.
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3.3. Zeta Potential

Zeta potential experiments were conducted to assess the fines migration tendency of illite clays in
different solutions. Several experiments were initially conducted with and without the presence of clay
stabilizers to determine their effect on illite clay particles zeta potential value in distilled water. Similar
experiments were conducted in the presence of gel breakers at 77–300 ◦F. These experiments were
mainly performed to determine the effect of different gel breakers on the performance of clay stabilizers.

The potential for fines migration is mainly dependent on the changes in the clay edge and surface
charges. Measured zeta potential of any clay reflects the combined value for the surface and edge
charge potentials [64]. When zeta potential becomes highly negative or positive (ζ-potential < −20 or
ζ-potential > 20), it produces a significant repulsive force with similarly charged particles in solution.
Sandstone formation rocks are negatively charged and having a highly negative zeta potential value
causes colloidal induced detachment of fines [65,66]. In other words, this highly negative value of
zeta potential will increase the repulsive colloidal forces, which triggers the fines migration cases.
Figures 12–14 summarize the zeta potential results for solutions of illite in different clay stabilizer and
gel breaker concentrations at temperatures between 77–300 ◦F.

The zeta potential value in the samples containing illite fine particles suspended in distilled water
at room temperature (77 ◦F) was −27.79 mV. This indicates the instability of the clays and the possibility
of fines migration damage in the formation. The zeta potential values in samples containing illite fine
particles suspended in distilled water with polymeric clay stabilizer 1, polymeric clay stabilizer 2 and
6 wt.% KCl at room temperature (77 ◦F) were −8.51, 47.72, −13.17 mV, respectively. The values have
increased compared to the base case where no clay stabilizer was used, indicating higher clay stability
in the presence of either of the clay stabilizers. Comparatively, the results at 300 ◦F with polymeric clay
stabilizer 1, polymeric clay stabilizer 2, and 6 wt.% KCl were −15.5, −15, −16.68 mV. This shows that
temperature does negatively influence both polymeric clay stabilizer 1 and 2.
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Clay stabilizer 1 and 2 are polymeric clay stabilizers containing positive charges that allow them
to attach and cover the different clays protecting them from exposure to fluids that can cause them to
swell or migrate. Clay stabilizer 2 and illite solution zeta potential value was highly positive, providing
attraction between these positively coated clays and the uncoated negatively charged clays, indicating
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that it is less likely to have chemically induced fines migrations. The difference between clay stabilizer
1 and 2 is the composition and the molecular weight. Clay stabilizer 2 had a significantly higher
molecular weight compared to clay stabilizer 1, producing more charges and producing the difference
in zeta potential results.

The zeta potential values of several samples were also measured after the addition of persulfate,
bromate, acid, and enzyme gel breakers to solution of clay stabilizers and illite. The goal of the test
was to check if there are any interactions between the gel breakers and polymeric clay stabilizers to
determine if the polymeric clay stabilizers are still able to prevent clay problems during the treatment.

The zeta potential values of the samples containing illite fine particles suspended in a solution of
distilled water and polymeric clay stabilizer 1 with persulfate, bromate, acid, or enzyme gel breakers
after aging at 200–300 ◦F were 2.95, −5.06, −8.6 and −15.12 mV, respectively. These results show that
the polymeric clay stabilizer 1 zeta potential values did not change significantly after exposure to the
enzyme compared to the base case at 300 ◦F, which had a value of −15.15 mV. However, the exposure
to persulfate, bromate and acid breakers did cause a change compared to the base case indicating
interactions with polymeric clay stabilizer 1.

The zeta potential values of the samples containing illite fine particles suspended in a solution of
distilled water and polymeric clay stabilizer 2 with persulfate, bromate, acid, or enzyme gel breakers
after aging at 200–300 ◦F were 20, 13.91, 4.36, and −13.61 mV, respectively. A similar observation can be
seen here as well, the enzyme breaker did not produce a significant change in zeta potential compared
to the base case at 300 ◦F, which had a value of −15 mV. Whereas, the persulfate, bromate and acid
breakers produced significant changes, indicating interactions with polymer clay stabilizer 2.

The zeta potential values of the samples containing illite fine particles suspended in a solution of
distilled water and 6 wt.% KCl with persulfate, bromate, acid, and enzyme gel breakers after aging at
200–300 ◦F were −13.67, −12.57, −15.89, and −13.12 mV, respectively. The results show that the KCl
clay stabilizer zeta potential value was relatively unaffected by the addition of the different gel breaker
types and remained within the range of the base case at 300 ◦F, which was −16.68 mV.

This clearly shows us that the polymeric clay stabilizers can be influenced by temperature and the
presence of persulfate, bromate, or acid gel breakers. This can reduce the performance and prevent
polymeric clay stabilizers from stabilizing clays. The use of the enzyme gel breaker did not change the
solutions zeta potential values significantly when comparing the base cases at 300 ◦F for both polymeric
clay stabilizers. This was due to the enzymes targeting specific bonds in guar and its derivatives and
not interfering with other polymeric additives used.

3.4. Polymeric Clay Stabilizer-Gel Breaker GPC Analysis

Further analysis was conducted using GPC to determine if the gel breakers had broken any of the
polymeric clay stabilizers. Polymeric clay stabilizer 1 and 2 samples were aged using HP/HT aging
cells for 24 h. The GPC results for the polymeric clay stabilizer 1 with persulfate at 200 ◦F, as well as
bromate, acid, enzyme gel breakers, and without any gel breaker at 300 ◦F, are shown in Figure 15.
The peak molecular weights of polymeric clay stabilizer 1 are shown in Table 4.

The results show that polymeric clay stabilizer 1 is not significantly affected by temperature due
to the small decrease in peak molecular weight. It also shows that the acid had the most effect in
reducing the polymeric clay stabilizer size by 30%.

Polymeric clay stabilizer 2 underwent the same gel breaker test as polymeric clay stabilizer 1,
and the results for the GPC tests can be found in Figure 16. The peak molecular weight of polymeric
clay stabilizer 2 after each test can be found in Table 5.
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bromate: 8 ppt, acid: 2 gpt, enzyme: 5 gpt) after 24 h at 200–300 ◦F.

Table 5. Peak molecular weight values of polymeric clay stabilizer 2 with gel breaker samples after 24 h.

Samples Peak Molecular Weight (Mp) (g/mol)

PSC2 @ 77 ◦F 107,594
PSC2 + Persulfate gel breaker (8 ppt) @ 200 ◦F 46,810
PSC2 + Bromate gel breaker (8 ppt) @ 300 ◦F 17,011

PSC2 + Acid gel breaker (2 gpt) @ 300 ◦F 16,101
PSC2 + Enzyme gel breaker (5 gpt) @ 300 ◦F 11,691

PSC2 + Heat @300 ◦F 11,519
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The results show that temperature had the most effect on the reduction in the molecular weight of
polymeric clay stabilizer 2, reducing it by 90%. This is significantly higher than the reduction in peak
molecular weight in polymeric clay stabilizer 1. The presence of gel breakers also affects the extent of
the reduction of the molecular size. However, in this case, it appears that polymeric clay stabilizer 2 is
much more susceptible to temperature effects since at 200 ◦F with persulfate, the molecular weight
decreased the least at 56%.

These changes in molecular weight clearly caused significant changes in zeta potential values and
the ability to stabilize clays. These tests show the importance of determining the effect of gel breakers
and temperature on the performance of polymeric clay stabilizers prior to any field treatment.

3.5. H2S-Gel Breaker Interactions

Sour environments are common in many formations throughout the world. In addition,
some additives such as sodium thiosulfate (commonly used as a high-temperature stabilizer) can
generate H2S at high-temperature conditions [67]. For that reason, checking additive compatibility
with H2S becomes important. Different types of gel breakers were analyzed to see if they had any
negative interactions in the presence of H2S. Enzyme and acid gel breakers showed no precipitation
when exposed to H2S gas, Figures 17 and 18. On the other hand, bromate and persulfate gel breakers
showed precipitation when exposed to H2S gas, Figures 19 and 20.
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H2S can form a variety of species such as sulfate, sulfite, thiosulfate, and elemental sulfur in
the presence of oxidants [68–71]. The precipitation previously seen in flasks 2 were later analyzed
using the ESEM/EDS. The results of the ESEM/EDS showed elemental sulfur as the main precipitation,
Figure 21. This is due to the oxidizer’s reaction with H2S that produces insoluble elemental sulfur,
as seen in Equation (1). The amount of sulfur was higher when persulfate gel breakers were used
compared to bromate gel breakers.

8H2S + 4O2→ S8 + 8H2O (1)
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oxidizer gel breaker interactions in a sour environment for 4 h at 77 ◦F.
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4. Conclusions

This work utilized gel permeation chromatography to measure the size of broken polymer
fragments to assess the effectiveness of each gel breaker type used in fracturing fluids. The influence
of gel breakers on polymeric clay stabilizers and the interactions between gel breaker and H2S were
also evaluated.

From the lab tests, we can conclude the following:

1. The tested gel breakers were all effective in lowering the viscosity of the 45 lb/1000 gal crosslinked
fracturing fluid at 300 ◦F.

2. The amount of visual polymer residue generated from the use of oxidizer and acid gel breakers is
significant and may cause damage to the fracture conductivity.

3. The bromate gel breaker’s intended reactions stopped after 4 h at 300 ◦F as the broken fracturing
fluid polymer size remained constant.

4. Enzyme gel breakers took a longer duration to operate fully; however, they generated the smallest
broken polymer fragments and the least residue in comparison to oxidizers and acid gel breakers
after 24 h at 300 ◦F.

5. Heat (300 ◦F) and gel breakers (acid, bromate) contributed to the break of polymeric clays
stabilizers used in this work, the reduction in the size of polymeric clay stabilizers has negatively
influenced its performance, which was evidenced by zeta potential measurements.

6. Elemental sulfur precipitation was observed when oxidizers were exposed to H2S.

5. Recommendations

The authors highly recommend utilizing enzymes to break gelling polymers in fracturing fluids.
Enzymes will continue to operate, generating the smallest polymer fragments which correlate directly
to reducing damage in the proppant pack, fracture face, and the formation. In addition, enzymes
are bond-specific and will not interact with other polymeric additives. The authors also recommend
utilizing GPC for polymer-gel breaker analysis. The data obtained from GPC will help in the
optimization of time, temperature, gel breaker concentration, and polymer loading for the evaluation
of each gel breaker used in field treatments.
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Nomenclature

µm Micrometer.
Å Ampere.
CdSO4 Cadmium sulfate.
CMHPG Carboxymethyl hydroxypropyl guar.
DI Distilled water.
EDS Energy dispersive x-ray spectroscopy.
ESEM Environmentally scanning electron microscope.
FeS Iron sulfide.
GPC Gel permeation chromatography.
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gpt Gallons per thousand gallons.
H2S Hydrogen sulfide.
HP/HT High-pressure/high-temperature.
HPG Hydroxypropyl guar.
MBI Monoborate ions.
mm Millimeter.
Mp Peak molecular weight.
PDI Polydispersity index.
ppm Parts per million.
ppt Pounds per thousand gallons.
PSC1 Polymeric clay stabilizer 1.
PSC2 Polymeric clay stabilizer 2.
Room temperature 77 ◦F.
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