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ABSTRACT: We searched for new superhard B−N−O compounds
with an iterative machine learning (ML) procedure, where ML models
are trained using sample crystal structures from an evolutionary
algorithm. We first used cohesive energy to evaluate the thermody-
namic stability of varying BxNyOz compositions and then gradually
focused on compositional regions with high cohesive energy and high
hardness. The results converged quickly after a few iterations. Our
resulting ML models show that Bx+2NxO3 compounds with x ≥ 3 (like
B5N3O3, B6N4O3, etc.) are potentially superhard and thermodynami-
cally favorable. Our meta-GGA density functional theory calculations
indicate that these materials are also wide bandgap (≥4.4 eV) insulators, with the valence band maximum related to the p-orbitals of
nitrogen atoms near vacant sites. This study demonstrates that an iterative method combining ML and ab initio simulations provides
a powerful tool for discovering novel materials.

1. INTRODUCTION

With the continuous increase in the global demand for
superhard materials, searching for new compounds with
outstanding hardness and stability is becoming an important
research topic.1 Materials of superhardness (with hardness
value H ≥ 40 GPa) can be classified into two major groups.
The first includes transition metal (TM) ceramics, especially
the borides and carbides.2−4 The second concerns light
elements B, C, N, and O,5−8 which form short and strong
covalent bonds. Various superhard materials can be produced
by mixing two or three of these light elements. Materials in the
second group have the advantages of being abundant and low
cost, but they may require special synthesis conditions.
Solozhenko et al. synthesized diamond-like BC5 under high
pressure and high temperature (HPHT) and reported a
corresponding hardness H = 71 GPa.9 They also found that
BC5 has a relatively high fracture toughness and exceptional
thermal stability up to 1900 K. Baker et al. used microwave
plasma chemical vapor deposition to synthesize boron-
incorporated diamond at low temperature and low pressure.
They found a hardness as high as 62 GPa in their cubic phase
sample with 7.7 at% boron content.10

Superhard B−C−N compounds also have been studied in
the literature. Cubic BC2N was reported with a superhardness
between 62 and 76 GPa,11−13 which is harder than cubic boron
nitride (c-BN, H ∼ 50−70 GPa).14,15 Experimentally, BC2N
remains stable up to 1800 K, which demonstrates its superior
thermal stability compared to diamond (H ∼ 100 GPa). Other
ternary compounds such as BCN and BC9N in the cubic phase
also have been synthesized under extreme conditions.16

Recently, Chen et al. have used machine learning and
evolutionary searches to discover superhard B−C−N struc-
tures. Their newly predicted BC10N has an ultrahigh hardness
of ∼87 GPa with a relatively low formation energy.17

B−N−O compounds also have attracted considerable
attention due to their relevance in several research areas,
such as chemical adsorption,18 fluorescent dots,19 water
splitting,20 wide bandgap insulators,21 and electrochemical
applications.22 Although B−N−O compounds have been
synthesized in various forms, including amorphous, porous,
layered, thin-film, and nanoparticle, their mechanical properties
remain largely unexplored. More recently, Bhat et al. have used
hexagonal BN and B2O3 as initial materials to synthesize
B6N4O3 under HPHT conditions.23 They also conducted
computational studies and indicated that the most stable
structures contain ordered vacancies in a zinc-blende structure.
Such structures have a high bulk modulus of 300 GPa, which
implies that B−N−O compounds may be superhard as well.23

Motivated by the study of Bhat et al., here we employ first-
principles calculation and machine learning (ML) simulation
to search for new superhard B−N−O compounds. Data-driven
approaches have proven to be powerful in materials
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discovery,32−34 and several ML models have been applied to
find superhard compounds.17,35−38 The first important step in
building ML models is sample data acquisition. However,
although there are several online computational materials
databases,39−43 only limited information exists on B−N−O.
The lack of relevant training data may lead to inaccurate
prediction of universal ML models, when they are applied to
the not-well-explored B−N−O compounds. For example, our
previous universal ML model17 would predict a bulk modulus
of ∼180 GPa for B6N4O3, which largely deviates from the
reported value of ∼300 GPa from first-principles calculation.23

Therefore, we need a different ML scheme for predicting B−
N−O systems.
In this paper, we develop an iterative procedure involving

crystal structure prediction (CSP), density functional theory
(DFT) calculation, and machine learning (ML) simulation, in
order to discover new ternary superhard B−N−O materials.
The details of CSP, DFT, and ML simulations are discussed in
the Computational Methods section. Below, we will first
address our iterative calculation process, which involves four
major steps as summarized in Figure 1: (I) Generating crystal
structures, (II) computing physical properties from first-
principles, (III) building ML models, and (IV) predicting
properties using the ML models.

In step (I), we use an evolutionary algorithm for CSP to
create new B−N−O structures with varying chemical
compositions. In step (II), we use DFT to compute the
cohesive energy, volumetric density, and elastic tensor, for
crystal structures found in the previous step. The elastic tensor
enables the evaluation of a structure’s mechanical properties
and elastic stability. The physical properties of stable structures
from step (II) provide the sample data for training ML models.
In step (III), we build separate ML models for the cohesive
energy, density, and hardness. The cohesive energy helps to
determine a structure’s thermodynamic stability. Finally, in
step (IV), we construct triangular plots to map out the
properties listed above for arbitrary B−N−O composition,
using ML models from the previous step. Based on the ML

predictions, we then select promising chemical compositions
with high thermodynamic stability and high hardness as
candidates for the next iteration of calculation. We find that
our ML models can be gradually improved with this procedure.
We stop at the fourth iteration, as the results are quickly
converged. As shown below, using this iterative procedure to
combine CSP/DFT calculations and ML simulation, we are
able to discover several new stable and superhard B−N−O
structures.

2. COMPUTATIONAL METHODS
Crystal Structure Prediction (CSP). We use CSP to

generate B−N−O sample structures, which later serve as the
input data for training machine learning (ML) models. The
purpose of CSP is to find stable and/or metastable structures
of a compound given only its chemical formula.44−46 Here, we
use the highly powerful and efficient evolutionary algorithm
implemented in the USPEX package.24−26 During different
generations of evolutionary optimization, new structures are
created by heredity (50%), mutation (30%), and random
(20%) operators. The enthalpy computed by density func-
tional theory (DFT) is used as the fitness.
We consider varying compositions of ternary B−N−O

compounds, with a unit-cell size between 9 and 19 atoms. We
ensure that all of the selected atomic compositions contain an
even number of total electrons. This typically leads to a more
stable, insulating phase. Since our goal is to discover superhard
compounds, we apply an external pressure P = 15 GPa during
the structure searches. Adding a small but finite pressure will
help avoid low-hardness layered graphite-like structures. For
each chemical composition, we perform two separate USPEX
calculations and search over 1200 structures. The optimized
structures from both USPEX searches are further fully relaxed
in DFT calculations without any external pressure. All DFT
results and figures shown below are from calculations
performed without any external pressure. In the end, for a
given chemical formula, we have two sample structures for
training ML models.
We note that USPEX also provides a variable-composition

mode, which can sweep the whole B−N−O compositional
space (constrained by the number of atoms in the unit cell) to
find the most promising stable compositions, which could then
be explored in more detail by separate fixed-composition
calculations. It is expected that this method will lead to similar
results as our iterative procedure.

Density Functional Theory (DFT) Calculation. We
perform DFT calculations using the VASP software,27,28

which adopts a pseudopotential method and plane-wave
basis sets. We use the projector augmented wave (PAW)47,48

method and generalized gradient approximation (GGA)
functional based on the Perdew−Burke−Ernzerhof (PBE)
formalism.49 The kinetic energy cutoff for wave function
expansion is 520 eV, and the k-points are sampled by a Γ-
centered Monkhorst−Pack mesh with a resolution ∼0.02 ×
2π/Å. The convergence criteria of electronic self-consistency
and structural relaxation are set to 10−6 eV/unit cell and 10−3

eV/Å, respectively.
For fully relaxed crystal structures, we further utilize the

strain−stress method50 implemented in VASP to compute the
elastic constants Cij, which in turn help to evaluate the elastic
stability and mechanical properties. In particular, the
eigenvalues of the elastic tensor (for elastic stability), as well
as the Voigt-Reuss-Hill (VRH) averaged51−53 bulk modulus K

Figure 1. Schematic iterative process of machine learning and
structure prediction for superhard B−N−O compounds. I. Generating
B−N−O crystal structures from evolutionary algorithm implemented
in USPEX.24−26 II. Computing physical properties from first-
principles density functional theory software VASP.27,28 The target
properties include cohesive energy, density, and mechanical proper-
ties. III. Building machine learning (ML) models with SCIKIT-
LEARN.29 The ML features from Meredig et al.30 are generated by
MATMINER.31 IV. Predicting B−N−O physical properties with
random forests ML models. Promising compositions with high
stability (high cohesive energy) and high hardness are selected for the
next round of iterative calculation.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c01818
ACS Omega 2022, 7, 21035−21042

21036

https://pubs.acs.org/doi/10.1021/acsomega.2c01818?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01818?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01818?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01818?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c01818?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and shear modulus G, are computed via the MechElastic
python library.54,55 The Vickers hardness H is also evaluated
by using Chen’s empirical hardness model:56

= −H k G2( ) 32 0.585 (1)

where k = K/G is the Pugh’s ratio. Other empirical hardness
models57,58 based on elastic moduli in general produce similar
hardness predictions. Finally, phonon density of states (for
dynamical stability) are computed using the PHONOPY
package,59 via the density functional perturbation theory
scheme implemented in VASP. Convergence tests of all
calculations are examined carefully.
Machine Learning (ML) Prediction. Since the ML

predictive capability depends crucially on the training data,
we first exclude elastically unstable sample structures, by
examining whether the elastic tensor is positive-definite.60

After preparing data from CSP and DFT calculations, we build
three ML models, respectively, for predicting cohesive energy,
density, and hardness.
We first use the python library PYMATGEN61 to create

structure objects using VASP’s POSCARs as inputs. The
structure objects are in turn used to create the ML features or
descriptors using the python library MATMINER.31 For
cohesive energy and density, we adopt the compositional
features of Meredig et al.30 A total number of 16 features
derived from a given chemical composition are considered:
atomic fractions of B, N, and O; mean atomic weight; mean
column number; mean row number; range of atomic number;
mean atomic number; range of atomic radius; mean atomic
radius; range of electronegativity; mean electronegativity;
average numbers of s and p electrons; fractions of s and p
electrons. For the hardness model, we further consider the
volumetric density as an additional feature, in order to improve
the model performance.
Our ML models are based on random forests, implemented

in the SCIKIT-LEARN library.29 Compared to a single

decision tree, ensemble trees can improve model prediction
accuracy and meanwhile avoid high variance. When training
the ML models, we use 100 estimators and 10-fold cross
validation on 80% of the samples (the training-validation set).
The maximum tree depth is restricted to 6 layers to further
avoid overfitting.

3. RESULTS AND DISCUSSION

Figure 2 shows triangular plots for B−N−O compositions
considered in different iterations of our evolutionary structure
prediction (top panels) and the cohesive energy predicted by
our machine learning (ML) random forests models (bottom
panels). In the first iteration, we uniformly sample the B−N−
O compositional space, with 12-atom unit cells for binary and
ternary compounds. Corner points of the graphs correspond to
elemental compounds. For example, pure B here represents α-
B12.
In the first iteration of data sampling, the ratio between

elastically stable and unstable structures is roughly 1:1. Even
though the sampling grid is coarse, it can be seen that ternary
compounds composed of mostly nitrogen and oxygen tend to
be elastically unstable. In contrast, the systems with high boron
content are elastically more stable. To ensure high prediction
accuracy, we only consider elastically stable structures to build
our ML models. In the four iterations, the numbers of
elastically stable structures involved in building ML models are
27, 78, 104, and 153, respectively.
The ML prediction of cohesive energy in Figure 2 also

indicates that compounds with more boron atoms show higher
cohesive energy (i.e., higher thermodynamic stability). The
behaviors of elastic stability and thermodynamic stability are
thereby consistent with each other. Therefore, starting from
the second iteration, we do not consider compositions with
simultaneous high nitrogen and high oxygen contents. Instead,
we manually select B−N−O compositions based on ML
prediction from the previous iteration, by gradually zooming in

Figure 2. [Top panels] Distribution of B−N−O compositions in evolutionary structure prediction and their elastic stabilities computed using
density functional theory. Only elastically stable structures (green diamonds) are used for constructing machine learning models; elastically
unstable structures (red squares) are excluded during data selection. [Bottom panels] Random forests prediction of cohesive energy. Based on the
predicted cohesive energy and hardness (not shown), promising B−N−O compounds are selected for calculation in the next iteration. Ternary
graphs are visualized by the PYTHON-TERNARY62 library.
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compositional space with both high predicted cohesive energy
and high hardness. With increasing number of iterations, the
ML results then have higher and higher accuracy and
resolution. Importantly, we find that a region connecting BN
and B2O3 (forming Bx+2NxO3) is thermodynamically favorable
with high cohesive energy. This result is consistent with the
recently reported B6N4O3 compound by Bhat et al., where a
mixture of hexagonal BN and B2O3 is used as the starting
material for HPHT synthesis.23

Figure 3 shows the predictions of our random forests ML
models, respectively, for cohesive energy, density, and
hardness, built from training samples in the fourth iteration
of evolutionary structure searches. Here, 80% of the samples
are used as the training-validation set to construct random
forests models, and the remaining 20% are used as the test set
for a final unbiased evaluation of model performance. Our ML

model for the cohesive energy shows high prediction accuracy,
with a Pearson correlation coefficient r = 0.986 between the
ML values and actual DFT calculations. The model perform-
ances for predicting density and hardness are also comparable,
with r scores of 0.953 and 0.975, respectively.
In general, a material’s hardness is correlated with its

volumetric density.68 For example, cubic diamond as the
hardest material also has the largest volumetric density at
ambient condition. Therefore, to enhance the ML prediction
accuracy, we also consider density as an additional feature
when building the hardness model. We first use only
compositional features to train a density ML model, which
in turn is utilized to generate the density feature for the
subsequent hardness ML model. We note that creating another
model to predict missing or lacking feature data is a common
practice in machine learning. In principle, error propagation

Figure 3. Prediction [top panels] and evaluation [bottom panels] of random forests machine learning (ML) models for (a) cohesive energy, (b)
density, and (c) hardness. The Pearson correlation coefficient (r) between the ML predicted value and the density functional theory (DFT)
calculation is utilized as the evaluation metric. The ternary graphs indicate that (i) Bx+2NxO3 [from linear combinations of (BN)x and B2O3] has
higher cohesive energy, and (ii) hardness is strongly correlated with density.

Table 1. Physical Properties of Superhard B−N−O Compounds with Cohesive Energy >6.75 eV Discovered in This Studya

crystal ρ K G E ν AU KIC H Eg
PBE/Eg

mBJ Ecoh Eform

B5N3O2 0.151 286 257 593 0.155 0.294 4.38 42 4.3/5.5 6.761
B5N3O3 0.150 279 255 586 0.150 0.088 4.09 43 6.3/7.6 6.935 83
B6N4O2 0.156 322 284 658 0.160 0.121 5.26 44 3.0/4.4 6.810
B6N4O3 0.155 292 268 616 0.149 0.311 4.33 45 4.5/5.7 6.900 120
B7N5O2 0.146 272 241 559 0.157 0.336 4.09 40 3.6/4.6 6.776
B7N5O3 0.158 306 283 649 0.147 0.276 4.54 47 4.1/5.3 6.904 117
B9N7O2 0.161 330 296 683 0.154 0.139 5.31 46 3.2/4.5 6.802
B9N7O3 0.160 318 301 688 0.140 0.245 4.42 50 3.9/5.1 6.926 97
c-BN 0.168 373 383 856 0.118 0.172 4.73 64 4.5/5.3 7.028 0
B2O3 0.101 35 33 75 0.127 2.347 0.14 12 6.3/8.9 7.008 0

aDensity ρ (atom/Å3), bulk modulus K (GPa), shear modulus G (GPa), Young’s modulus E (GPa), Poisson’s ratio ν, universal elastic anisotropy
AU, fracture toughness KIC (MPa·m1/2), hardness H (GPa), bandgap Eg (eV), cohesive energy Ecoh (eV/atom), and formation energy Eform (meV/
atom). The fracture toughness is based on the empirical model by Mazhnik and Oganov.58 The bandgaps are computed respectively with the
standard Perdew−Burke−Ernzerhof (PBE)49 functional and the Tran-Blaha modified Becke-Johnson (TB-mBJ)63,64 exchange potential for
improved bandgap estimation. For benchmark, the experimental hardness Hexp = 50−70 GPa for c-BN,14 and Hexp = 1.5 GPa for B2O3.

65 The
experimental bandgap Eg

exp=6.36 eV for c-BN,66 and Eg
exp > 10 eV for B2O3.

67
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could be a concern for such a workflow. In practice, it is not a
concern here because of the high accuracy of our ML models.
As shown in Figure 3b,c, the ML predicted density and
hardness values indeed show a nearly linear relationship.
Our iterative calculation combining an evolutionary

structure search and ML prediction shows that B−N−O
compounds can exhibit superhardness in a compositional
region around BN. With the aid of the ternary graphs shown in
Figure 3, we can directly inspect the sample crystal structures
generated from the evolutionary algorithm. Table 1 lists
various superhard B−N−O compounds discovered in our
study. In particular, we find mainly two kinds of ternary
compositions. In the first kind, the number of boron is equal to
the total number of nitrogen and oxygen (e.g., B5N3O2). The
second kind contains one more oxygen, where the number of
boron is equal to the total number of nitrogen and oxygen
minus 1 (e.g., B5N3O3). In principle, the two different kinds of
B−N−O compositions can have different stable crystal
structures.
Using DFT calculations, we have studied various physical

properties of B−N−O compounds listed in Table 1. In
particular, their volumetric densities ρ (atom/Å3) are overall
positively correlated with the hardness values, computed by
Chen’s empirical hardness model based on the bulk modulus K
and shear modulus G.56 Moreover, by examining the electronic
density of states (DOS), we find these new superhard B−N−O
materials are insulators, with wide bandgaps ≥3.0 eV based on
the PBE functional. It is known that GGA functionals like PBE
will tend to underestimate the bandgaps. For a more accurate
estimation, we further consider the Tran-Blaha modified Becke
Johnson (TB-mBJ)69,70 meta-GGA exchange potential. Our
TB-mBJ results show that the superhard B−N−O compounds
under study are wide-bandgap insulators with a gap size ≥4.4
eV.

We next evaluate the thermodynamic stabilities of the newly
predicted superhard B−N−O compounds, by comparing their
cohesive energy:

=
+ + −

+ +
E

xE B yE N zE O E B N O

x y z

( ) ( ) ( ) ( )x y z
coh

atom atom atom

(2)

With the total energies of isolated atoms as references, Ecoh is
the energy gained by arranging atoms in a crystalline state.
Therefore, the higher the cohesive energy, the higher the
thermodynamic stability of a material. The second kind of
compound Bx+2NxO3 is found to exhibit a higher cohesive
energy than the first kind. Moreover, the cohesive energies of
c-BN and B2O3 are even higher than the predicted B−N−O
compounds, which are thereby metastable at ambient
condition, but may be stabilized under HPHT synthesis
conditions.23

For Bx+2NxO3, we also calculate the formation energy using
the total energies of c-BN and B2O3 as references. While
hexagonal boron nitride (h-BN) and B2O3 were utilized as the
starting materials to synthesize B6N4O3,

23 c-BN and B2O3
would be the relevant energy minima of the convex hull,
especially under HPHT synthesis conditions. In particular, the
formation energy for these B−N−O compounds can be
computed by

=
− − −

+
+E

E B N O xE c BN E B O
x

( ) ( ) ( )
2 5

x x
form

2 3 2 3

(3)

Based on this formula, B5N3O3 exhibits the lowest formation
energy among the B−N−O compounds under study. A
corresponding superlattice structure computed by an evolu-
tionary algorithm for B5N3O3 is shown in Figure 4a. The result
is consistent with the report from Bhat et al. that models of
ordered structure would agree better with their experiments.23

With the previously reported success in the synthesis of

Figure 4. Predicted crystal structures [top panels], electronic density of states (DOS) [middle panels], and phonon DOS [bottom panels] for (a)
B5N3O3, (b) B6N4O3, (c) B7N5O3, and (d) B9N7O3. The results are obtained using the Perdew−Burke−Ernzerhof (PBE) functional. All four
compounds are wide-bandgap insulators, with a peak at the valence band maximum originating from p-orbitals of nitrogen atoms near the vacant
sites (see Figure 5). The phonon spectra show only positive modes, indicating dynamical stability of all four compounds. The crystal structures are
visualized by the VESTA software.71
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B6N4O3,
23 it is likely that other metastable B−N−O structures

from our predictions could be synthesized as well.
Based on Table 1, we select a few more stable Bx+2NxO3

compounds to further characterize their properties. Figure 4
shows the crystal structures, electronic density of states
(DOS), and phonon DOS, respectively, for B5N3O3, B6N4O3,
B7N5O3, and B9N7O3. Among these compounds, only B5N3O3
assumes a wurtzite structure, and all the others have a zinc-
blende structure. Compared to BN, Bx+2NxO3 contains one less
boron atom (due to B2O3), leading to vacant boron sites as
indicated by the dotted circles in Figure 5.

As seen in the middle panels of Figure 4, the three zinc-
blende structures have similar electronic profiles around the
Fermi level, with a bandgap ≳4 eV. The electronic DOS of the
wurtzite B5N3O3 is also similar, but it exhibits an even larger
bandgap ≥6 eV. This result is unusual, because in binary BN
structures, wutzite BN has a smaller bandgap than that of cubic
BN, which is distinct from the ternary B−N−O compounds
studied here. We also find that in the zinc-blende structures,
the bandgap increases with increasing oxygen content. This
result is reasonable, as B2O3 has an extremely large band gap
≥10 eV,67 compared to that of 6 eV in c-BN. Overall,
introducing oxygen atoms into binary BN compounds can
substantially alter the electronic structures, which also could
cause changes in thermal and chemical stabilities. Finally, the
phonon DOS (bottom panels of Figure 4) shows only positive
phonon modes, ensuring that these B−N−O compounds are
dynamically stable.
Finally, we note that the electronic DOS for all compounds

in Figure 4 shows a sharp peak at the valence band maximum.
By studying the local electronic DOS, we find the sharp peak is
mainly contributed by localized p-orbitals of nitrogen atoms
next to the vacant boron sites. The electron charge distribution
corresponding to the sharp peak in B5N3O3 is shown in cyan
color in Figure 5.

4. CONCLUSION
We have developed an iterative machine learning procedure to
discover new superhard B−N−O compounds, where the input
training samples are generated from evolutionary structure
searches and density functional theory calculations. Our
combined machine learning and first-principles results revealed
several stable and superhard B−N−O compounds of chemical
compositions Bx+2NxO3 (x ≥ 3), with hardness values ≳45
GPa. We also found that these newly predicted B−N−O
systems are all wide bandgap insulators, with gap size ≥4 eV

based on the Perdew−Burke−Ernzerhof GGA functional. Our
additional meta-GGA calculations indicate that their actual
bandgaps could be even larger. The electronic density of states
for Bx+2NxO3 all show a prominent peak around the valence
band maximum, and it is related to localized p-orbitals of
nitrogen atoms near vacant boron sites. Since B6N4O3 has
already been reported in the literature, other Bx+2NxO3

compounds in principle can be synthesized by high-pressure
high-temperature techniques or by chemical vapor deposition
methods. We expect these newly discovered superhard B−N−
O materials to have a wide range of applications in extreme
environments, and they may outperform diamond or cubic
boron nitride in an oxidizing environment or in humid
conditions at high temperature. In particular, superhard wide
bandgap insulators can be more resilient to radiation and have
a higher breakdown voltage, so they can be practical for reactor
and high-voltage electronics. Higher thermal stability also
enables industrial applications in cutting and machining of
hard ferrous metals. Because of their superior mechanical
properties, these materials may be superhard thermal
conductors for heat management and transfer as well.
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