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Aims The current guidelines recommend aortic valve intervention in patients with severe aortic regurgitation (AR) with the onset 
of symptoms, left ventricular enlargement, or systolic dysfunction. Recent studies have suggested that we might be missing 
the window of early intervention in a significant number of patients by following the guidelines.

Methods 
and results

The overarching goal was to determine if machine learning (ML)-based algorithms could be trained to identify patients at risk 
for death from AR independent of aortic valve replacement (AVR). Models were trained with five-fold cross-validation on a 
dataset of 1035 patients, and performance was reported on an independent dataset of 207 patients. Optimal predictive 
performance was observed with a conditional random survival forest model. A subset of 19/41 variables was selected 
for inclusion in the final model. Variable selection was performed with 10-fold cross-validation using random survival forest 
model. The top variables included were age, body surface area, body mass index, diastolic blood pressure, New York Heart 
Association class, AVR, comorbidities, ejection fraction, end-diastolic volume, and end-systolic dimension, and the relative 
variable importance averaged across five splits of cross-validation in each repeat were evaluated. The concordance index for 
predicting survival of the best-performing model was 0.84 at 1 year, 0.86 at 2 years, and 0.87 overall, respectively.

Conclusion Using common echocardiographic parameters and patient characteristics, we successfully trained multiple ML models to 
predict survival in patients with severe AR. This technique could be applied to identify high-risk patients who would benefit 
from early intervention, thereby improving patient outcomes.
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Graphical Abstract

Overview of the data collection, model processing, and validation [conditional survival forest plot shown for validation in test sample (20%)].

Keywords Aortic regurgitation • Machine learning • All-cause mortality

Introduction
Aortic regurgitation (AR) is a common valvular lesion associated with 
pressure and volume overload.1 It can be well tolerated for years the 
before development of symptoms.2–4 The current guidelines recom-
mend intervention (repair or replacement) with onset of symptoms, 
significant left ventricular (LV) enlargement, or LV systolic dysfunction 
(ejection fraction <55%).5 The guidelines are based on small old studies 
conducted in the 1980s–90s.6–12 There has been substantial advance-
ment in surgical technique and the quality and durability of artificial 
valves since then; as a result, operative mortality and post-operative 
complications are significantly reduced.13,14 Recent studies have sug-
gested that we might be missing the window of early intervention in 
a significant number of patients by following the guidelines;15–17 as a re-
sult, many patients have continued systolic dysfunction and higher ad-
justed mortality even after surgery.18,19 We evaluated a set of 
machine learning (ML)-based algorithms to predict mortality in patients 

undergoing echocardiographic evaluation for moderate-to-severe and 
severe AR.

Methods
This study was approved by the institutional review board with a waiver of 
informed consent. Additionally, patients who had declined authorization to 
participate in research in Minnesota were also excluded. A total of 1100 pa-
tients with chronic moderate-to-severe and severe AR who underwent 
echocardiography at Mayo Clinic between 2004 and 2019 was included. 
The exclusion criteria were acute AR, acute infective endocarditis, prior 
valve repair, other valve lesions, or cardiomyopathy associated with LV en-
largement or dysfunction. Of 1100 patients, 65 patients who had greater 
than 20% of echocardiographic variables missing were excluded, leaving 
1035 in the final analysis.

Patient characteristics included in the dataset included demographics, 
New York Heart Association (NYHA) functional class, symptoms at base-
line, systolic and diastolic blood pressure (BP), medical history (coronary 
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artery disease, prior myocardial infarction, and prior coronary artery bypass 
graft procedure), congestive heart failure (CHF), history of prior malig-
nancy, lung disease, hypertension, hyperlipidaemia, endocarditis, diabetes 
mellitus, Charlson comorbidity index, aortic valve replacement (AVR) sur-
gery, and mortality. The relevant echocardiographic variables included the 
following: measures of LV size [end-diastolic dimension (LVEDD), end- 
systolic dimensions (LVESD), end-diastolic volume (LVEDV), and end- 
systolic volume (LVESV), including those indexed to body surface area 
(BSA)], LV ejection fraction, aortic valve morphology, sinus of Valsalva 
and ascending aorta linear dimensions, variables associated with AR assess-
ment (effective regurgitant orifice area, regurgitant volume, and vena con-
tracta), and variables included in diastolic function assessment [mitral 
annulus early diastolic tissue Doppler velocity (e′), ratio of mitral early dia-
stolic inflow and tissue Doppler velocity (E/e′), and pulmonary artery systol-
ic pressure].

Outcomes and analysis
Our hypothesis was that ML-based models can predict outcomes in pa-
tients with chronic severe AR with good discrimination as measured by 
the concordance index. The primary outcome was the time to all-cause 
mortality. For the primary analysis, patients were censored at the last 
follow-up record or 31 December 2019, whichever came first. For a sec-
ondary analysis of mortality under medical management, patients were cen-
sored at the time of AVR.

Data pre-processing
We randomly split 80% of the dataset to be training and validation and set 
aside 20% as the test dataset which was used to report results after model 
selection and hyperparameter tuning (results are reported only on the test 
dataset, which was not seen during the training process). No two patients 
had data in both the training or test datasets. Missing variables were im-
puted using multiple imputations by chained equations (MICE)20 implemen-
ted by the Python library statsmodels allowing for 20 iterations to achieve 
stable convergence.21 Training and testing datasets were imputed separate-
ly to prevent information leakage. Categorical variables were encoded as 
binary, except for NYHA functional class, which was encoded as 1, 2, 3, 
or 4. Normalization was not used as a pre-processing step for any of the 
variables.

Since future valve replacement is unknown at baseline, in our training da-
taset, AVR was set to zero unless AVR occurred within 100 days after the 
index echocardiogram, with the assumption that an immediate AVR was 
likely known at baseline.

Feature selection
Feature selection was utilized as an additional pre-processing step to min-
imize the impact of overfitting. A random survival forest (RSF) model was 
utilized to reduce the number of candidate features due to the ease of gen-
erating variable importance metrics from tree-based metrics. Features were 
pre-selected with 10-fold cross-validation with 500 trees. From each fold, 
we selected the top 20 features based on feature representation in the 
500 trees. Features represented in the top 20 in at least 6- of 10-folds 
were included in the final predictive dataset.

Modelling
Five-fold cross-validation training scheme was used where each model was 
trained on 80% of the training dataset (after the test split had been re-
moved) and validated on the remaining 20%. A total of 12 model architec-
tures were evaluated, including several Cox proportional hazard regression 
models, support vector machines (SVMs), linear multi-task logistic regres-
sion (LMTLR), neural multi-task logistic regression (NMTLR), and several 
forest-based models. Modelling was performed with open-source Python 
framework lifelines v0.26.022 and PySurvival 0.1.2.23 Tree-based gradient 
boosting methods were implemented with scikit-survival v0.15.024; hyper-
parameter tuning was used with the PySurvival package to optimize the top- 
performing example of each ML model in each family. Cox proportional 
hazard models were optimized for step size, penalty term, and, in the 
case of ElasticNet, the L1 penalizer value. Survival forests were optimized 
for maximum features at each node and minimum samples per leaf node. 

LMTLR was optimized for learning rate and bin count. NMTLR was opti-
mized for one of the several architecture designs as well as learning rate 
and presence of dropout. Linear SVMs were optimized for the learning 
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Table 1 Baseline clinical and echocardiographic 
characteristics (n = 1035)

Variable Value

Age, years 60 ± 17
Gender, female 187 (18)

BMI, kg/m2 28 ± 5

BSA, m2 2.0 ± 0.2
SBP, mm Hg (n = 1034) 131 ± 20

DBP, mm Hg (n = 1034) 64 ± 13

Diabetes 109 (11)
Hypertension 494 (48)

Chronic lung disease 99 (10)

Hyperlipidaemia 392 (38)
Charlson comorbidity index (n = 1033) 1.6 ± 2.2

NYHA functional class (n = 1016)

I 637 (63)
II 265 (26)

III 106 (10)

IV 8 (1)
Bicuspid aortic valve morphology (n = 1029) 366 (36)

LV EF, % 58 ± 9

LVEDD, mm (n = 1033) 60 ± 7
Indexed LVEDD, mm/m2 (n = 1033) 30 ± 4

LVESD, mm (n = 1018) 40 ± 7

Indexed LVESD, mm/m2 (n = 1018) 20 ± 4
LVEDV, mL 209 ± 67

Indexed LVEDV, mL/m2 104 ± 30

LVESV, mL 91 ± 41
Indexed LVESV, mL/m2 45 ± 20

Degree of AR

Moderate to severe 436 (42)
Severe 599 (58)

Regurgitant volume, mL (n = 885) 71 ± 25

Effective regurgitant orifice area, mm2 (n = 832) 26 ± 14
Vena contracta, mm (n = 709) 6 ± 3

Medial E/e′ ratio (n = 962) 12 ± 24

RVSP, mm Hg (n = 785) 32 ± 10
Mid-ascending aorta, mm (n = 941) 41 ± 7

Mid-ascending aorta ≥ 45 mm 233 (25)

Mid-ascending aorta ≥ 50 mm 95 (10)
Mid-ascending aorta ≥ 55 mm 35 (4)

Sinus of Valsalva, mm (n = 971) 41 ± 6

Sinus of Valsalva ≥ 45 mm 229 (24)
Sinus of Valsalva ≥ 50 mm 53 (5)

Data are expressed as mean ± SD or number (percentage). 
Abbreviations: BMI, body mass index; BSA, body surface area; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; LVEF, left ventricular ejection fraction; 
LVEDD, left ventricular end-diastolic dimension; LVESD, left ventricular end-systolic 
dimension; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular 
end-systolic volume; AR, aortic regurgitation; TR, tricuspid regurgitation; E/e′, early 
mitral inflow/tissue Doppler velocity; RVSP, right ventricular systolic pressure.
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rate and L2 penalization value. Tree-based gradient boosting was optimized 
for the learning rate, sample rate, and presence of dropout. All models were 
optimized using loss Cox partial likelihood function as discrimination per-
formance was measured by the concordance index (c-index).

Statistical analysis
Model performance was evaluated on the test dataset using the concord-
ance index by averaging performance of the five independently trained 
models (trained independently on five cross-validation splits). For the top- 
performing models, the receiver operating characteristic (ROC) curve was 
computed at 1 year, 2 years, and death at any time between model predic-
tions and actual survival. In a survival forest model, feature importance was 
evaluated in a permutation-based fashion. For a feature included in the 
model, the out-of-bag error was computed such that when this feature 
was encountered, a daughter node was assigned randomly. The feature im-
portance was simply the difference between the original out-of-bag error 
and the error as calculated above.25 On the other hand, the feature import-
ance in a Cox proportional hazard model was measured by the negative bin-
ary logarithm of the P-values of each variable.

Results
A total of 1035 patients were included in the final analyses. The mean 
age of the patients was 60 ± 17 years; 187 (18%) were females. The pa-
tient and echocardiographic characteristics are presented in Table 1. 
During a median follow-up of 5.1 (IQR: 2.0–9.9) years, 208 patients 
died, and 518 underwent AVR.

The following features were selected for further modelling based on 
the feature selection pre-processing step using RSF: age, AVR, indexed 
LVESV, indexed LVEDV, BSA, EF, NYHA functional class, body mass 

index (BMI), diastolic BP, bicuspid aortic valve, aortic valve regurgitant 
volume, e′ velocity, echocardiographic correlate of LV filling pressures 
(E/e′), right ventricular systolic pressure (RVSP), mid-ascending aortic 
diameter, diagnosis of CHF, prior malignancy, chronic lung disease, 
and hypertension (Figure 1) (Graphical abstract).

Figure 1 Features were pre-selected with 10-fold cross-validation with 500 trees. The features shown were represented in the top 20 in at least 6 of 
10 folds and included in the final predictive dataset. Abbreviations: AVR: aortic valve replacement, LVEDV: left ventricular end-diastolic volume, LVESV: 
left ventricular end-systolic volume, BSA: body surface area, LVEF: left ventricular ejection fraction, BMI: body mass index, DBP; diastolic blood pressure, 
AR: aortic regurgitation, e′: mitral annulus early diastolic tissue Doppler velocity, E/e′: ratio of mitral early diastolic inflow and tissue Doppler velocity 
representing filling pressures, RVSP: right ventricular systolic pressure, CHF: congestive heart failure.
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Table 2 Mean c-indices of Cox and Survival Forest 
all-cause mortality models on validation and test sets

Model Val/Ts Mean c-index  
(standard error)

ElasticNet Cox regression Test 0.81 (0.026)
Validation 0.79 (0.008)

L1 regularized Cox regression Test 0.77 (0.040)

Validation 0.79 (0.012)
L2 regularized Cox regression Test 0.79 (0.030)

Validation 0.79 (0.008)

Standard Cox regression Test 0.79 (0.034)
Validation 0.79 (0.008)

Conditional survival forest Test 0.81 (0.030)

Validation 0.79 (0.007)
Extra survival trees Test 0.80 (0.033)

Validation 0.80 (0.008)

Random survival forest Test 0.81 (0.025)
Validation 0.79 (0.009)
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All-cause mortality
The mean concordance index of different models for primary outcome 
of all-cause mortality on both the validation and test datasets is pre-
sented in Table 2 and Figure 2. ElasticNet Cox regression ranked the 
highest among the Cox regression family, while Conditional RSF per-
formed the best on the validation set among the Survival Forest family 
(concordance index: 0.79) and was selected for inclusion in an ensem-
ble model. Overall, there were no appreciable or clinically relevant dif-
ferences in the performance between models.

The ROC curves and feature importance evaluated on the test data-
set by the top-performing all-cause mortality ensemble models 
(ElasticNet Cox regression and conditional survival forest) are pre-
sented in Figure 3A and B. An ensemble model predicts the test risks 
by taking the average of predicted test risks on each of the five models 
in the five-fold cross-validation sets, which were used to compute the 
ROC curves. Feature importance on each of the five models was nor-
malized and averaged, before being divided by the importance of age. 
The following variables were significant in both ElasticNet Cox regres-
sion and conditional survival forest models with slight differences in the 
relative importance: age, RVSP, prior malignancy, NYHA functional 
class, diagnosis of CHF, LVEF, regurgitant volume, AVR, BMI, mid- 
ascending aorta diameter, indexed LVEDV, BSA, chronic lung disease, 
diastolic BP, e′, E/e′, bicuspid aortic valve, hypertension, and indexed 
LVESV (Figure 4A and B and Supplementary material online, 
Figure S4). Age had the strongest association with mortality in both 
models; other top variables were RVSP, prior malignancy, NYHA func-
tional class, diagnosis of CHF, E/e′, and LVEF.

All-cause mortality censored at AVR
All models had similar performance (mean concordance index: 0.76– 
0.79) (see Supplementary material online, Table S1, and 
Supplementary material online, Figure S1) for association with all-cause 
mortality censored at AVR. The AUC for L2 regularized Cox regres-
sion model and random survival forest model was similar (see 
Supplementary material online, Figure S2). The features of importance 
were similar to the ones associated with all-cause mortality with slight 
differences in relative importance between the two models: age, prior 
malignancy, RVSP, CHF, diastolic BP, NYHA functional class, and E/e′ 
(see Supplementary material online, Figure S3).

Discussion
Our study has several important findings: (1) we report that ML-based 
algorithms are able to predict mortality in patients with 
moderate-to-severe and severe AR; (2) the top variables included in 
our model associated with outcomes of mortality were age, RVSP, 
prior malignancy, NYHA functional class, diagnosis of CHF, E/e′, and 
LVEF; (3) we found Cox ElasticNet, which is a regular Cox model 
with both L1 (LASSO, or variable selection) and L2 (ridge, or general 
shrinkage of estimated coefficients) regularization applied while esti-
mating the parameters, and RSF models, which are tree-based methods 
that do not estimate a parametric form for variables, to have strong 
overall performance. These complementary approaches provided con-
sistently high discrimination, with a C-statistic of 0.81 on the best- 
performing model, although all models demonstrated similar 
performance.

AR is a common valvular lesion with an estimated prevalence of mild 
or higher grade of 12% in the men and women included in the 
Framingham Heart Study.26 It is associated with volume and pressure 
load on the left ventricle which leads to enlargement and systolic dys-
function, followed by onset of symptoms.1,4,7 The mortality rises with 
onset of symptoms, LV systolic dysfunction (LVEF <55%), and LV en-
largement above the predefined thresholds (LVEDD > 65 mm, 
LVESD > 50 mm, and indexed LVESD > 25 mm/m2). Previous studies 
have shown an increase in mortality at a smaller threshold of indexed 
LV linear dimensions (iLVESD > 20 mm/m2) and better association of 
LV volumes than dimensions with symptoms and mortality.17,27 The 
cut-offs defined in the guidelines are based on small old studies7,9–12

when operative mortality was as high as 10%.28 In recent years, with ad-
vancement of surgical techniques and newer generation artificial valves, 
operative mortality and post-operative complications have decreased, 
thereby necessitating newer ways to risk-stratify patients and identify 
those who would benefit from early intervention.13,14,29

Many recent studies in cardiovascular medicine have shown excellent 
performance of ML-based algorithms to identify patients with heart fail-
ure and subclinical atrial fibrillation.30–32 In a prospective study, an ML 
algorithm incorporating clinical and imaging-based variables such as 
computed tomography (CT) coronary calcium score significantly im-
proved prediction of cardiovascular events compared to standard clin-
ical risk assessment.33 Similarly, an ML risk calculator in MESA cohort 
outperformed the ACC/AHA Risk Calculator by recommending less 

Figure 2 Concordance indices of Cox and survival forest all-cause mortality models on validation and test sets. The results represent 10 repeats of 
five-fold cross-validation.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad006#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad006#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad006#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad006#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad006#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad006#supplementary-data
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drug therapy and yet missing fewer events.34 There are currently no 
studies using ML-based risk assessment in patients with valvular heart 
disease. Therefore, we sought to develop an ML-based algorithm that 
could predict mortality in patients with chronic severe AR. Our model 
identified the important clinical (age, BSA, NYHA class, prior malig-
nancy, diagnosis of CHF, chronic lung disease, diastolic BP, hyperten-
sion, and aortic valve replacement) and echocardiographic variables 
(RVSP, indexed LVESV and LVEDV, LVEF, bicuspid valve, regurgitant 
volume, filling pressure, mid-ascending aorta diameter, mitral tissue 
early relaxation velocity, and filling pressures) with a predictive AUC va-
lue exceeding 0.84 on the test dataset. These factors have been shown 
to be associated with mortality in AR and other valvular lesions in retro-
spective analyses.5,35–37 Age, NYHA functional class, diastolic BP, 

ejection fraction, and degree of regurgitation have been shown to be 
associated with mortality in recent studies including contemporary co-
hort of patients with AR.15,27,38 Another large study including 1417 pa-
tients found higher RVSP to be significantly associated with long-term 
mortality; other significant factors were age, chronic kidney disease, 
prior cardiac surgery, symptoms, and LV size.14

We report ML-based algorithms for time-to-event outcomes and 
evaluated the performance of several ML models, observing the best 
performance with Cox ElasticNet and random survival forest models. 
It is critical to test multiple models to analyse heterogeneous high- 
dimensional data including clinical and imaging variables. Several models 
performed very well on both validation and test datasets, which rein-
forces the need for testing multiple models. Other studies have shown 

Figure 3 Receiver operating characteristic curves of top-performing all-cause mortality ensemble models for ElasticNet Cox regression (A) and con-
ditional survival forest (B) on test set.

Figure 4 Relative feature importance of top-performing all-cause mortality ensemble models for ElasticNet Cox regression (A) and conditional sur-
vival forest (B) on test set. The variables are presented in the order of importance with the highest on the top. Abbreviations: same as Figure 1.
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similar results particularly when feature selection is performed before 
performing Cox analysis.39 Some advantages of Cox models include 
ease of performance and relative resistance to overfitting.

The limitation of our study includes retrospective single-centre ana-
lyses, and our results suggest the need for larger multicentre prospect-
ive studies to finalize and validate a single model (or ensemble of 
models) to predict patients at high risk of mortality with AR. Many of 
the important features identified through our modelling efforts may 
not be readily modifiable through interventions and in fact represent 
risk factors for near-term mortality in general. Nonetheless, models 
may be helpful in discussing the risks and benefits of further care and 
interventions such as AVR. In terms of the modelling, our primary ob-
jective was to narrow down the modelling space and bring our under-
standing of the risk factors associated with mortality in this population 
forward. Additional work leveraging both prospective data and data 
from other institutions will be needed to better define the operating 
characteristics of the candidate algorithms. Thus, our results provide 
proof-of-concept support to establish the feasibility of an ML approach 
and serve as the basis for future work.

In conclusion, our study reports the role of ML-based models includ-
ing both clinical and echocardiographic variables in predicting all-cause 
mortality in patients with chronic severe AR. These findings suggest the 
future role of ML-based algorithms to identify high-risk patients after 
validation in future larger prospective studies.

Supplementary material
Supplementary material is available at European Heart Journal – Digital 
Health online.
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