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Radiological imaging diagnosis plays important roles in clinical patient management. Deep
learning with convolutional neural networks (CNNs) is recently gaining wide attention for its
high performance in recognizing images. If CNNs realize their promise in the context of radi-
ology, they are anticipated to help radiologists achieve diagnostic excellence and to enhance
patient healthcare. Here, we discuss very recent developments in the field, including studies
published in the current PLOS Medicine Special Issue on Machine Learning in Health and Bio-
medicine, with comment on expectations and planning for artificial intelligence (AI) in the
radiology clinic.

Chest radiographs are one of the most utilized radiological modalities in the world and
have been collected into a number of large datasets currently available to machine learning
researchers. In this Special Issue, three groups of researchers applied deep learning to radiolog-
ical imaging diagnosis using this modality. In the first, Pranav Rajpurkar and colleagues found
that deep learning models detected clinically important abnormalities (e.g., edema, fibrosis,
mass, pneumonia, and pneumothorax) on chest radiography, at a performance level compara-
ble to practicing radiologists [1]. In a similar study, Andrew Taylor and colleagues developed
deep learning models that detected clinically significant pneumothoraces on chest radiography
with excellent performance on data from the same site—with areas under the receiver operat-
ing characteristic curve (AUC) of 0.94-0.96 [2]. Meanwhile, Eric Oermann and colleagues
investigated how well deep learning models that detected pneumonia on chest radiography
generalized across different hospitals. They found that models trained on pooled data from
sites with different pneumonia prevalence performed well on new pooled data from these
same sites (AUC of 0.93-0.94) but significantly less well on external data (AUC 0.75-0.89);
additional analyses supported the interpretation that deep learning models diagnosing pneu-
monia on chest radiography are able to exploit confounding information that is associated
with pneumonia prevalence [3]. Also in this Special Issue, Nicholas Bien and colleagues
applied deep learning techniques to detect knee abnormalities on magnetic resonance (MR)
imaging and found that the trained model showed near-human-level performance [4]. Taking
these four studies together, we can interpret that deep learning is currently able to diagnose a
number of conditions using radiological data, but such diagnostic models may not be robust
to a change in location.

These Special Issue studies join a growing number of applications of deep learning to radio-
logical images from various modalities that can aid with detection, diagnosis, staging, and sub-
classification of conditions. Cerebral aneurysms can be detected on MR angiography with
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sensitivity/false-positive findings of 0.70/0.26 (low false positive model) or 0.94/2.90 (high sen-
sitivity model) [5]. Liver masses can be classified into five categories (from classical hepatocel-
lular carcinoma as category A to liver cyst as category E) using a combination of dynamic
contrast enhanced-computed tomography (CT) images [6]. The staging of liver fibrosis on
gadoxetic acid—enhanced MR images is also possible. For this application, the deep learning
model was trained using histopathologically evaluated liver fibrosis stages as reference data.
The model was able to stage liver fibrosis, with an AUC of approximately 0.85 [7]. Other devel-
opments within oncology are appearing in the literature. The genomic status of gliomas can be
estimated by deep learning models trained on MR images that can predict isocitrate dehydro-
genase 1 mutation status and O6-methylguanine-DNA methyltransferase promotor methyla-
tion status with an accuracy of 0.94 and 0.83, respectively [8]. And according to a final study
from this Special Issue, a cancer patient’s prognosis may also be estimated with deep learning.
Hugo Aerts and colleagues report that their model was able to stratify patients with non-small
cell lung cancer into low- and high-mortality risk groups using standard-of-care CT images
[9].

Other deep learning applications within radiology can assist with image processing at ear-
lier stages. Segmentation of organs or tissues within images is possible with deep learning, as
in a recent PLOS ONE research article in which Andrew Grainger and colleagues report the
development of a model that quantifies visceral and subcutaneous fat from MR images of the
mouse abdomen [10]. In another clever application, Fang Liu and colleagues developed a deep
learning model to generate CT images from MR images. They used these images for attenua-
tion correction in reconstructing positron emission tomography (PET) images in PET-MR
examinations in which bone information is difficult to obtain. Using the generated pseudo-CT
images, less PET reconstruction error was achieved compared with conventional MR imag-
ing-based attenuation correction approaches in brain PET-MR examinations [11].

Deep learning models, if validated for performance, offer several potential benefits to clini-
cians and patients, starting as early as the education of radiologists. Models trained using
images labeled by experienced radiologists, specialty radiologists, and/or histopathological
reports may in the future provide a training tool to help trainees or general radiologists to gain
competence and confidence in difficult diagnoses. Deep learning models may also help trained
radiologists achieve higher interrater reliability throughout their years in clinical practice. In
this Special Issue, Bien and colleagues demonstrated that the Fleiss’ kappa measure of interra-
ter reliability for detecting anterior cruciate ligament tear, meniscal tear, and abnormality were
higher with model assistance than without [4].

Second, deep learning models may help shoulder the increasing workload in radiology.
Newer imaging modalities such as CT and MR can provide more detailed information with
thinner images and/or multiple series of images, and the time required to collect these images
is shorter than before. Therefore, the number of images collected in each examination is
increasing, whereas the number of radiologists who interpret these images is not. Radiologist
fatigue can be alleviated if deep learning models can undertake supportive tasks 24 hours a
day. Third, deep learning models can also be used to alert radiologists and physicians to
patients who require urgent treatment, as in the application described by Taylor and colleagues
in the detection of pneumothorax [2]. In a conceptually related application, Luciano Preve-
dello and colleagues developed a model that detects critical findings (hemorrhage, mass effect,
and hydrocephalus) with an AUC of 0.91 on unenhanced head CT [12]. In more granular
applications, models that can sort imaging findings according to urgency may optimize radiol-
ogy workflow. Finally, deep learning models trained to predict histopathological findings
based on noninvasive images, such as the models described above that use MR to stage liver
fibrosis [7], may help in reducing the risk of complications from invasive biopsy.
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We should also acknowledge that deep learning has certain limitations. First, the features
and calculations that deep learning models use to make a classification are challenging to inter-
pret. Therefore, when the judgment of physicians or radiologists differ from that of trained
models, the discrepancy cannot be resolved by discussion. A potential compromise exists in
certain other Al strategies, such as decision trees, that are fully interpretable—however, at this
time, a trade-off relationship between interpretability and performance exists. Some technical
investigators are working to develop “explainable AL” with the high performance of deep
learning in interpretable models (https://www.darpa.mil/program/explainable-artificial-
intelligence), but this has not been fully achieved at the present time. Gradient-weighted Class
Activation Mapping is a currently available technique used to visualize the regions of images
that were of key importance to deep learning models’ prediction [13]. In this Special Issue,
Aerts and colleagues, who developed the network for mortality risk stratification from stan-
dard-of-care CT images of non-small cell lung cancer patients, used this technique. The
trained network was found to fixate on the interface between the tumor and stroma (lung
parenchyma or pleura) [9]. Though this technique allows us to know where the important fea-
tures exist, there remains a problem; the method does not explicitly show what the important
features are. However, with further advancement of these techniques, it may become possible
to interpret how Al reaches a decision and even derive new pathophysiologic knowledge from
trained AI models.

In addition to limited interpretability, deep learning models—like machine learning models
generally—are prone to overfitting and do not necessarily show consistent performance when
analyzing data not used during training. To overcome the overfitting problem, a large amount
of image data accompanied with valid reference labels (i.e., clinical diagnosis, pathological
evaluation, or survival time) is required for model training. As such, it is more challenging to
develop deep learning models for tasks in which both input and reference data are difficult to
collect, such as the diagnosis of rare diseases. The Cancer Imaging Archive (https://www.
cancerimagingarchive.net) currently provides image datasets with appropriate reference labels
for relatively common cancers; a similar public database of rare diseases would be helpful to
build deep learning models for classifications of these. However, patients’ privacy becomes a
more relevant problem in creating such databases.

Next, deep learning models are not necessarily transportable across different hospitals, as
indicated by the results described above from Oermann and colleagues showing that deep
learning models for detecting pneumonia in chest radiographs showed strong performance
with new data from the original training sites but not with external data [3]. When we use
deep learning models in actual clinical practice, we must pay attention to how their perfor-
mance is affected by differences between hospitals, vendors of imaging modalities, and scan or
reconstruction conditions. Model training using image data from various settings or patient
populations may have the potential to mitigate this problem. However, further investigations
would be required to prove this hypothesis. Finally, although a trained model may exhibit high
performance in one task such as diagnosis of pneumonia, deep learning in its current forms
cannot replace the radiologist’s role in detecting incidental findings such as asymptomatic
tumors. This role for radiologists will continue to be invaluable in the era of worldwide popula-
tion aging, as large numbers of elderly patients have multimorbidity.

In summary, because of the high performance of deep learning in image recognition tasks,
the application of this technology to radiological imaging is increasing. If external performance
and interpretability improve, Al can be expected to gradually change clinical practice by help-
ing radiologists practice with better performance, greater interrater reliability, and improved
workflow for more timely recommendations. Radiologists will be important for labeling train-
ing datasets and developing new knowledge from image data, some of which may be inspired
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by the models. In the clinic, even if current deep learning approaches broadly excel in image

interpretation, radiologists will continue to play central roles in the diagnosis of rare diseases

and in the detection of incidental findings.
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