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Hong Sook Kim,4 Sanghyuk Lee,7,8 Yeonjoo Jung,8 Jong Eun Lee,9 Junsang Doh,10 Soonmyung Paik,11

Jung Hee Kang,12 Jinseon Lee,12,* and Jhingook Kim1,14,*

SUMMARY

Exome and transcriptome analyses of clinically homogeneous early-stage never-
smoker female patients with lung adenocarcinoma were performed to under-
stand tumor-T cell interactions and immune escape points. Using our novel
gene panels of eight functional categories in the cancer-immunity cycle, three
distinct subgroupswere identified in this immune checkpoint blockade-refractory
cohort by defective gene expression in two major domains, i.e., type I interferon
production/signaling pathway and antigen-presenting machinery. Our approach
could play a critical role in understanding immune evasion mechanisms, devel-
oping a method for effective selection of rare immune checkpoint blockade re-
sponders, and finding new treatment strategies.

INTRODUCTION

Antibody-based immunotherapies that modulate host immune responses against tumors have provided a

paradigm shift in the treatment of non-small cell lung cancer (NSCLC) (Topalian et al., 2015). Specifically,

immune checkpoint blockades (ICB) that target the programmed cell death protein 1 (PD-1), programmed

cell death ligand-1 (PD-L1), or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have led to dramatic

clinical benefit with durable response (Reck et al., 2016; Rittmeyer et al., 2017; Schadendorf et al., 2015).

However, the majority of patients do not respond to ICB (Sunshine and Taube, 2015), and thus there

have been enormous efforts in identifying predictive biomarkers of treatment response (Carbone et al.,

2017; Havel et al., 2019; McGranahan et al., 2016; Rizvi et al., 2015; Tumeh et al., 2014). Currently available

predictive biomarkers include PD-L1 expression (Havel et al., 2019), tumor-infiltrating lymphocytes (Tumeh

et al., 2014), and tumor mutational burden (TMB) (Carbone et al., 2017; McGranahan et al., 2016; Rizvi et al.,

2015). In fact, a significant number of patients with PD-L1-positive results failed to respond to ICB (Ritt-

meyer et al., 2017). Furthermore, about 10% patients with PD-L1-negative results paradoxically responded

to ICB (Rittmeyer et al., 2017; Sunshine and Taube, 2015).

In general, human tumors associated with environmental mutagens, such as smoking, are more likely to

have a higher TMB (Govindan et al., 2012). Smoking may increase the mutational load, leading to neoanti-

gen expression in tumor cells and helping to maintain an inflammatory environment, resulting in interferon

gamma (IFNg)-driven expression of PD-L1 (Taube et al., 2012). However, in parallel with smoking cessation

(Pallis and Syrigos, 2013), the proportion of never smokers among patients recently diagnosed with NSCLC

is continuously growing, currently exceeding 15% (Pelosof et al., 2017). Of NSCLC, lung adenocarcinoma

(LUAD) more commonly affects never smokers than does squamous cell carcinoma (Pesch et al., 2012).

Never-smoker patients with LUAD are characterized by a higher rate of strong driver genetic alterations,

especially epidermal growth factor receptor (EGFR) mutation (Pallis and Syrigos, 2013). Constitutive acti-

vation of EGFR pathway could resultantly activate the downstream PI3K/AKT signaling pathway, upregulat-

ing PD-L1 expression (Akbay et al., 2013). Therefore, EGFR-mutant NSCLC is expected to be more respon-

sive to PD-1 or PD-L1 ICB. However, most clinical trials consistently demonstrated no survival benefit from

ICB in EGFR-mutant tumors, compared with conventional chemotherapy (Lee et al., 2017; Rittmeyer et al.,

2017).

1Department of Thoracic and
Cardiovascular Surgery,
Samsung Medical Center,
Sungkyunkwan University
School of Medicine, 81
Irwon-ro, Gangnam-gu,
Seoul 06351, Korea

2Samsung Genome Institute,
Samsung Medical Center,
Seoul, Korea

3Department of Pathology
and Translational Genomics,
Samsung Medical Center,
Sungkyunkwan University
School of Medicine, Seoul,
Korea

4Division of
Hematology-Oncology,
Department of Medicine,
Samsung Medical Center,
Sungkyunkwan University
School of Medicine, Seoul,
Korea

5Department of Health
Science and Technology,
Samsung Advanced Institute
of Health Science and
Technology, Sungkyunkwan
University School of
Medicine, Seoul, Korea

6Laboratory of Cancer
Genomics and Molecular
Pathology, Samsung
Biomedical Research
Institute, Samsung Medical
Center, Seoul, Korea

7Department of Life Science,
Ewha Womans University,
Seoul, Korea

8Ewha Research Center for
Systems Biology, Ewha
Womans University, Seoul,
Korea

9DNA Link Inc., Seoul, Korea

10Department of Materials
Science and Engineering,
Seoul National University,
Seoul, Korea

11Severance Biomedical
Science Institute, Yonsei

Continued

iScience 23, 101386, August 21, 2020 ª 2020 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

ll
OPEN ACCESS

http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101386&domain=pdf
http://creativecommons.org/licenses/by/4.0/


The success of anti-tumor immunotherapy requires a comprehensive understanding of the complex inter-

actions within the cancer-immune system. To maintain immunological homeostasis, both innate and adap-

tive immune cells in the cancer-immunity cycle must work in a concertedmanner (Chen andMellman, 2017).

Tumor growth and cancer metastasis could result from immune escape by any failure in this cycle, leading

to T cell infiltration, tumor recognition, and killing. Therefore, identifying defective steps in the cancer-im-

munity cycle is the basis of both understanding the mechanism and developing possible approaches to

overcome immune evasion. Thus, for precise assessment of this complex interaction within the cancer-im-

munity system, multi-omics profiling of changes at the DNA, RNA, and protein levels is required. To this

end, exome and transcriptome analyses were conducted of surgically resected tumor specimens of

never-smoker patients with LUAD to elucidate their underlying immune escape mechanism.

RESULTS

Development of Novel Cancer-Immune Gene Panel

A novel cancer-immune gene panel was created from extensive literature review, which included the innate

and adaptive host immune function with tumor microenvironment (TME), to identify significant immune

escape points in this cohort. We were unsuccessful in clustering the whole-transcriptome profile of this

cohort using several of the currently available immune cell signatures (Bindea et al., 2013; Danaher

et al., 2017; Lyons et al., 2017; Sweis et al., 2016), which in fact could be regarded as an alternative to path-

ological immunophenotyping (Figure S1).

In general, tumor cells expressing a repertoire of immunogenic tumor-specific antigens (neoantigens)

induce a prolific immune response. Therefore, tumors with low level of mutation burden, i.e., small reper-

toire of neoantigens, are very likely to have disadvantages in their immune responses, which can be further

exacerbated by any failure in subsequent cancer-immune processes. Thus, we extensively reviewed major

factors and processes playing an important role in anti-tumor immune function. Furthermore, we selected

546 immune function-related genes from the literature and classified them into the following eight func-

tional categories in the cancer-immunity cycle: (1) ubiquitination/deubiquitination system, including E3

ubiquitin ligases playing a critical role in various signaling processes (Panel A); (2) type I IFN production/

signaling pathway involved in the pro-inflammatory response (Panel B); (3) antigen-processing/presenting

machinery, including proteasomal processing, expression of major histocompatibility complexes (MHCs)

and their accessory molecules, and assembly of the antigenic peptide on MHC molecules (Panel C); (4)

transforming growth factor (TGF)-b signaling pathway involved in anti-inflammatory immune-suppressive

response (Panel D); (5) natural killer (NK) cell activation for enrichment of mature dendritic cells (DCs)

that efficiently present neoantigens (Panel E); (6) activation of antigen-presenting cells by CD4 T cells in

the lymph nodes (Panel F); (7) immune status of TME, in which tumor cells interact with immune cells

and dynamic balance of pro- and anti-inflammatory signals takes place (Panel G); and (8) CD8 T cell acti-

vation, trafficking, infiltration, recognition, and killing of neoantigen-specific tumor cells (Panel H) (Figure S3

and Data S1).

Three Distinctive Subgroups Based on Gene Panel Expression

We applied a clustering method using the Gaussian mixture model to classify the never-smoker LUAD

study cohort based on the expression of our novel cancer-immune gene panel. Although the study cohort

was homogeneous in terms of tumor histology, smoking status, and gender, we identified three distinct

subgroups that revealed differential expression of cancer-immune genes within TME, consisting of sub-

group 1 (n = 37), subgroup 2 (n = 15), and subgroup 3 (n = 47) (Figures 1A and S4). This suggested immu-

nological heterogeneity of our cohort despite similar clinical features. As heatmaps in the study cohort

were obtained from the curatively resected tumors of patients with cancer who are treatment naive, we

assumed that they represented the gene expression profile at the phase of immune escape in cancer im-

munoediting. Thus, subgroup-specifically altered gene expression could be regarded as the inherent can-

cer-immune status, equivalent to ‘‘cancer immune-set point’’ (Chen and Mellman, 2017) or ‘‘immune

escape point.’’

Clinical and Pathological Features among Three Subgroups

To identify patient or tumor features that differentiated among subgroups, we compared clinical charac-

teristics among the three subgroups. Compared with subgroup 1 and subgroup 3, patients in subgroup

2 tended to have relatively smaller tumors at the earlier stage of disease. However, there were no significant
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Figure 1. Three Subgroups of Never-Smoker Patients with LUAD with Clinicopathological Homogeneity

(A) Three distinct subgroups of cancer-immune gene expression in never-smoker lung adenocarcinoma. Whole-

transcriptome sequencing data from 99 never-smoker patients with lung adenocarcinoma were analyzed by Gaussian

Mixture Model using eight different gene panels (546 in total) in the cancer-immunity cycle (Figure S3 and Data S1),

revealing three subgroups. Subgroup 1 was defective in antigen-presenting machinery, NK cell activation, and type I IFN

production (later named as subgroup with ubiquitination functioning, deregulated type I IFN production, and defective

antigen presentation type). Subgroup 2 was defective in ubiquitinating enzymes expression, and the type I IFN and TGF-b

signaling pathways were significantly downregulated (later named as subgroup with defective ubiquitination, type I IFN

signaling, antigen presentation type). Subgroups 1 and 2 showed mutually exclusive gene expression patterns within

panels of the cancer-immunity cycle. Subgroup 3 maintained relatively high levels of MHC class II and other cancer-

immune gene expression (later named as subgroup with ubiquitination, type I IFN pathway, antigen presentation

functioning) (Table 1 and Data S2).

(B) Comparison of clinicopathological characteristics between subgroups.
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differences among the three subgroups in patient age, histologic subtype, tumor size, pathologic stage,

tumor differentiation, or lymphovascular invasion (Figure 1B). Survival analyses also showed that there

were no significant differences among the three subgroups in terms of overall and recurrence-free survival

(Figure S2).

Next, the distribution of cellular components within TME were compared among subgroups, based on he-

matoxylin and eosin (H&E) histological examination. Stromal areas were predominantly occupied by stro-

mal and other cells (macrophages with or without anthracotic pigments, neutrophils, and eosinophils)

rather than lymphocytes, and a small number of lymphocytes were dispersed in stromal areas but not in

tumor areas across the subgroups (Figure 1C). Accordingly, we did not observe any specific findings on

H&E slides and T cell infiltration into tumor mass that could distinguish the three subgroups.

Exome Analysis

To determine whether any inter-subgroup differences at the genome level existed, whole-exome

sequencing analysis was performed for the following three parameters: (1) somatic copy number alteration

(sCNA); (2) somatic mutations, including missense, truncating, INDEL mutations; and (3) TMB. sCNA score

was higher in subgroup 1 than in the other two subgroups (Figure 2A), and the higher sCNA score corre-

sponded to a higher cell cycle signature score and lower immune signature score (p < 0.001 and p = 0.1,

respectively; Mann-Whitney U test) (Figure 2B and Data S3), which is in good agreement with tumor survival

via immune escape (Davoli et al., 2017).

Among the somatic mutations, EGFR, TP53, and CDKN2A had the most frequent mutations in descending

order. EGFR mutation had the highest frequency across the cohort (45%–87%) and the most missense and

inframe mutations, and amplifications, followed by TP53 with missense mutations, and CDKN2A with deep

deletions (Figure 2C); however, TMB level was very low (mode:�2 per Mb), with the highest variance in sub-

group 1 (�15 per Mb), followed by subgroup 3 (�7.5 per Mb), and the lowest variance in subgroup 2 (Fig-

ure 2D). Thus, in this cohort, the high sCNA score and the low TMB level together with the strongmolecular

driver, EGFR mutation, appeared to contribute to the strong immune evasion (Figure 2E).

Immune Cell Profile

To gain insight into the immune landscape and distinctive features in each subgroup, representative types

of immune cells and their subsets were analyzed at the whole transcriptomic level (Figure 3A). Both immune

score (the level of the infiltration of immune cells in tumor tissue) and stromal score (the level of stroma in

tumor tissue) were the highest in subgroup 3 and the lowest in subgroup 1. Subgroup 2 was comparable to

subgroup 3 in the immune score, whereas it was comparable to subgroup 1 in the stromal score (Figure 3B).

In addition, subgroup 2 showed a relatively higher proportion of activated NK cells, CD8 T cells, and reg-

ulatory T cells (p = 7.7 3 10�3, p = 1.5 3 10�5, p = 3.1 3 10�4, respectively), which most probably resulted

from aberrant editing of the peptide-MHC class I complex (Table 1). Furthermore, subgroup 3 showed a

significantly higher proportion of memory resting CD4 cells (p = 3.6 3 10�4). However, the patterns of

CYT, represented by GZMA and PRF1 expression of immune cells in subgroups, were found similar to

the immune score pattern. This suggested that three patterns of immune transcriptome in never-smoker

LUAD might be related to the proportions and types of constituent immune cells in the TME. Characteris-

tics of the immune cell profile are summarized in Figure 3C, showing that immune score was more influ-

enced by both TMB level and sCNA scale (Figure 2E).

Cancer-Immune Gene Expression Analysis

To identify genes that play dominant roles in determining the immune transcriptome profile in each of

three subgroups, gene expression levels were analyzed for each panel in the cancer-immunity cycle, and

the possible cause-effect relationship was inferred between the expression of functionally associated

genes in the pathway (Table 1 and Data S2).

Figure 1. Continued

(C) Spatial distribution of lymphocytes in tumor/stromal area. H&E slide image showed very few lymphocytes in the tumor

nest (first row), and most distributed in the stromal areas (green, second row) across subgroups within the representative

region of interest. The patterns of tumor-infiltrating lymphocytes in each subgroup were indistinguishable by routine

pathological readings.
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Figure 2. Exome-Level Subgroup Analysi

(A) Somatic copy number variations. Somatic copy number variations (amplification or deletion) at the level of

chromosome arms identified by GISTIC analysis were summarized for each subgroup. Each bar represents average of

sCNA ratios across samples. ***p<0.001, Student’s t test.

(B) Relationship of sCNV score with tumor proliferation and immune evasion. Bar charts show relative proportions

between samples with high and low signature scores on two cancer hallmarks (immune and cell cycle signature). Higher-

and lower-level samples were based on > 70th and <30th percentiles, respectively. Signature score was determined by the

average gene expression level of each signature. Density plot showing distribution of sCNV scores, according to immune

score. The x axis is normalized sCNV score across samples. (Immune High: �0.322(G0.127) and Immune Low:

0.704(G0.208)). ***p<0.001, Student’s t test.
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Ubiquitination, Type I IFN Production/Signaling, and TGF-b Signaling

Post-translational modification processes ubiquitination and deubiquitination have been implicated in

the regulation of innate and adaptive immune responses, which both play crucial roles during immune

system development and stimulation of an immune response, ensuring proper functioning of immune

cells (Hu and Sun, 2016). Therefore, any alteration in the ubiquitination system could affect signaling

of cancer-immune genes, especially in the type I IFN pathway and TGF-b signaling panels of the can-

cer-immune cycle. Subgroup 2, unlike subgroups 1 and 3, expressed most ubiquitinating enzyme

genes at an extremely low level, with concomitant low expression of genes involved in type I IFN pro-

duction/signaling and TGF-b signaling pathway. Subgroup 1 showed downregulation of type I IFN

production.

Antigen-Presenting Machinery

Subgroup 1 had significantly low expression of MHC classes I and II and overall antigen processing machin-

ery, including B2M, indicating very poor presentation of tumor neoantigens, if any. Subgroup 2 showed un-

hindered expression of MHC class I, but low expression of peptide-trimming machinery (ERAPs and CANX)

and MHC class II, which led to generation of the MHC class I-bound aberrant peptidome (Lopez de Castro,

2018). In contrast, most patients in subgroup 3 showed proper expression of MHC class II, but low expres-

sion of MHC class I.

NK Cell Activation

No activated NK cells were detected in subgroup 1. Subgroup 2 showed expression of an activated NK

cell-activating receptor, NKp30. However, subgroup 3 showed activation of both types of receptors,

i.e., activating receptors (NKp30, NK44, NK46, and NKG2D) and inhibitory receptors (NKG2A and

CD94).

TME, DCs, and T Cell Activation

Based on examination of gene expression patterns between panels, the overall immune status of TME was

influenced more by inflammation-related processes, including type I IFN signaling, antigen presentation,

and NK cell activation, than by TGF-b signaling in this cohort (Figures 1A and S4). Subgroup 1 showed

increased expression of pro-angiogenic factors (VEGFA and HIF1A), angiogenesis-related chemokines

and their receptors, and the glutamate/glutamine transporter. Low expression of CCR7, CCL19, and

CCL21 likely led to extremely low levels of DC maturation and inefficient trafficking of lymphocytes to

lymph nodes. Subgroup 2, in contrast, showed increased expression of transcription factor BATF3 of

DCs and chemotactic factors (CCL19, CCL21, CXCL13) of naive T cells, central memory T cells, and B cells

in lymph nodes. Expression levels of molecules for T cell maturation and activation (CD2, CD27, PDCD,

ZAP70, LAT, LCK), endosome recycling (RAB4B, RAB11B), and costimulation of T cells, including follicular

helper T cells and regulatory T cells (TNFRSF4 [OX40], TNFRSF14 [LIGHT ligand receptor], TNFRSF18

[GITR]), were upregulated. Subgroup 3 had less immune suppressive TME compared with the other sub-

groups with functional DCmaturation and migration, and most genes related to T cell maturation and acti-

vation were upregulated.

Subgroups 2 and 3 showed similar activation patterns of T cells (i.e., low IFNg, high PD-1, and CXCR3),

whereas significant differences existed in the subsets of activated T cells (Figure 3C). Furthermore, signif-

icant differences occurred between subgroups 2 and 3 at the level of IFNg receptor expression on tumors,

which rendered tumor cells sensitive to IFNg.

Figure 2. Continued

(C) Somatic mutations. From the whole-exome sequencing, 17 genes with most frequent somatic mutations were

selected, identifying 5 different gene aberrations: amplification, deep deletion, truncating mutation, inframe mutation,

and missense mutation.

(D) Tumor mutation burden (TMB) shown for each subgroup. Every subgroup had TMB at the level of <5 per Mb (mode:

�2 perMb). Subgroups 1, 2, and 3 had the least, greatest (up to 14 per Mb), and intermediate (up to 7.5 perMb) variations,

respectively. Most patients, except the outliers with TMB exceeding 5 per Mb, were likely to have immune evasion due to

the extremely low probability of immunogenic neoantigen generation. (Subgroup 1: 1.919(G0.146), Subgroup2:

2.644(G0.720), and Subgroup3: 1.700(G0.166).)

(E) Major features at exome level are summarized. Average numbers of neoantigens in each subgroup were calculated as

described in Methods (Table S1).
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Coherence of Gene Expression, Immune Cell Profile, and Multiplexed Immunofluorescence

Findings

Internal consistencies were examined between cancer-immune gene expression at the panel level and scores

from the immune cell profile such as stromal score, immune score, and CYT from the whole transcriptome anal-

ysis (Figure 3C). A high stromal score indicated the presence of inflammation and angiogenesis in the system,

which is most influenced by type I IFN production/signaling (Liu et al., 2018). Thus, subgroup 1 had the lowest

stromal score, whereas subgroup 3 had the highest, which agrees with the immune cell profile.

Immune score usually refers to the immune cell density in the tumor mass (Galon et al., 2012). Therefore,

with the immune score only, it is difficult to predict spatial distribution of immune cells with respect to

the tumor and stromal cells (Kather et al., 2018). This was confirmed by our observation that subgroups

2 and 3 had relatively high and comparable immune scores, but the expression patterns of genes along

the pathway leading to T cell activation and the distribution of T cells and their subsets were quite different

(Figures 1, 3A, and 3C).

CYT usually refers to cytotoxic immune cells that contain perforin and granzyme B. Subgroup 2 had an in-

termediate CYT score with activated NK cells, CD8 T cells, and regulatory T cells, whereas subgroup 3 had

the highest CYT score with mostly memory resting CD4 T cells as cytotoxic immune cells. As a result, sub-

group 2 seemed to have MHC class I-bound aberrant peptidome due to aberrant editing of antigenic

Figure 3. Subgroup Analysis of Immune Cell Profile by Whole-Transcriptome and Immunofluorescence Analyses

(A) Subgroup-specific distribution of immune cell subsets shown after CIBERT calculation using RNA sequencing expression profiles, indicating

heterogeneous frequencies for each subset. Prominence of CD8 T regulatory T cells in subgroup 2, and B cell naive and memory resting CD4 T cells in

subgroup 3. Major features tabulated in Figure 3C.

(B) Comparison of three subgroup-specific scores, namely, stromal, immune, and cytolytic activity scores (Data S3). Subgroups 1, 2, and 3 were the lowest,

intermediate, and highest, respectively. Subgroup 2 had higher levels of CD8 T and regulatory T cells, yet had lower cytolytic activity scores than subgroup 3,

consisting mostly of memory resting CD4 T cells. (*p < 0.05; **p < 0.01; ***p < 0.001, Student’s t test.)

(C) Most immune cells were not activated in subgroup 1. NK cell activation and high immune score were common features between subgroups 2 and 3.

Subgroup 2 had relatively more CD8 T cells, Treg cells, and lower stromal score, whereas subgroup 3 had significantly more memory resting CD4 T cells and

higher stromal score. A bar graph represents the quantification of the immune cell profile in each subgroup. Each proportion or score was normalized by Z

score across samples, and then averages were taken for each subgroup.

(D) Multiplexed immunofluorescence images showing distribution of T lymphocyte subsets, clearly distinguishable among subgroups. Very few CD8 T and

CD4 T cells in subgroup 1. Subgroup 2 showing sparse CD8 T (arrowC) and CD4 T cells (arrow A) outside the tumor nests, andmore CD4 T andmemory T cells

(CD45RO, arrow B) in subgroup 3 (cyan, pan-cytokeratin in tumor cells; green, CD4; red, CD8; yellow, FOXP3; orange, PD-L1; magenta, CD45RO; blue, DAPI).
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peptides, activating regulatory T cells with T cell receptor (TCR) to suppress the aberrant neoantigen reper-

toire (Akkaya et al., 2019; Weissler and Caton, 2014). Conversely, subgroup 3 had normal expression of

MHC class II, but low level of TMB and low expression of MHC class I molecules, which would result in rapid

Genes Associated Subgroup 1 Subgroup 2 Subgroup 3

UB+ IFN1p- AP- UB- IFN1s- AP- UB+ IFN1+ AP+

(De)Ubiquitination Deubiquitination/

E3 ubiquitin ligase

High Very lowa High

Type I IFN Production Low Very low Higha

Signaling High Very low High

Antigen-presenting

machinery

Antigen processing Low Low Low

MHC class I Low* High Low

MHC class II Low Low High

p-MHC assembly High ab. peptidesb High

Antigen presentation Very few p-MHC MHC-I-bound ab.

peptidomeb
p-MHC-II

TGF-b Signaling High Very low High*

NK cell activation NKp30 Low High High

NKp44 Low Low Low

NKp46 Low Low High

NKG2D Low Low High

NKG2A Low Low High

CD94 Low Low High

DC activation Maturation Low High High

Migration to LN Low Low High

TME Myeloid cell recruitment Low High High

Angiogenesis High Low Low

T cell activation (Treg included)

neoAg-specific fraction PD-1 Low High High

CXCR3 Low High High

IFNg Very low Low Low

Tumor-T cell interaction

T cell responsiveness IFNGR1 Low Very low High

PD-L1 Low Very low High

CXCL9/10/11 Very low Low High

Table 1. Major Features from the 8 Panels of Cancer-Immune Gene Expression

Based on the major features, we temporarily renamed each subgroups as follows: subgroup 1 as subgroup with ubiquitina-

tion functioning, type I IFN production defective, antigen presentation defective (abbreviated as UB + IFN1p- AP-); subgroup

2 as subgroup with ubiquitination defective, type I IFN signaling defective, antigen presentation defective (UB- IFN1s- AP-);

subgroup 3 as subgroup with ubiquitination functioning, type I IFN functioning, antigen presentation functioning (UB +

IFN1+ AP+).
aHigh, low, or very low indicates relative value within this cohort.
bAberrant peptides, aberrant peptidome.
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clearance of the clonal fraction of neoantigen-containing tumor cells by the resultant neoantigen-specific

cytotoxic CD4 T cells, even in small number (Takeuchi and Saito, 2017), and subsequent conversion to

memory resting cells with perforins and granzyme B still retained (Lin et al., 2014).

This immune cell profile agreed with the multiplexed immunofluorescence images regarding spatial distri-

bution of lymphocyte subsets in or around the tumor mass, such that very few lymphocytes were detected

in subgroup 1, even in the stromal area. Subgroup 2 expressed slightly more T cells, and subgroup 3 had a

relative abundance of memory CD4 T cells, mostly positioned in the stromal area with a low level of tumor

infiltration (Figure 3D). As the memory resting CD4 T cells were likely to have been induced by the MHC-II-

carrying tumor cells in subgroup 3 (Table 1), and could be reactivated to cytotoxic CD4 T cells through con-

tact with tumor cells possessing the corresponding epitopes (MacLeod et al., 2010), potential ICB re-

sponders could be found in this subgroup of never-smoker patients with LUAD.

Subgroup Renaming

Major features from the eight panels of analysis of cancer-immune gene expression are summarized in

Table 1. Considering the function or defectiveness in ubiquitination, type I IFN production/signal, and

antigen-presenting machinery, subgroups were renamed accordingly. For example, subgroup 1 was

renamed as subgroup (UB+ IFN1p- AP-), subgroup 2 as subgroup (UB- IFN1s- AP-), and subgroup 3 as sub-

group (UB+ IFN1+ AP+).

T Cell Infiltration and Tumor Killing

It remains unclear how discrepancies in upstream processes of the cancer-immunity cycle (as seen in the

new subgroup names) would determine the modes of T cell activities and behaviors such as tumor infiltra-

tion, tumor recognition, and tumor killing (Trujillo et al., 2018). Therefore, the activation status of T cells and

tumor cells were compared, focusing on seven factors, i.e., NK cell-activating receptors from NK cells, PD-

1, CXCR3, and IFNg from T cells, and IFNg receptor, PD-L1, and CXCL9 from the tumor, of which the last six

factors are directly involved in the activation and trafficking of T cells and their interaction with tumor cells

(Table 1). Overall, it was not possible to see a visible difference in IFNg expression; however, significant

differences in expression levels of the other five factors among subgroups were found. Furthermore, the

pattern of PD-1 and CXCR3 expression level as markers of T cell activation status seemed similar to that

of DC maturation status and NK cell-activating receptor (NKp30), which implies that activated NK cells

can be an indicator of DC maturation and T cell activation.

From these results, high expression levels of NK cell-activating receptors, activated T cell markers (PD-1,

CXCR3, and especially IFNg), and tumor’s T cell recruitment-associated markers (IFNg receptor, PD-L1,

and CXCL9) were necessary for successful T cell infiltration and tumor killing (Higgs et al., 2018). This study

confirmed that IFNg receptor was expressed at a high level in subgroup (UB+ IFN1+ AP+), with proper

functioning of type I IFN signaling and NK cell activation.

Subgroup Enriched with ICB Responders

Based on the analysis, subgroup (UB+ IFN1+ AP+) likely represents potential ICB responders. To confirm,

13 independent never-smoker patients with LUAD who had ICB treatments were studied. In brief, whole-

exome/transcriptome data were obtained from their snap-frozen tumor tissues, which were stratified into

three subgroups using Gaussian mixture model clustering. The patterns in cancer-immune gene expres-

sion in three subgroups including a subgroup with ubiquitination defective in this independent cohort

were found to be very similar to those in the study cohort. Subsequently, we compared the clinical efficacy

determined by the immune response evaluation criteria in solid tumors (irRECIST) with subgroup-specific

patterns of cancer-immune gene expression (Figures 4A and 4B) (Hodi et al., 2018). In particular, we

focused on seven major factors (as mentioned in the previous section) of T cell infiltration and tumor killing

(Figure 4A). Two of nine patients (22%) in subgroup (UB+ IFN1+ AP+) had an initial reduction in tumor size

by 30% or more (partial response). This strongly supported that potential ICB responders very likely be-

longed to this particular subgroup in never-smoker LUAD. As such, Gaussian mixture model clustering

based on the cancer-immune gene panel provided information about the subgroup enriched for the active

cancer-immunity cycle without any prior knowledge of the immune escape points.

From those two partial response cases in this subgroup, we observed that tumor-specific T cells effectively

infiltrated and removed tumor cells upon ICB treatment when patients with activated NK cells (i.e., high
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Figure 4. Expression of Selected Cancer-Immune Genes Determining Tumor-T Cell Interaction in Independent

Cohort

(A) Expression of genes determining tumor-T cell interaction. Biopsied samples from independent cohort of naive 13

never-smoker patients with LUADwere analyzed for cancer-immune gene expression, and their transcriptomic patterns of

genes related to type I IFN production/signaling, antigen-presenting machinery, NK cell activation, T cell activation, and

tumor readiness for T cell recruitment were compared with ICB response. Patients with partial response (IO-NS0-012 and

-013) were found only in subgroup (UB+ IFN1+ AP+), which fits well with the finding from the study cohort. From the four

cases (IO-NS0-010, IO-NS0-011, IO-NS0-012, IO-NS0-013), the concerted expression of six genes such as PD-1, CXCR3,

IFNg, IFNGR1, PD-L1, and CXCL9 was necessary for the successful response to ICB. NR: non-response; PR: partial

response.

(B) Computed tomographic (CT) imaging before and after ICB administration for the two representative cases. In the

upper row, a 57-year-old never-smoker female (IO-NS0-004; subgroup [UB- IFN1s- AP-]) with stage IV EGFR-mutant LUAD

(19 deletion) metastasizing to pleura, brain, bone, and liver received two doses of nivolumab; CT image showed

progressive disease with her partially atelectatic right lung totally collapsed due to tumor invading the right main

bronchus. In the lower row, a 59-year-old never-smoker male (IO-NS0-013; subgroup [UB+ IFN1+ AP+]) with stage IV

LUAD with ALK translocation received two doses of pembrolizumab and then showed a partial response with a complete

resolution of total atelectasis of the left upper lobe.
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level of NKp46) had both high expression of IFNg from activated T cells (i.e., high level of PD-1 and CXCR3)

and PD-L1 and CXCL9 from tumors (high level of IFNg receptor). Taking further into account the individual

heterogeneity present in the subgroup and the larger-scale study, it would be possible to develop more

precise patient selection signatures for ICB treatment.

DISCUSSION

From our approach using the cancer-immune gene expression panels, we could classify the cohort of

never-smoker patients with LUAD with clinicopathological homogeneity and very low level of TMB into

three subgroups. Furthermore, we found that in 15% of the cohort, as a distinct subgroup (UB� IFN1s�
AP�), there was significant downregulation of the ubiquitination system, demonstrating a significant

impact on type I IFN and TGF-b signaling.

We also noted that one structural domain, TMB (neoantigens), and two functional domains, type I IFN pro-

duction/signaling and antigen presentation machinery, were important determining factors for the even-

tual immune response in the tumor-T cell interactions. In this study, we named the functional domains

as the immune escape-initiating domains because significant alterations in genes or gene expression in

these domains at the early stage of the cancer-immunity cycle resulted in significant impacts on tumor-T

cell interactions (i.e., immune escape points) due to unsuccessful binding between neoantigenic pep-

tide-MHC and TCR, including immune evasion, which enabled uncontrolled proliferation of tumor cells.

This inference was supported by two observations in the ICB-treated independent cohort, i.e., presence

of ICB responders in subgroup (UB+ IFN1+ AP+), even if they had low TMB levels and the expression pat-

terns of genes involved in tumor-T cell interactions (Figure 4A). Based on these observations of ours and

other groups, a schematic illustration of this model is shown in Figure 5A, with an emphasis on the immune

escape-initiating domains and their eventual effect on the immune escape points in tumor-T cell

interactions.

In addition to TMB (neoantigens), the nine immune escape points derived from the two immune escape-

initiating domains were found to be critically important for the anti-cancer immune outcome. First, the

type I IFN production/signaling pathway stimulates recruitment and activation of innate immune cells,

including macrophages, NK cells (Muller et al., 2017), and DCs, aiding IFNg secretion by NK cells (Reefman

et al., 2010). Tumor cells express PD-L1 and secrete CXCL9 upon IFNg receptor binding to IFNg (Ayers

et al., 2017). Second, antigen-presenting machinery together with the size and expression level of the an-

tigen repertoire are determining factors for the antigenic peptide-MHC complex in tumor cells, which, with

the help of activated NK cells and matured DC, lead to the generation of neoantigen-specific activated

T cells expressing PD-1, CXCR3, and IFNg. The activated T cells infiltrate tumors through chemokine

CXCL9-mediated migration to kill the tumor cells.

From thismodel, we can deduce that the level of PD-L1 expression ismodulated in the following context: (1) any

alteration in thepathway leading to expression of PD-L1 or its post-translationalmodification (Hsu et al., 2018), (2)

any alteration in the IFNg signalingpathway including expression of IFNg receptor or its post-translationalmodi-

fication (Gao et al., 2016; Garcia-Diaz et al., 2017), (3) IFNg-stimulated chemokine CXCL9 secretion from tumor

cells throughM1macrophage-activatedNKcells in the inflammatoryTME (Bellora et al., 2010), and (4) clonal frac-

tion of tumor cells with neoantigen-MHC and cytotoxic T cells with neoantigen-specific TCR. This could be the

underlying reason why PD-L1 cannot be the absolute predictive marker for ICB treatment. Furthermore, low

CXCL9 levels due to M2-polarized macrophages could not induce T cell infiltration, resulting in the immune-

excluded phenotype (Peranzoni et al., 2018); thus, manipulation of TGF-b levels and/or its signaling in the TME

formacrophagepolarization couldpotentially increase theefficacyof ICB treatment (Nunez et al., 2018).All these

phenomena suggest that the type I IFNpathwayandantigenpresentationarecrucial for appropriate tumor-Tcell

interactions, which require both innate and adaptive immune processes.

To validate the working hypothesis that genes from the type I IFN pathway and antigen-presenting ma-

chinery are crucial for tumor-T cell interaction and determining ICB responses, we need an independent

cohort of patients with LUAD who never smoke with the ICB response and gene expression data. How-

ever, such data are currently not available. Instead, as an alternative, we used the Gene Expression

Omnibus database GSE93157, which contains information of 18 patients with melanoma who never

smoke with their ICB responses and gene expression data from the PanCancer 730-Immune Panel

(Prat et al., 2017).
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Figure 5. Schematic Model for Major Immune Escape-Initiating Domains and Immune Escape Points in Tumor-T

Cell Interaction

(A) Major immune escape points depicted in schematic model, highlighting tumor-T cell interaction at last stage of cancer-

immunity cycle. Briefly, tumor cells express neoantigen as neoantigenic peptide-MHC and IFNg receptor via antigen-presenting

machinery (APM) and type I IFN (IFN1) pathway, respectively. Further, TGF-b levels in the tumor microenvironment determine

macrophagepolarization. Concurrently, activatedmacrophages (M1 type) in the proximity of tumor cells activate IFNg-secreting

NK cells, leading to IFNg receptor activation on tumor cells. In response, tumor cells stimulate PD-L1 expression and CXCL9

chemokine secretion. The activated NK cells enrich mature DCs, which migrate to lymph nodes, activating and proliferating T

cells with surface PD-1, CXCR3, and neoantigen-specific T cell receptors. The activated T cells migrate through the vascular

system, extravasate, and infiltrate into the tumor microenvironment for tumor-T cell interaction. When neoantigenic peptide-

MHC-TCR binding occurs, T cells secrete IFNg and initiate tumor killing. However, when macrophages remain inactivate (M2

type), and NK cells are not activated, tumor-T cell interaction does not occur. Thus, appropriate immune responses (such as T

cell-mediated tumor killing) require at least nine activated molecules in the cancer-immunity cycle, which only occurs with

properly functioning APM and IFN1 pathways in neoantigen-containing tumor cells. Functional alterations in the APM and/or

IFN1 pathway (i.e., immune escape initiating domains) result in immune evasion. Therefore, these nine molecules are regarded

as major immune escape points (7 points in the boxes are measurable). (B) To obtain the evidence for an important role of

immune escape initiating domains in determining the immune response, Gene Expression Omnibus database GSE93157 was

used as an independent cohort. Normalized TICs or IRPs for patients within the cohort were plotted against ICB responses.

*p<0.05, Student’s t test. (C) For another line of evidence, the normalized TICs were plotted against the normalized IRPs. NR: no

response; PR: partial response; PD: progressive disease.
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For the representative values of the expression levels of genes in the type I IFN pathway and antigen-pre-

senting machinery, we selected three genes (IFI16, MYD88, and JAK2) from the type I IFN pathway and four

genes (TAP1, TAP2, PSMB9, and HLA-DQA1) from the antigen-presenting machinery and termed this

group as a tumor-intrinsic classifier (TIC). Similarly, for the representative values of the expression levels

of genes involved in tumor-T cell interaction, we selected six genes (IFNGR1, PD-L1, CXCL9, IFNg, PD-1,

and CXCR3) and termed this group as an immune response predictor (IRP). The expression levels of these

13 selected genes were found to be strongly correlated with the ICB response in patients with LUAD who

never smoke (Figure 4A). Next, we calculated the geometric means of the expression levels of the TIC and

IRP, independently, for each patient, and then normalized the values within the cohort.

We observed a distinctive contribution of the normalized TIC to ICB response, compared with that of the

normalized IRP alone, whereby higher normalized TIC had a more distinctive ICB response (Figure 5B, Data

S4). Furthermore, we found that with a high Pearson’s correlation coefficient, r = 0.52, four of six ICB re-

sponders were clustered in the first quadrant of the normalized TIC and IRP planes (Figure 5C, Data S5).

This supports our working hypothesis that the type I IFN pathway and antigen-presenting machinery (which

are major factors of the immune escape-initiating domain in patients with LUAD who never smoke) are

dominant contributors to tumor-T cell interaction and ICB response, downstream of the cancer-immunity

cycle, through causal relation in never-smoker patients with melanoma as well. We could not observe this

relationship in other patients with cancer who smoke (Data S6).

In summary, we performed in-depth analyses of early-stage never-smoker female patients with LUAD to

understand the immune context within TME. Using our novel panels of cancer-immune genes reflecting

the immune landscape based on the cancer-immunity cycle, we identified three distinct subgroups in im-

mune escape pathways in terms of the immune escape-initiating domains and proposed the immune

escape points involved in tumor-T cell interactions in this clinically homogeneous cohort. Our approach

could play a critical role in understanding the immune evasion mechanism at the individual level, devel-

oping patient selection signatures, and finding new targets or treatment strategies.

Limitations of the Study

Single-cell RNA sequencing, spatial transcriptomic analysis, and comprehensive selection of cancer-im-

mune genes would be needed for more detailed understanding of biological and geographical interaction

between tumor cells and innate and adaptive immune cells at the level of gene expression. Information on

the ICB response of patients with LUAD who do not smoke on a large scale should be accumulated to pro-

vide further substantial evidence of our tentative conclusion that early-stage cancer-immune gene expres-

sion determines the cancer immunity. It remains to be addressed whether distinct immune escape patterns

observed in the study cohort would be specific for the female patients with LUAD who do not smoke, or

could also be observed in male patients with LUAD or other patients with cancer who do not smoke.
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Earlier-phased cancer immunity cycle strongly influences cancer 

immunity in operable never-smoker lung adenocarcinoma 
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TRANSPARENT METHODS 

 

Patients 

Eligible patients had stage I, II, or IIIA NSCLC deemed surgically resectable before enrollment. 

This cohort consisted of never-smoker female patients who underwent curative-intent 

surgery for LUAD (Figure 1C). Most patients had stage I (n = 62) or II (n = 16) disease. 

Additionally, 21 patients with stage IIIA were included in the cohort. and 5 of which (23.8%) 

received neoadjuvant concurrent chemoradiotherapy. All patients, except one, achieved 

complete tumor removal during surgery. Patient samples were obtained from LUAD patients 

who had undergone curative surgery in the Samsung Medical Center. All samples and 

clinical information from medical records were collected with patient written informed 

consent. This study was approved by the Institutional Review Boards of Samsung Medical 

Center (IRB no. 2010-08-063-006) in accordance with the Declaration of Helsinki. 

 

Exome- and transcriptome-seq sample preparation and sequencing 



 ND-

1000 spectrophotometer (ThermoFisher, Waltham, MA, USA). Total RNA integrity was 

assessed using a Bioanalyzer 2100 with an RNA Integrity Number value greater than 8 

(Agilent, Santa Clara, CA, USA). Subsequently, mRNA sequencing libraries were prepared 

according to the manufacturer’s instructions using the Illumina Truseq RNA Prep kit v2. The 

quality of the amplified libraries was verified using an Agilent Bioanalyzer 2100. Sequencing 

of pooled libraries was performed on the HiSeq 2000 sequencing system with paired-end 

reads of 100 bp length (Illumina, San Diego, CA, USA). Deep sequencing data were deposited 

in the Gene Expression Omnibus (GSE110907) database. Whole exome sequencing of 

tumors and matched normal blood samples was performed as described in our previous 

study (Kim et al., 2013). 

 

Exome sequence data analysis 

Sequencing reads were aligned to the University of California Santa Cruz hg19 reference 

genome (downloaded from http://genome.ucsc.edu) using the Burrows-Wheeler Alignment 

tool (BWA) v. 0.6.2 with default settings (http://bio-bwa.sourceforge.net/). PCR duplicate 

reads were marked using Picard-tools-1.8 (http://picard.sourceforge.net/), and data clean-

up steps were performed using GATK-2.2.9 (https://software.broadinstitute.org/gatk/). 

Somatic point mutations were identified with the MuTect tool 

(https://github.com/broadinstitute/mutect) in paired samples and were annotated by 

ANNOVAR (http://annovar.openbioinformatics.org/). 

 

RNA-sequence data analysis 



Reads from the FASTQ files were mapped to the hg19 human reference genome, using STAR 

version 2.5.0a in 2-pass mode (https://github.com/alexdobin/STAR), and gene 

quantification was performed using RSEM (RNA-Seq by Expectation Maximization) 

(https://deweylab.github.io/RSEM/). Expressed genes were defined as a transcript per 

million (TPM) value of more than 10 across all samples to reduce the false positive rate. 

Stromal and immune scores based on the transcriptome were calculated using ESTIMATE. 

Fractions of immune-associated cell types were calculated by CIBERSORT 

(https://cibersort.stanford.edu/) using RNA-seq expression profiles. The immune CYT score 

was measured by taking the geometric mean of GZMA and PRF1 expression values in TPM 

(Rooney et al., 2015). 

 

Calculation of SCNA 

Copy number variations were detected using EXCAVATOR software 

(https://omictools.com/excavator-tool). Significantly recurrent somatic copy number 

alterations were identified by GISTIC analysis (Mermel et al., 2011) with previously applied 

parameter values: a noise threshold of 0.3, a broad length cutoff of 0.5 chromosome arms, a 

confidence level of 95%, and a copy-ratio cap of 1.5 (Zack et al., 2013). Arm and focal SCNA 

levels of each patient were calculated by summing the copy number alterations (Davoli et al., 

2017). Arm-level SCNAs and formal-level SCNVs were determined by length > 98% and 

length < 98% of each chromosome, respectively. 

 

TMB and prediction of candidate neoantigens 

TMB was measured by the number of somatic single nucleotide variants and indel 



mutations per megabase in the coding region (Chalmers et al., 2017). Somatic single 

nucleotide variants included nonsynonymous and synonymous mutations. Non-coding 

alterations were not counted.  

Neoantigens were predicted using MuPeXI v.1.1.3 (https://github.com/ambj/MuPeXI/). 

The three types of human leukocyte alleles (HLA-A, -B, and -C) were identified from the 

RNA-seq data of each patient using seq2HLA 

(https://bitbucket.org/sebastian_boegel/seq2hla). Somatic mutations, gene expression 

counts, HLA types for each patient, and peptide lengths (8-11 mer) were provided as input 

for MuPeXI. Peptides with a half maximal inhibitory concentration (IC50) value ≤ 500 nM 

were considered to have a high binding affinity for the MHC. The top 2% ranked 

neoantigens were finally selected. 

 

Identification of subgroups based on Gaussian mixture models 

Patient subgroups were determined using the Gaussian mixture model. Gene expression 

profiles of cancer immune pathways were clustered by mclust (https://cran.r-

project.org/package=mclust), model-based clustering based on finite Gaussian mixture 

models. The initial partitions were performed by hierarchical model-based agglomerative 

hierarchical clustering. Following, the models were estimated by the expectation-

maximization (EM) algorithm. The optimal model selection was based on Bayesian 

information criterion (BIC). Genes belonging to each functional category were ordered by 

hierarchical clustering. 

 

Histologic examination and quantitative image analysis 



Hematoxylin and eosin (H&E) staining was performed on all paraffin blocks with tissue 

samples, and an H&E slide from each case was selected and scanned using the Vectra Polaris 

quantitative slide scanner (PerkinElmer). Phenochart (PerkinElmer, Ver. 1.0.9) was used to 

view whole slide images and extract at least 10 regions of interest (ROIs) per sample. The 

size of each ROI was 682 x 510 μm. Images were analyzed using inForm software 

(PerkinElmer, Ver. 2.4). For tissue segmentation, the software was trained to automatically 

segment each image into tumor, stroma, and non-tissue regions. Cell segmentation to 

identify individual cells was conducted based on nuclear segmentation using hematoxylin 

counterstain as a parameter of nuclear component. Based on morphology, the following 

phenotypes were assigned to segmented cells for training: tumor, lymphocytes, stromal 

cells, and others (e.g. macrophages, neutrophils, and eosinophils). Misclassified cells were 

corrected in consecutive rounds of training, until at least 30 cells in each phenotype were 

selected for training. Cell segmentation data were then exported from inForm software 

as .txt files and processed using TIBCO Spotfire (PerkinElmer). Only cells with phenotype 

confidence level, which is the probability of the winning phenotype reported by inForm, of > 

80% were included in the analysis. 

 

Multiplexed immunofluorescence 

Multiplexed immunofluorescence (IF) staining was performed using the Opal 7 Solid Tumor 

Immunology Kit (PerkinElmer), according to the manufacturer’s protocol. In brief, formalin-

fixed paraffin-embedded tissue slides were deparaffinized with xylene and rehydrated. 

Antigen retrieval was performed using AR9 or AR6 buffer and microwave treatment. 

Following incubation with the first antibody CD45RO (clone UCHL1), the secondary antibody 



was incubated using Opal Polymer HRP. Opal 690 dye was used for visualization of CD45RO, 

followed by microwave treatment to remove primary and secondary antibodies. The 

process was repeated in the following order of antibodies/fluorescent dye: FOXP3 (clone 

206D)/Opal 650, CD8 (clone 4B11)/Opal 620, PD-L1 (clone E1L3N)/Opal 570, CD4 (clone 

EP204)/Opal 540, pan-cytokeratin (clone AE1/AE3)/Opal 520. DAPI was applied to visualize 

nuclei, and multiplexed slides were imaged using the PerkinElmer Vectra Polaris quantitative 

slide scanner. The scanned images were analyzed using Inform software (PerkinElmer, Ver. 

2.4.1). 

 

Quantification and statistical analysis 

Statistical analyses were performed using R v.3.1.2 software (https://www.r-project.org/). P 

values were derived from two-tailed tests, and those less than 0.05 were considered 

statistically significant. 
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Figure S1. Unsupervised clustering of never smoker lung adenocarcinoma by T-cell 
signature according to Gajewski's method, Related to Figure 1 

 

A. Consensus clustering of 3,095 genes correlated with T-cell signature (CD8A, CCL2, CCL3, CCL4, CXCL9, 
CXCL10, ICOS, GZMK, HLA-DMA, HLA-DMB, HLADOA, and HLA-DOB).  

B. Principal component analysis (PCA) of three distinct subtypes.  

C. Expression patterns of 12 T-cell signature genes. 
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Figure S2. Comparison of overall and recurrence-free survival between subgroups, Related 
to Figure 1 

 

 

  



Figure S3. Gene panels in this study superimposed on the Chen & Mellman’s cancer-
immunity cycle, Related to Figure 1 

 

 

 

  



Figure S4. Three distinct subgroup-dependent cancer-immune gene expression within the 
individual panels of the cancer-immunity cycle in never smoker LUAD, Related to Figure 1 

  



Table S1. Average number of mutations and neoantigens for each 
subgroup of patients, Related to Figure 2 

     

  All 
Subgroup 

1 2 3 

Mutations per patient  57.3 55.73 79.33 51.13 

Neoantigens per patient 88.67 86.16 129.93 76.77 

Neoantigens per mutated gene 3.65 3.57 3.66 3.72 

Neoantigens per mutation 3.36 3.25 3.46 3.41 
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