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Abstract

An increasing number of genetic variants have been implicated in autism spectrum disorders 

(ASD), and the functional study of such variants will be critical for the elucidation of autism 

pathophysiology. Here, we report a de novo balanced translocation disruption of TRPC6, a cation 

channel, in a non-syndromic autistic individual. Using multiple models, such as dental pulp cells,

iPSC-derived neuronal cells and mouse models, we demonstrate that TRPC6 reduction or 

haploinsufficiency leads to altered neuronal development, morphology, and function. The 

observed neuronal phenotypes could then be rescued by TRPC6 complementation and by 

treatment with IGF1 or hyperforin, a TRPC6-specific agonist, suggesting that ASD individuals 

with alterations in this pathway might benefit from these drugs. We also demonstrate that MeCP2 

levels affect TRPC6 expression. Mutations in MeCP2 cause Rett syndrome, revealing common 

pathways among ASDs. Genetic sequencing of TRPC6 in 1041 ASD individuals and 2872 

controls revealed significantly more nonsynonymous mutations in the ASD population, and 

identified loss-of-function mutations with incomplete penetrance in two patients. Taken together, 

these findings suggest that TRPC6 is a novel predisposing gene for ASD that may act in a 

multiple-hit model. This is the first study to use iPSC-derived human neurons to model non-

syndromic ASD and illustrate the potential of modeling genetically complex sporadic diseases 

using such cells.
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Introduction

Autism spectrum disorders (ASDs) are complex neurodevelopmental disorders that are 

characterized by deficits in reciprocal social interaction and communication as well as the 

presence of repetitive behaviors and highly restricted interests. While the allelic ASD 

architecture remains unclarified, there is definitive evidence of a high degree of locus 

heterogeneity and a contribution from rare and de novo variants 1. However, determining a 

contributing role from low-frequency variants is challenging, particularly for variants that 

are transmitted in a non-Mendelian fashion, carry intermediate risks, and are present in 

conjunction with a tremendous amount of apparently neutral rare variations in the human 

genome 2–4.

Reprogramming somatic cells to a pluripotent state by transient over-expression of specific 

factors enables the development of neuronal models of genomes that are pre-disposed to 

human diseases 5. We recently demonstrated the utility of induced pluripotent stem cells 

(iPSCs) for investigating the functional consequences of mutations in the gene encoding the 

methyl CpG binding protein-2 (MeCP2) in neurons from patients with Rett syndrome 

(RTT), a syndromic form of ASD 6, 7. Neurons derived from RTT-iPSCs display several 

alterations compared with controls, such as increased frequency of de novo L1 
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retrotransposition, decreased soma size, altered dendritic spine density, and reduced 

excitatory synapses. Therefore, functional studies using neuronal cultures derived from 

iPSCs from ASD individuals are an important tool to explore the contribution of rare 

variants to ASD etiology. Furthermore, by capturing the genetic heterogeneity of ASDs, the 

iPSC model might clarify whether ASD individuals carrying distinct mutations in disparate 

genes share common cellular and molecular neuronal phenotypes.

Here, we characterize the breakpoints of a de novo balanced translocation t(3;11)(p21;q22) 

in an ASD individual that disrupts the TRPC6 gene. TRPC6, a gene not previously 

implicated in ASD, encodes for the canonical transient receptor potential 6 channel, a 

voltage-independent, Ca2+-permeable cation channel involved in dendritic spine and 

excitatory synapse formation 8, 9. The biological impact of the genetic alteration in the index 

case and its functional relationship to ASD etiology was evaluated through several analyses 

using the affected individual’s dental pulp cells (DPCs), mouse models, and neural cells 

derived from iPSCs. To test the hypothesis that different ASD-related variants can produce 

similar biological effects, we compared the neuronal phenotypes of iPSC-derived neurons 

from the TRPC6-mutant (TRPC6-mut) individual with those of patients with RTT 

syndrome. Finally, we conducted a large-scale case-control sequence analysis of TRPC6, 

which revealed a significant association of mutations in this gene with ASD.

Materials/Subjects and Methods

For More detailed information, please refer to Supplementary Methods.

Patient ascertainment

ASD individual F2749-1 (TRPC6-mutant)—The 8-year-old proband is the only child of 

non-consanguineous healthy parents. He was born at term after an uncomplicated pregnancy 

with no malformations recognized at birth. He was noted to have delayed motor skills 

development and poor social responsiveness and was brought for medical examination at 2 

years of age. His hearing was tested and found to be normal. He did not suffer from any 

other chronic medical conditions, and there was no history of head trauma or seizure. On 

examination, the individual met the DSM-IV criteria for autistic disorder, and the diagnosis 

was supported by the administration of the Childhood Autism Rating Scale (CARS). The 

electroencephalogram and magnetic resonance imaging were normal. The individual did not 

have dysmorphic features, except for synophrys, which is also present in other members of 

the father’s family. A molecular test for Fragile-X Syndrome was normal. Karyotype 

analysis revealed a balanced translocation (46, XY, t[3;11] [p21;q22]) in the proband that 

was not found in the parents. Parenthood was confirmed through genotyping of 

microsatellite markers. Controls: As controls, we used six non-affected individuals that are 

non-related to the individual. Cells from two control individuals (USC1 and P603) were 

selected for reprogramming follow up studies. This project was approved by the Ethics 

Committees of the institutes at which the study was conducted. After a complete description 

of the study, written informed consent was provided by the parents.
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Analysis of genomic copy number variations

Genomic DNA was hybridized to the HumanHap300 Genotyping BeadChip from Illumina 

(La Jolla, CA, USA) according to manufacturer’s protocol to detect possible CNVs in the 

ASD individual. The data were analyzed using PennCNV 10 and QuantiSNP 11 software, 

and the results were compared to the database of genomic variants (http://projects.tcag.ca/

variation/) to classify the identified CNVs as rare or common variants.

Fluorescent in situ hybridization

Chromosomes for fluorescent in situ hybridization (FISH) analysis were prepared from 

colchicine-treated lymphocytes of the proband. Bacterial artificial chromosomes (BACs) 

encompassing the genomic regions of interest were selected from the RPCI-11 library 

(Roswell Park Cancer Institute) using the UCSC genome browser (http://genome.ucsc.edu/, 

assembly Mar. 2006, NCBI36/hg18). The BACs were fluorescently labeled by nick 

translation and hybridized to the metaphase spreads using standard protocols 12.

Exome sequencing

Exome sequencing and analysis were performed by BGI Tech (Shenzhen, China). Briefly, 

genomic DNA samples were randomly fragmented into segments with a base-pair peak of 

150 to 200 bp, and library enrichment for exonic sequences was performed using Agilent 

SureSelect Human All Exon 51M (for individual and mother) or Agilent SureSelect Human 

All Exon 71M (for the father). The captured libraries were loaded on Hiseq2000, and the 

sequences of each individual were generated as 90-bp paired-end reads. The coverage for

the three individuals was 80-fold. Burrows-Wheeler Aligner (BWA) was used for the 

alignment. Single nucleotide polymorphisms (SNPs) were identified by SOAPsnp, small 

insertion/deletion (InDels) were detected by Samtools/GATK, and single nucleotide variants 

(SNVs) were detected by 1/35 Varscan.

Isolation and culture of human DPCs

DPC lineages were obtained as described elsewhere 13. Briefly, dental pulp tissues were 

digested in a solution of 0.25% trypsin for 30 minutes at 37°C. The cells were cultivated in 

DMEM/F12 media (Gibco) supplemented with 15% fetal bovine serum (Hyclone, TX), 1% 

penicillin/streptomycin, and 1% non-essential amino acids and maintained under standard 

conditions (37°C, 5% CO2). The DPC control lineages used for the whole-genome 

expression analysis were donated by Dr. Daniela Franco Bueno and Gerson Shigueru 

Kobayashi of the University of São Paulo. One of the DPC control lineages used for iPSC 

generation was a kind gift from Dr. Songtao Shi (University of Southern California).

RNA extraction

RNA samples were extracted from lymphocytes, DPCs, and iPSCs using Trizol reagent 

(Invitrogen, CA) and treated with Turbo DNA-free (Ambion). Sample concentrations and 

quality were evaluated using a Nanodrop 1000 and gel electrophoresis.
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Microarray studies

For microarray experiments, 100 ng of RNA was converted to cDNA, amplified, labeled, 

and hybridized to the Human Gene 1.0ST chip from Affymetrix following the 

manufacturer’s protocol. The chips were scanned using the GeneChip® Scanner 3000 7G 

System, and a quality control was processed using Affymetrix® Expression Console™ 

Software. The data were normalized using the robust multi-array average (RMA) method 14, 

and the differentially expressed genes were selected with the significance analysis of 

microarrays method (SAM) 15 and RankProd 16. To select DEGs, we used a p-value < 0.05 

adjusted for the false discovery rate (FDR) and 3,000 permutations. Functional annotation, 

canonical pathways, and networks analyses were performed using Ingenuity Pathways 

(http://www.ingenuity.com/). The CREB target genes database (http://natural.salk.edu/

CREB/search.htm 17) was used to determine whether the DEGs found are regulated by the 

transcription factor CREB.

Gene expression analyses by qPCR

RNA samples were reversed transcribed into cDNA using the Super Script III First Strand 

Synthesis System (Invitrogen, CA) according to the manufacturer’s instructions. The 

reactions were run on an Applied Biosystem 7500 sequence detection system using SYBR 

Green master mix (Applied Biosystems, CA). The primers were designed using 

PrimerExpress v. 2.0 software (Applied Biosystems, CA), and specificity was verified by 

melting curve analysis using 7500 System SDS v. 1.2 Software (Applied Biosystems, CA). 

Quantitative analysis was performed using the comparative threshold cycle method 18. 

GeNorm (www.medgen.ugent.be/genorm/) was used to determine the stability of the 

reference genes GAPDH, HPRT1, SDHA, and HMBS and to generate a normalization factor 

for the expression values of the target genes. The principles of analysis of geNorm have 

been described 19. Microarray validation was performed using the one-tailed unpaired t-test 

with Welch’s correction to compare the qPCR expression values obtained for the ASD 

individual and controls. A concentration of 10 µM hyperforin was used to treat the DPCs of 

a control sample for 15 and 30 minutes and 1, 3, 6, 24, and 48 hours. The samples were 

prepared in triplicate, and the results were normalized by the values obtained for an 

untreated sample. Primers used on this work are described in Table S1.

Western blotting

Rabbit anti-TRPC6 (ProScience, 1:250; Sigma, 1:1000); mouse anti-TRPC6 (Abcam, 

1:1000); rabbit anti-CREB (Cell Signaling, 1:500); rabbit anti-P-CREB (Cell Signaling, 

1:500); and mouse anti-β-actin (Ambion, 1:5000) antibodies were used as primary 

antibodies. Horseradish peroxidase-conjugated goat anti-rabbit and goat anti-mouse 

(Promega, 1:2000) antibodies were used as secondary antibodies. ECL Plus (Amersham) 

was used for signal detection. For Semiquantitative analysis of p-CREB signal, intensity was 

corrected with respect to CREB/β-actin relative quantification. A paired t-test analysis with 

a p-value < 0.05 was used to compare the control and ASD individual p-CREB signal 

intensity normalized data.
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Cellular reprogramming

The iPSCs were obtained from the DPCs of the ASD individual and a control. Briefly, DPCs 

were transduced with retroviruses containing OCT4, SOX2, KFL4, and MYC to induce 

overexpression of these genes 5. Two days after transduction, the cells were transferred to a 

co-culture system with murine embryonic fibroblasts (mEFs) maintained with DMEM/F12 

(Invitrogen, CA), 20% Knockout Serum Replacement (Invitrogen, CA), 1% non-essential 

amino acids, and 100 µM beta-mercaptoethanol and treated with 1 mM valproic acid 

(Sigma) for 5 days. The iPSC colonies were identified after approximately 2 weeks in this 

culture system, transferred to Matrigel (BD Biosciences)-coated plates, and maintained in 

mTeSR media (Stem Cell Technologies).

Immunocytochemistry

The cells were fixed with PBS containing 4% paraformaldehyde for 10 minutes and then 

incubated at room temperature for 1 hour in a blocking solution containing 5% donkey 

serum and 0.1% Triton X-100. The primary antibodies were incubated overnight at 4°C, 

followed by incubation with secondary antibodies (Jackson ImmunoResearch) for 1 hour at 

room temperature. Images were captured with a Zeiss microscope. The primary antibodies 

used included the following: Tra-1-81 (1:100, Chemicon); Nanog and Lin28 (1:500, R&D 

Systems); Sox2 (1:250; Chemicon); human Nestin (1:100, Chemicon); Tuj1 (1:500, 

Covance); MAP2 (1:100; Sigma); VGLUT1 (1:200, Synaptic Systems); GABA (1:100, 

Sigma); Musashi (1:200, Abcam); Ctip2 (1:200, Abcam); and Tbr1 (1:200, Abcam).

Teratoma formation

iPSC colonies from five semi-confluent 100 mm dishes (1–3 ×106 cells) were harvested 

after treatment with 0.5 ng/mL dispase, pelleted, and suspended in 300 µL Matrigel. The 

cells were injected subcutaneously into nude mice; 5 to 6 weeks after injection, teratomas 

were dissected, fixed overnight in 10% buffered formalin phosphate, and embedded in 

paraffin. The sections were stained with hematoxylin and eosin for further analysis. The 

protocols were approved by the University of California San Diego Institutional Animal 

Care and Use Committee.

Fingerprinting and karyotype

Standard G-banding karyotype and DNA fingerprinting analysis were performed by Cell 

Line Genetics (Madison, WI).

Neuronal differentiation

The iPSC colonies were plated on Matrigel (BD Biosciences)-coated plates and maintained 

for 5 days in mTSeR media (Stem Cell Technologies). On the 5th day, the media was 

changed to N2 media [DMEM/F12 media supplemented with 1X N2 supplement 

(Invitrogen) and 1 µM dorsomorphin (Tocris). After 2 days, the colonies were removed from 

the plate and cultured in suspension as embryoid bodies (EBs) for 2–3 weeks using N2 

media with dorsomorphin during the entire procedure. The EBs were then gently dissociated 

with accutase (Gibco), plated on Matrigel-coated dishes, and maintained in NBF media 

(DMEM/F12 media supplemented with 0.5X N2, 0.5X B7 supplements, 20 ng/mL FGF and 
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1% penicillin/streptomycin). The rosettes that emerged after 3 or 4 days were manually 

selected, gently dissociated with accutase, and plated in dishes coated with 10 µg/mL poly-

ornithine and 5 µg/mL laminin. This NPC population was expanded using NBF media. To 

differentiate the NPCs into neurons, the cells were re-plated with 10 µM ROCK inhibitor 

(Y-27632, Calbiochem) in the absence of FGF, with regular media changes every 3 or 4 

days.

Ca2+ influx studies

Intracellular Ca2+ levels were monitored using Fluo-4 AM. The cells were incubated for 45 

minutes at 37°C with 2.5 µM Fluo-4 AM and superfused for 5 minutes with HBSS buffer 

before the beginning of the recording. A concentration of 10 µM hyperforin (a kind gift from 

Dr. Willmar Schwabe GmbH & Co, Karlsruhe, Germany) was used in combination with 100 

µM FFA (Sigma-Aldrich) for TRPC6 activation. Images were captured at 6-second intervals 

for 30 minutes using a Biorad MRC 1024 confocal system attached to an Olympus BX70 

microscope. The drugs were applied at the 3rd minute using a perfusion system. A triplicate 

of each individual was analyzed. The average fluorescence of the individual cells was 

quantified and normalized to the resting fluorescence level for each cell. The plugins 

MultiMeasure and MeasureStacks from ImageJ software were used to measure fluorescence 

intensity. The analyses were performed blinded to avoid bias.

Cell cycle analysis

A total of 1×106 NPCs were harvested from a single-cell suspension with PBS washing 

buffer (PBS and 1% serum) and fixed in 75% EtOH for at least 2 hours at 4°C. After 

washing twice with washing buffer, the cells were stained with 200 µL propidium iodine 

(PI) solution (20 µg/mL propidium iodide, 200 µg/mL RNase A, and 0.1% Triton X-100). 

Multiple NPC samples from the TRPC6-mutant individual and controls were analyzed by 

fluorescence-activated cell sorting (FACS) on a Becton Dickinson LSRI, and cell cycle 

gating was examined using FLOWJO-Flow Cytometry Analysis Software.

Quantification of neuronal morphology and synaptic puncta

Neuronal tracing was performed on neurons for which the shortest dendrite was at least 

three times longer than the cell soma diameter using a semi-automatic ImageJ plug-in 

(NeuroJ). Spines and VGLUT1 puncta were quantified after three-dimensional 

reconstruction of z-stack confocal images. The same density of neurons was plated in each 

condition. Final cell density was confirmed by DAPI and Synapsin-EGFP-positive cells. 

Only Synapsin-EGFP positive neurons with spines were scored. Images were taken 

randomly for each individual and from two different experiments, using at least two 

different clones. Quantification was performed blind to the cell genotype. The total dendritic 

length includes the summed length of all dendrites per neuron and dendritic segment count 

represents the total number of dendritic segments per neuron. No distinction was made 

between different types of spines due to the unviability of this assessment using the 

presented method. All experiments were performed with independent clones and different 

controls. All analyses were performed blinded to avoid bias. For the rescue experiments, 10 

ng/mL IGF1 (Peprotech) or 0.5µM hyperforin was added to neuronal cultures for 2 weeks.
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Chromatin immunoprecipitation (ChIP) assay

ChIP assays were performed following the manufacturer’s protocol using a ChIP assay kit 

(Active Motif). The antibodies used were anti-MeCP2 and IgG (both from Upstate). We 

validated our antibody conditions for the ChIP assay with a previously characterized MeCP2 

target, brain-derived neurotrophic factor (Bdnf) promoter in exon IV, and a negative region 

in another region of the promoter region as previously described 20, 21. The input was 5% for 

all samples. All ChIP assays were controlled by performing parallel experiments with either 

no antibody or with anti-IgG pull downs. After IP, the recovered chromatin fragments were 

subjected to qPCR using primers for the human TRPC6 promoter region. The primers used 

for human TRPC6 promoter ChIP were as follows: forward primer 1, 

5’AACAGCTTGGAAACGTGGGA3’; reverse primer 1, 

5’AAAGAGGCCAACAACCTGCT3’; forward primer 2, 

5’TCGCAGTGACGGAAGGAAAA3’; and reverse primer 2, 

5’AAACGCCAGATGTTCCCAGT3’. The qPCR values were normalized to the IgG 

precipitation and are shown as fold enrichment. All experiments were performed in 

triplicate.

Construction and characterization of retroviruses

Self-inactivating murine oncoretroviruses were engineered to express short-hairpin RNAs 

(shRNAs) under the control of the U6 promoter and green fluorescent protein (GFP) or the 

Discosoma sp. red fluorescent protein DsRed under the control of the Ef1 alpha promoter. 

shRNAs against TRPC6 and a non-silencing scrambled control shRNA were cloned into 

retroviral vectors as previously described 22. The following shRNA sequences were selected 

and cloned into retroviral vectors: shRNA-control, 5’-TTCTCCGAACGTGTCACGT-3’; 

shRNA-TRPC6-1, 5’-TCGAGGACCAGCATACATG-3’; and shRNA-TRPC6-3, 5’-

CTCAGAAGATTATCATTTA-3’.

For rescue experiments, a resistant form of murine TRPC6 (TRPC6-WTR) was engineered 

to harbor six silent mutations in the region targeted by shRNA-TRPC6-1. The TRPC6 

targeting sequence was mutated from AAT CGA GGA CCA GCA TAC ATG to AAC CGC 

GGC CCT GCT TAT ATG by site-directed mutagenesis. The resistant form of TRPC6 was 

cloned into a retroviral vector driven by the ubiquitin promoter followed by a bicistronic 

expression of GFP and a WPRE stabilization sequence. The specificity and efficiency of 

shRNA-control, shRNA-TRPC6-1, shRNA-TRPC6-3, and the TrpC6-WT constructs were 

verified by co-transfection into HEK-293 cells. Cell lysates were collected and analyzed by 

western blot analysis with anti-TRPC6 antibodies (Sigma).

Primary hippocampal cultures

Hippocampal neuronal cultures were prepared from C57BL/6 E18 embryonic mice. Briefly, 

hippocampi were dissected, dissociated with trypsin, and plated at a density of 300 

cells/mm2 on glass coverslips coated with poly-L-lysine and laminin. The hippocampal 

neurons were maintained in Neurobasal medium (Gibco) supplemented with B27 

(Invitrogen). Neurons were treated with either shRNA scramble control or shRNA targeting 

TRPC6 at DIV12-14 and were fixed for further analysis at DIV21.
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In vivo stereotaxic injection of engineered retroviruses into the dentate gyrus of adult 
mouse hippocampus

High titers of engineered retroviruses were produced by cotransfection of retroviral vectors 

and vesicular stomatitis viral envelope into the 293 GP cell line as described previously 23. 

Supernatants were collected 24 hours post transfection, filtered through 45-µm filters, and 

ultracentrifuged. The viral pellet was dissolved in 14 µL of PBS and stereotaxically injected 

into the hilus of anesthetized mice at four sites (0.5 µL per site at 0.25 µL/minute). The 

following coordinates were used: posterior = 2 mm from the bregma, lateral = ±1.6 mm, 

ventral = ±2.5 mm; posterior = 3 mm from the bregma, lateral = ±2.6 mm, ventral = ±3.2 

mm. Adult C57BL/6 mice (6–8 weeks old, female) were used for the study. All procedures 

followed institutional guidelines.

Immunostaining and confocal analysis

Coronal brain sections (40 µm thick) were prepared from retrovirus-injected mice. Images of 

GFP+ cells were acquired on a META multiphoton confocal system. Neuronal positioning 

was analyzed by acquiring a single-section confocal image of a GFP+ cell body stained with 

DAPI and assigning it to one of the four domains as illustrated. A minimum of 10 GFP+ 

cells were randomly chosen from the each animal, and at least three animals were used for 

each experimental condition, as previously described 24. Statistical significance was 

determined by ANOVA. Dendritic development was analyzed by via a three-dimensional 

reconstruction of the entire dendritic tree from Z-series stacks of confocal images. The 

images were converted to two-dimensional projections for analysis of dendritic length and 

branch number using NIH ImageJ software and the NeuronJ plugin, as described 

previously 24. As a measure of arborization, Sholl analysis was performed by counting the 

number of dendritic crossings at a series of concentric circles at 10-µm intervals from the 

cell body using the Sholl analysis plugin.

Slice electrophysiology

Mice housed under standard conditions were anesthetized at 3 weeks post-retroviral 

injection, and acute coronal slices were prepared as previously described 25. The brains were 

removed and placed in an ice-cold cutting solution containing the following: 110 mM 

choline chloride; 2.5 mM KCl; 1.3 mM KH2PO4; 25 mM NaHCO3; 0.5 mM CaCl2; 7 mM 

MgCl2; 10 mM dextrose; 1.3 mM sodium ascorbate; 0.6 mM sodium pyruvate; and 5 mM 

kynurenic acid. Slices were cut into 300-µm-thick sections with a vibratome (Leica 

VT1000S) and transferred to a chamber containing ACSF: 125 mM NaCl; 2.5 mM KCl; 1.3 

mM KH2PO4; 25 mM NaHCO3; 2 mM CaCl2; 1.3 mM MgCl2; 1.3 mM sodium ascorbate; 

0.6 mM sodium pyruvate; and 10 mM dextrose (pH 7.4, 320 mOsm), saturated with 95% 

O2, 5% CO2 at 35°C for 20 minutes. The slices were then maintained at room temperature 

for at least 45 minutes prior to placement in the recording chamber. The slices were 

maintained at room temperature and used for the following 4 hours. Electrophysiological 

recordings were performed at 34°C. Microelectrodes (4–6 MΩ) were filled with a solution 

containing the following: 120 mM potassium gluconate; 15 mM KCl; 4 mM MgCl2; 0.1 

mM EGTA; 10.0 mM HEPES; 4 mM MgATP; 0.3 mM Na3GTP; and 7 mM 

phosphocreatine (pH 7.4, 300 mOsm). The whole-cell patch-clamp configuration was used 
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in the current-clamp mode. Approximately 10–20 giga-ohm seals were obtained with 

borosilicate glass microelectrodes. The electrophysiological recordings were obtained at 32–

34°C. Neurons and dendrites were visualized through differential interference contrast 

microscopy. The data were collected using an Axon Instruments 200B amplifier and 

acquired via a Digidata 1322A at 10 kHz.

Electrophysiology recordings using cultured human iPSC-derived neurons

Whole-cell patch clamp recordings were performed using cells cultured in the absence of 

astrocytes after approximately 6 weeks of differentiation. Before the recordings, the growth 

media were removed and replaced with a bath solution comprising the following: 130 mM 

NaCl; 3 mM KCl; 1 mM CaCl2; 1 mM MgCl2; 10 mM HEPES; and 10 mM glucose (pH 

7.4) at room temperature (22–24°C). The electrodes for whole-cell recordings were pulled 

on a Flaming/Brown micropipette puller (Model P-87, Sutter Instrument, Novato, CA) from 

filamented borosilicate capillary glass (1.2 mm OD, 0.69 mm ID, World Precision 

Instruments, Sarasota, FL). The electrodes were fire polished, and the resistance values were 

typically 2–5 MΩ for the voltage-clamp experiments and 7–9 MΩ for the current-clamp 

experiments. The pipette solution contained the following: 138 mM KCl; 0.2 mM CaCl2; 1 

mM MgCl2; 10 mM HEPES (Na+ salt); and 10 mM EGTA, (pH 7.4). The osmolarity of all 

solutions was adjusted to 290 mOsM. All chemicals were purchased from Sigma-Aldrich 

(St. Louis, MO), with the exception of MgCl2 (J.T. Baker, Phillipsburg, NJ). Current traces 

in voltage clamp were leak-subtracted. Liquid junction potentials were nulled for each 

individual cell with the Axopatch 1C amplifier (Molecular Devises, Sunnyvale, CA). The 

analyses were performed in a double-blinded manner to avoid bias.

Behavioral tests in mice

The three-chamber test was used to evaluate the social behavior of TRPC6 wild type (WT), 

heterozygous (HET) and knockout (KO) mice. To evaluate repetitive behavior, the mice 

were initially observed for 10 minutes in the dark, and the time spent in grooming and 

freezing behavior was measured. After 5 minutes of habituation under a light condition, a 

small cage with a never-met animal was introduced to one side of the box, and an empty 

cage was introduced to the other side. The time spent in each chamber and the time spent 

during nose-to-nose interaction between the animals was measured. Adult mice (6–8 weeks 

old, male) with a C57BL/6 background were used for the study. At least 12 animals per 

group were utilized as biological replicates. The experimenter was blind to the genotypes. 

The data were analyzed using the non-parametric Kruskal-Wallis ANOVA. The analyses 

were performed in a double-blinded manner. All procedures followed institutional 

guidelines.

Mutation screening of TRPC6

Cohorts—The clinical characteristics of the Simons Simplex Collection (SSC) have 

previously been described in detail 26. The following exclusion criteria were used to filter 

the cases: 1) ineligible/ancillary status as per SSC Family Distribution List v13; 2) missing 

genotyping data; 3) genotyping call rate < 95%; 4) discrepancy of genotyping data with 

recorded gender; 5) Mendelian inconsistencies or cryptic relatedness (up to and including 
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second-degree relatives); and 6) non-European ancestry. A total of 1041 of 1195 cases were 

included in the final case cohort. The National Institute of Neurological Disorders and 

Stroke (NINDS) Neurologically Normal Caucasian Control Panel of unrelated adult controls 

do not have a personal or family history (first-degree relative) of neuropsychiatric illness 

(http://ccr.coriell.org/Sections/Collections/NINDS/DNAPanels.aspx?Pgld=195&coll=ND). 

Of the 953 samples from the DNA panels NDPT020, 079, 082, 084, 090, 093, 094, 095, 

096, 098, and 099, 942 passed the quality control checks described above. Additional 

sequence data for TRPC6 were derived from unrelated northern European (NE) adults 

present in an exome-sequencing database in our laboratory. Genotyping and whole-exome 

data were obtained for 2076 individuals, of which 1930 passed the quality control checks 

described above.

Mutation screening—For 1031 SSC cases and all 942 NINDS controls, amplification of 

the coding exons and splice sites was performed using lymphoblastoid cell line-derived 

genomic DNA via multiplex PCR using RainDance technology (Table S2; Lexington, MA, 

USA). The resulting PCR products were subjected to high-throughput sequencing on a 

Genome Analyzer IIx (Illumina, San Diego, CA, USA) at the Yale Center for Genomic 

Analysis. An in-house script was used to generate a list of variants (see Supplementary 

Materials for more details). Whole-exome data for 10 additional SSC cases were available 

and filtered for nonsynonymous singleton variants with a SAMtools SNP quality score > 50. 

Variant confirmation was performed on blood-derived genomic DNA for the cases because 

it was available and on lymphoblastoid cell line-derived genomic DNA for NINDS controls 

using conventional PCR and Sanger sequencing. Segregation analysis was performed on 

blood-derived genomic DNA for cases for which family members were available. 

Chromatograms were aligned and analyzed for variants using the Sequencher v4.9 program 

(Gene Codes, Ann Arbor, MI, USA). For the NE controls, whole-exome sequencing data 

were filtered by the same parameters used for the 10 SSC cases: nonsynonymous singleton 

variants with a SAM tools SNP quality score > 50. No read threshold was used to maximize 

sensitivity over specificity. These variants were not confirmed by Sanger sequencing, but 

the filtering parameters typically lead to a 70% confirmation rate in our experience. 

Therefore, we have included the maximum possible number of variants from the NE control 

cohort. To obtain the exome data, genomic DNA from both the 10 SSC probands and 1930 

NE controls was enriched for exonic sequences using NimbleGen capture and sequenced by 

the Illumina Genome Analyzer IIX or HiSeq2000. The novelty and singleton status of all 

variants were determined by comparing all three cohorts and screening dbSNP137 and 

Exome Variant Server v.0.0.15 (NHLBI GO Exome Sequencing Project (ESP), Seattle, WA, 

URL: http://evs.gs.washington.edu/EVS/), accessed 11/01/2012. All p values for mutation 

burden are two-tailed and calculated from Fisher’s exact test.

Results

Characterization of the t(3;11)(p21;q22) translocation breakpoint and exome sequencing

We identified an 8-year-old male autistic individual carrying a de novo 46, XY, t(3;11)

(p21;q22) translocation by G-banding karyotyping of lymphoblastoid cells. No gain or loss 

of genetic material was observed near the breakpoint areas via a genome-wide array analysis 
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(Figure 1a). Only a duplication (104.225.150 bp - 104.339.273 bp) on chromosome 14 was 

identified, which was previously shown to be a common copy number variant (CNV; http://

projects.tcag.ca/variation/). Fluorescent in situ hybridization (FISH) analysis revealed that 

BAC probes RP11-780O20 and RP11-109N8 span the breakpoint on chromosome 3p21, 

while probes RP11-3F4 and RP11-1006P7 map distal and proximal to the breakpoint, 

respectively (Figure 1b, c). This narrowed the breakpoint to an interval of approximately 15 

kb spanning the gene encoding the Vpr-binding protein (VPRBP), indicating that this gene 

was disrupted. Similarly, the breakpoint on chromosome 11q22 was mapped to a region 

spanned by probes RP11-141E21 and RP11-153K15, distal to RP11-315B9 and proximal to 

RP11-942D19 (Figure 1d, e), suggesting disruption of the TRPC6 gene, which was 

confirmed by the use of additional strategies.

We first measured the expression levels of TRPC6 exons 4, 6, 12, and 13 in the lymphocytes 

of the ASD individual, his parents, and six non-affected control individuals by quantitative 

real-time PCR (qPCR) (Figure S1a). In the ASD individual’s parents and in six other 

individual controls, exons 6, 12, and 13 had similar expression levels as exon 4. In the ASD 

individual, however, the expression levels of exons 12 and 13 were reduced by 60% 

compared to exon 4. After sequencing all TRPC6 exons, we found that the individual was 

heterozygous for two common polymorphisms: one mapping to exon 6 (rs12366144) and 

the other to exon 13 (rs12805398). However, sequencing of cDNA from the individual’s 

lymphocytes revealed heterozygosity only for the polymorphism in exon 6 (Figure S1b). 

Parentage was confirmed through genotyping of microsatellite markers (Figure S1c). These 

results demonstrate that TRPC6 has biallelic expression and that the heterozygosity loss in 

exon 13 in the individual’s cDNA can be explained by TRPC6 disruption. Accordingly, 

TRPC6 is transcribed up to the breakpoint, which is located between exons 6 and 12. We did 

not identify any pathogenic change in TRPC6 exons upon sequencing the individual’s DNA 

(data not shown). We also did not identify any extra band in the protein extracts from 

individual’s cells using a N-terminal antibody, indicating that a truncated TRPC6 form is 

unlikely to be a byproduct of the translocation (Figure S1d).

Disruption of TRPC6, VPRBP, and several other unknown genes might contribute to the 

ASD phenotype. To identify other genetic alterations in this ASD individual, we performed 

exome sequencing on the individual and compared the result to those for his parents. Exome 

sequencing analysis revealed 50 de novo, rare, nonsynonymous variants and three frameshift 

insertions/deletions in the individual. Consultation with AutismKB 27 indicated that none of 

the other genes harboring genetic variants are associated with ASD, with the exception of 

the cyclic adenosine monophosphate-specific (PDE4A) gene, for which lower levels of 

expression have been observed in the brains of autistic individuals 28. We also observed an 

alteration in the ATXN3 gene, linked to the spinocerebellar ataxia-3 disease in humans. All 

genetic variants are presented in Table S3.

TRPC6 disruption leads to transcriptional alterations and dysregulation of CREB 
phosphorylation

To determine gene transcription due to genetic perturbations in the ASD individual carrying 

the novel chromosomal translocation, we conducted a global expression analysis comparing 
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the individual’s dental pulp cells (DPCs) to six control samples. DPCs can be easily isolated 

from the deciduous teeth of ASD individuals via a non-invasive procedure 29. DPCs have an 

ectodermic neural crest origin, express several neuronal markers, and have proven to be a 

useful model to study ASD 30–32. We identified 67 differentially expressed genes (DEGs) 

between the ASD individual and non-affected controls (P<0.05; Table S4). Functional 

annotation analysis revealed that 16 (24%) of these genes have a role in nervous system 

development and function (Table 1). We confirmed the reduction of TRPC6 expression 

(P<0.01) but not VPRBP (Figure 2a). The reduced level of TRPC6 expression is likely due 

to nonsense-mediated decay or rearrangement of regulatory elements caused by the 

translocation. Moreover, PDE4A, ATXN3 and DOCK3 (another neuronal gene 33 present 

near the break point on chromosome 3, Figure 1b) were also not differentially regulated in 

the individual’s DPCs (Figure 2a). TRPC6 is a Ca2+-permeable, nonselective, cation channel 

involved in neuronal survival, growth cone guidance, and spine and synapse formation, 

biological processes that have previously been implicated in ASD etiology 8, 9, 34–36. The 

function of VPRBP (Vpr-binding protein) is less clear and may include DNA replication, S-

phase progression, and cellular proliferation 37. Given the time-consuming nature of 

additional functional analyses, we elected to focus on additional genetic and functional 

studies of TRPC6, which has not been previously associated with ASDs.

Using the CREB-target genes database (http://natural.salk.edu/CREB/), we determined that 

8 of the 16 functionally relevant DEGs are regulated by CREB, a transcription factor that is 

activated upon Ca2+ influx through TRPC6 8. Of the functionally relevant DEGs, we 

evaluated 6 CREB-target genes (INA, MAP2, NPTX1, CLDN11, PCDH10, and EPHA4) and 

two other genes (SEMA3A and CDH6) by quantitative PCR (qPCR) to validate the 

microarray experiments. We measured dysregulated expression of CDH6 (-2.68-fold, 

P<0.05), INA (−2.64-fold, P<0.05), MAP2 (−2.79-fold, P<0.05), and CLDN11 (4.07-fold, 

P<0.001) in the individual compared with controls in the same direction observed in the 

microarray analysis (Table 1). To validate that TRPC6 haploinsufficiency is leading to 

transcriptional dysregulation of these genes, we treated a control DPC culture with 

hyperforin plus flufenamic acid (FFA) and measured the expression levels of the same 

candidate genes over 48 hours (Figure 2b, c and Figure S1e). Hyperforin specifically 

activates TRPC6 and FFA increases the amplitude of the currents through this channel 38–40. 

If the candidate genes are regulated through TRPC6 signaling, we expect a change in their 

expression levels opposite to the observed change in the TRPC6-mut individual. After a 48-

hour treatment, we observed the expected correlation for five of the eight genes. While the 

expression levels of SEMA3A, EPHA4, and CLDN11 were significantly reduced (−28-fold, 

−3.2-fold and −4.76-fold, respectively), MAP2 and INA displayed 20- and 10-fold increases 

in expression, respectively. These results validate the microarray data and support the 

hypothesis that the selected genes are regulated by the TRPC6 pathway.

We measured CREB phosphorylation in the DPCs of the individual and a control to assess 

the functional effect of TRPC6 disruption. Stimulation of DPCs with hyperforin plus FFA 

induced a significantly reduced level of increased phosphorylated CREB (p-CREB) in the 

individual’s DPCs (30.3±0.7%) compared to control (48.6±2.3%; P<0.005) after 15 

minutes. After 30 minutes, p-CREB levels in the individual’s DPCs (6.3±2.1%) were also 
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significantly lower compared to the control (20.9±2.1%; P<0.05) (Figure 2d and e). Taken 

together, these results demonstrate that several of the functionally relevant DEGs identified 

in the microarray studies are controlled via TRPC6 signaling, likely through CREB 

phosphorylation, suggesting that TRPC6 disruption influences neuronal cell function.

Generation of neural cells from ASD individuals

To further evaluate the effect of TRPC6 haploinsufficiency on neural cell function, we 

generated iPSCs from DPCs from the ASD individual and two control individuals (Figure 

S2 and Table S5 and S6). We chose to reprogram DPCs because these cells develop from 

the same set of early progenitors that generate neurons. Furthermore, the neurons derived 

from iPSCs generated from DPCs express higher levels of forebrain genes, many of which 

are implicated in ASD 41. We fully characterized three clones from each individual and used 

at least two different clones for follow up experiments. A summary of the clones used for 

each experiment can be found in Table S6. Neural progenitor cells (NPCs) and cortical 

neurons from iPSCs were obtained using a modified protocol from our previous 

publication 6. Briefly, iPSC colonies on Matrigel were treated with dorsomorphin under 

FGF-free conditions until confluence. Pieces of iPSC colonies were grown in suspension for 

2–3 weeks as embryoid bodies (EBs) in the presence of dorsomorphin (Figure 3a). The EBs 

were then dissociated and plated to form rosettes. The rosettes were manually selected and 

expanded as NPCs (Figure 3a). These NPCs were negative for the pluripotent marker OCT4 

and positive for early neural-specific markers such as Musashi-1 and Nestin (Figure 3b and 

Figure S3a). To obtain mature neurons, NPCs were plated with ROCK inhibitor and 

maintained for 3–4 additional weeks under differentiation conditions. At this stage, the cells 

were positive for the pan neuronal marker Tuj1 (β-III-Tubulin) and expressed the more 

mature neuronal markers synapsin I (SYN1) and microtubule-associated protein 2 (MAP2; 

Figure 3c). These cells expressed genes typically found in the cortex, including CTIP2, 

important for the differentiation of subcortical projecting neurons; TBR1, critical for cortical 

development and ABAT, a marker for GABAergic neurons, encoding for the 4-

aminobutyrate aminotransferase protein and responsible for the catabolism of GABA 

neurotransmitter. (Figure S3a). Expression of NESTIN indicates the presence of NPCs and 

the expression of S100B and GFAP are indicative of glia cells, suggesting a mixed cell 

population at this stage (Figure S3a). In our cultures, the presynaptic SYN1 puncta were 

frequently adjacent to the postsynaptic marker HOMER1, suggesting the presence of 

developed synapses (Figure S3b). Using immunostainning, we also detected expression of 

the inhibitory neurotransmitter γ-aminobutyric acid (GABA) in 13% of the neurons, and 

22% were positive for vesicular glutamate transporter-1 (VGLUT1), a marker for excitatory 

neurons, in both controls and ASD subjects (Figure 3c–e). Our protocol generated a 

consistent population of forebrain neurons, confirmed by the co-localization of pan-neuronal 

and subtype-specific cortical markers, such as 16% of Ctip2 (Layers V and VI) and 6% of 

Tbr1 (Layers I and VI; Figure 3d–e). Expression of peripherin and En1, markers for 

peripheral and midbrain neurons, respectively, was not detected. We did not observe a 

significant variability in these subtypes of neurons between the control and ASD 

backgrounds (Figure S3a). Next, we determined the functional maturation of the iPSC-

derived neurons using electrophysiological methods. Whole-cell recordings were performed 

using cells that had differentiated for at least 6 weeks in culture. Both controls and ASD- 
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neurons showed action potentials evoked by somatic current injections (Figure 3f–h and 

Figure S3c and d). Therefore, our data indicate that somatic cell reprogramming did not 

affect the ability of iPSC-derived neurons to mature and become electrophysiologically 

active.

TRPC6 disruption does not affect NPC proliferation

TRPC1, another member of the transient receptor potential channel family, is involved in 

NPC proliferation mediated by FGF 42. Therefore, we investigated whether reduction of 

TRPC6 expression levels affects the cell cycle profile. No difference was observed when 

comparing the percentage of cells in G1 (56.2±5.0% and 47.8±10.5%, P>0.2), S (30.6±3.0% 

and 36.0±6.4%, P>0.2), and G2/M (10.1±1.4% and 14.3±4.8%; P>0.2) phases between 

control and TRPC6-mut iPSC-derived NPCs, indicating that TRPC6 likely does not play a 

role in NPC proliferation, in contrast to TRPC1 (Figure S4a).

Ca2+ influx is reduced in TRPC6-mutant NPCs

The role of TRPC6 in dendritic spine formation depends on a pathway that involves Ca2+ 

influx through the channel 8. To test if changes in intracellular Ca2+ levels might be altered 

in TRPC6-mut neural cells upon TRPC6 activation, we stimulated iPSC-derived NPCs from 

the TRPC6-mut individual and a control with hyperforin plus FFA. This combination of 

drugs induced transient and repetitive increases in intracellular Ca2+ concentrations in both 

TRPC6-mut- and control-derived NPCs. The TRPC6 activation-induced Ca2+ oscillation 

peak was significantly higher in control NPCs compared with TRPC6-mut NPCs (Figure 

4a). The average amplitude of the Ca2+ increase over baseline in the 100 cells analyzed was 

reduced by 30% in the TRPC6-mut NPCs (1.9±0.08-fold) compared with the control sample 

(2.7±0.2-fold; P<0.001) when stimulated with hyperforin and FFA (Figure 4b).

TRPC6 signaling regulates gene expression in neuronal cells

To validate our DPC findings, we examined the expression of some neuronal genes in NPCs 

in response to TRPC6 activation (Figure S4b). After a 48h hyperforin treatment, SEMA3A 

expression was reduced (0.6±0.05-fold, P<0.05), whereas INA and MAP2 again showed 

increased expression (2.6±0.09-fold and 1.8±0.1-fold; P<0.001). These results parallel our 

DPC expression analysis and support the hypothesis that TRPC6 signaling is important for 

the regulation of genes involved in neuronal function.

TRPC6 disruption alters the neuronal phenotype

To determine if TRPC6 disruption influences spine formation and synaptogenesis, we 

investigated neurons derived from TRPC6-mut and control iPSCs. To avoid variability from 

reprogramming, all experiments were performed with different iPSC clones and independent 

experiments. All biological replicates and iPSC clones used in each experiment are 

summarized in Table S6. The neurons derived from this ASD individual exhibited a 60% 

reduction (P<0.01) in TRPC6 protein levels as measured by western blot (Figure 4c and d). 

We first examined neuron morphology by infecting cells with a previously described 

lentiviral vector containing the EGFP sequence under the control of the synapsin gene 

promoter (syn::EGFP) 6. By measuring the size of neurites and their ramifications, we 
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verified that the TRPC6-mutant neurons are shorter in total length (1782±101.2 and 

2666±153.7 pixels; P<0.001) and less arborized (3.7±0.2 and 8.7±0.5 vertices; P<0.001) 

than the controls (Figure 4e–g). Moreover, the density of dendritic spines in TRPC6-mutant 

neurons was reduced (7.4±0.5 spines per 20µm of dendrite length) compared with control 

neurons (12.9±0.8 spines; P<0.001) derived from several individuals (Figure 4h–j, Figure 

S3e). TRPC6 expression was previously shown to regulate spine density 8. Thus, to confirm 

that the alterations observed in this ASD individual were caused by TRPC6 

haploinsufficiency, we downregulated TRPC6 expression in control neurons using a 

specific, pre-validated shRNA in a lentiviral vector. Neurons derived from control iPSCs 

expressing shTRPC6 exhibited a significant reduction in spine density (6.0±0.5 spines) 

compared with control neurons expressing a scrambled shRNA (12.5±0.7 spines; P<0.0001; 

Figure 4j). Even further, restoring TRPC6 expression in the TRPC6-mut neurons using a 

lentiviral vector expressing wild-type TRPC6 (Figure S4c–d) rescued these morphological 

alterations, increasing total neuronal length (3051±133.4 pixels; P<0.001), arborization 

(8.9±0.6 vertices; P<0.001), and dendritic spine density (11.9±0.9 spines; P<0.001) to 

control levels (Figure 4e, f, and h). Interestingly, the specific activation of the wild type 

TRPC6 in mutant neurons by hyperforin was also sufficient to rescue these morphological 

phenotypes in our culture conditions (Figure 4e, f and h).

TRPC6 is mainly expressed in glutamatergic synapses and its loss interferes with synapsin I 

cluster density in pre-synaptic sites of hippocampal neurons, suggesting that this gene has an 

important role in the regulation of excitatory synapse strength 9. Quantifying VGLUT1 

puncta in MAP2-labeled neurons confirmed that the TRPC6-mutant neurons had a 

significantly lower density of VGLUT1 puncta (4.6±0.3 puncta per 20µm of dendrite length) 

compared with independent clones isolated from several independent controls (10.3±0.4 

puncta; P<0.001) (Figure 4k–l, Figure S3g). To determine if TRPC6 haploinsufficiency 

contributed to the lower density of VGLUT1 puncta, we treated TRPC6-mut neurons with 

hyperforin to specifically stimulate TRPC6. After 2 weeks of treatment, the neurons 

exhibited a significant increase in the number of VGLUT1 puncta compared with untreated 

cells (7.4±0.5 puncta; P<0.05) (Figure 4k). Control neurons expressing shTRPC6 also 

exhibited a lower density of VGLUT1 puncta, indicating that loss of TRPC6 function affects 

the formation of glutamatergic synapses (P<0.01) (Figure 4m–n). In addition, 

overexpression of TRPC6 in the TRPC6-mut neurons was able to rescue synapse numbers 

(8.0±0.6 puncta per 20µm of dendrite length; P<0.001) to control levels, as measured by 

synapsin I puncta (Figure 4o–p). Finally, electrophysiological recordings revealed that the 

Na+ currents of TRPC6-mutant neurons (28.38±7.5 pA) were impaired compared to controls 

(154.4±45.9 pA; P<0.0001) (Figure 4q–r, Figure S3e).

TRPC6 and MeCP2 share a similar molecular pathway

Certain neuronal phenotypes (reduction of spine density and glutamatergic synapses) 

associated with TRPC6 function loss are similar to those previously described for loss of 

MeCP2 function in human neurons 6. MeCP2 genetic alterations have been recognized in 

several non-syndromic ASD individuals 43–50, and reduced MeCP2 expression in brains of 

autistic individuals has been reported 51, 52. In addition, two independent studies have 

reported that MeCP2 regulates TRPC6 expression in the mouse brain, likely through an 
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indirect mechanism 53, 54. Thus, we investigated whether MeCP2 acts upstream of TRPC6 in 

human neurons. We used two iPSC clones from a female RTT patient carrying the T158M 

MeCP2 mutation, which results in persistent X chromosome inactivation 6. Each clone 

expresses a different MeCP2 allele, a wild type or mutant version of the MeCP2 gene. We 

then differentiated both clones into neurons and evaluated TRPC6 protein expression levels. 

The TRPC6 expression level was reduced by 40% in the clone carrying the non-functional 

version of MeCP2 compared to the wild type control clone (61.67±6.0% and 99.3±1.2%; 

P<0.01), indicating that MeCP2 levels affect TRPC6 expression in human neurons (Figure 

4s). This observation supports MeCP2 acting upstream of TRPC6 in the same molecular 

pathway to affect neuronal morphology and synapse formation. We next investigated 

whether MeCP2 could occupy regions of the human TRPC6 promoter. Chromatin 

immunoprecipitation (ChIP) followed by quantitative PCR (qPCR) revealed high levels of 

MeCP2 in association with the TRPC6 promoter region in human neurons, suggesting a 

potential mechanism of transcriptional regulation (Figure 4t, Figure S4f).

Our data suggest that the molecular pathway involving MeCP2 and TRPC6 is a rate-limiting 

factor in regulating glutamatergic synapse number in human neurons. Administration of 

insulin-like growth factor-1 (IGF-1) promotes the reversal of RTT-like symptoms in a 

mouse model 55 and of molecular alterations in RTT human neurons 6, and is currently in 

clinical trials for RTT patients 56. To investigate whether the potential convergence of 

molecular mechanisms underlying RTT and non-syndromic autism suggests shared 

therapeutic benefits, we treated TRPC6-mutant neurons with full-length IGF-1 (10 ηg/mL). 

Interestingly, we observed a significant increase in TRPC6 protein levels after treatment. 

Moreover, Psd-95 and synapsin I protein levels were also upregulated by IGF-1 (P<0.01; 

Figure 4c and d). IGF-1 treatment also rescued the glutamatergic synapse number in 

TRPC6-mutant neurons as measured by VGLUT1 puncta (9.2±0.6 puncta per 20µm of 

dendrite length; P<0.01), suggesting that the drug treatment could correct this neuronal 

phenotype (Figure 4k).

TRPC6 downregulation compromises neuronal development in vivo

In vitro experiments in rodent primary neurons have shown that Trpc6 levels affect spine 

density and excitatory synapses 9, 57. To corroborate our findings from human derived 

neurons, we looked to examine the effect of Trpc6 loss in a rodent model. We validated two 

shRNAs (#1 and #3) against mouse Trpc6 by western blot analysis and used both for further 

experiments (Figure S4g–h). Using this shRNA targeting Trpc6, we transduced mouse 

primary hippocampal neurons. The neurons expressing shRNA targeting Trpc6 

demonstrated reduced spine density (7.5±0.5 and 11.4±0.8 spines per 20µm of dendrite 

length; P<0.001) and fewer synapses (5.6±0.5 and 7.7±0.5 puncta per 20µm of dendrite 

length; P<0.01) versus neurons transduced with a shRNA scramble control (Figure 5a and 

b). Thus, as described above, we determined that TRPC6 downregulation causes similar 

neuronal alterations in human and rodent neurons. We next looked to validate the cell 

autonomous effect of TRPC6 loss of function in vivo by taking advantage of adult 

neurogenesis in the hippocampus 58. Using retroviruses to target newborn neurons, we 

delivered the shRNAs against mouse Trpc6. Trpc6 downregulation led to migration defects 

and reduced neuronal dendritic arborization (Figure 5c–f). Moreover, whole-cell patch 
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clamping to record action potentials revealed a significant reduction in the firing rate of 

neurons expressing shRNAs against Trpc6 compared with controls (Figure 5g–i). To 

demonstrate the contribution of Trpc6 to these phenotypes in vivo, we rescued the migration 

defects by co-transfecting the shRNA with an expression construct for an shRNA-resistant 

form of TRPC6-WT (TRPC6-WTR; Figure 5d, Figure S4h).

TRPC6 knockout (KO) mice 59 display reduced exploratory activity in a square open field 

and elevated star maze compared with control siblings 60. Limited environmental 

exploration is commonly associated with ASD individuals 61. Thus, we decided to 

investigate whether the TRPC6 KO mouse displays other ASD-like behaviors. We assessed 

the social interaction and repetitive behaviors of these animals, but observed no significant 

differences between wild-type controls (WT) and heterozygotes (HET) or WT and KO mice 

(Figure 5j). Together, these data demonstrate loss or reduction of TRPC6 in a rodent model 

induces neuronal abnormalities paralleling our findings in the TRPC6-mut iPSC-derived 

neurons, such as reduced neuronal arborization, spine density and synapse numbers.

Mutation screening of TRPC6

Based on the initial observation of TRPC6 disruption by a chromosomal breakpoint, we 

established a narrow hypothesis focusing on TRPC6 to conduct a single gene case/control 

association study. We screened targeted high-throughput sequencing data from all coding 

exons and splice sites of TRPC6 in 1041 ASD cases from the Simons Simplex Collection 

(SSC) 26 and 942 ancestrally matched controls from the NINDS Neurologically Normal 

Caucasian Control Panel (http://ccr.coriell.org/Sections/Collections/NINDS/). A summary of 

the quality control metrics of the high-throughput sequencing is presented in Table S7. We 

focused on novel splice sites, missense, and nonsense mutations that were observed only 

once across all of our cohorts and not present in the dbSNP137 and 6503 exomes available 

from the Exome Variant Server (EVS, v.0.0.15). We reasoned that these variants were most 

likely to be deleterious and subject to purifying selection. Moreover, the study of variants 

observed only once, in combination with case-control matching for ancestry, represents a 

more rigorous approach to protecting against population stratification 62. Table S8 lists all 

such variants in TRPC6. We observed significantly more novel nonsynonymous singleton 

mutations in cases compared with controls (10/1041 cases versus 1/942 controls; p = 0.013, 

OR = 9.127, 95% CI = 1.211-191.027, Fisher exact test, two-tailed). To confirm the low 

mutation rate observed in this control sample, we examined the whole exome-sequencing 

data from an in-house database and identified an additional 1930 northern European (NE) 

controls who clustered tightly with the HapMap CEU cohort. We evaluated the coding 

exons and splice sites of TRPC6 and, to maximize sensitivity, did not set a minimum read 

threshold to identify all novel nonsynonymous singleton variants, which are listed in Table 

S5. An omnibus analysis revealed an even more significant over-representation of such 

variants in cases (10/1041 cases versus 4/2872 controls; p = 0.001, OR = 6.954, 95% CI = 

2.008-26.321, Fisher exact test, two-tailed). Because our results indicate that TRPC6 

disruption leads to haploinsufficiency of the corresponding protein, two of the case variants 

are particularly noteworthy: M1K, which disrupts the start codon; and Q3X, which is a very 

early premature stop codon. Unfortunately, live cells from these individuals were not 

available for follow-up functional studies. No TRPC6 mutations affecting the start codon or 
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nonsense mutations were identified in a total of 7445 controls: 942 NINDS neurologically 

normal Europeans and 6503 exomes from the EVS (4300 European-American, 2203 

African-American). Segregation analysis of the case variants revealed that each was 

inherited from an apparently unaffected parent, suggesting that these variants are 

incompletely penetrant, as has been previously observed for a wide range of ASD mutations 

such as Shank3 63 and CNTNAP2 64. Thus, although these genetic variations cannot be 

considered as causal mutations, they might represent risk factors for ASD. No TRPC6 CNVs 

have been described in ASD (http://projects.tcag.ca/autism_500k).

Discussion

A rapidly increasing number of ASD risk regions are being identified, and there is now 

considerable effort focused on moving from gene discovery to understanding the biological 

influences of these various mutations 2–4, 65–67. The development of relevant human-derived 

cellular models to study ASDs represents a complementary strategy to link genetic 

alterations to molecular mechanisms and complex behavioral and cognitive phenotypes 68. 

Here, we identified the disruption of the TRPC6 gene by a balanced de novo translocation in 

a non-syndromic ASD individual. TRPC6 is involved in the regulation of axonal guidance, 

dendritic spine growth, and excitatory synapse formation 8, 9, 35, processes that have been 

consistently implicated in ASD etiology 69–72. To explore if TRPC6 disruption could result 

in such neuronal alterations, we made use of several different cellular models.

Global transcriptional studies of DPCs derived from the ASD individual and expression 

analysis upon activation of TRPC6 in DPCs and NPCs suggested that TRPC6 signaling 

regulates the transcription of genes involved in neuronal adhesion, neurite growth, and 

axonal guidance. The abnormal dysregulation found in the ASD individual might be 

triggered, at least for some genes, by reduced levels of phosphorylated CREB, a 

transcription factor activated by TRPC6 signaling 8. CREB controls a complex regulatory 

network involved in memory formation, neuronal development, and plasticity in the 

mammalian brain, processes that are compromised in ASD 73–75.

Reprogramming the DPCs from the ASD individual to a pluripotent state allowed us to 

explore the functional consequences of TRPC6 disruption in human neuronal cells. Ca2+ 

influx was aberrant in NPCs derived from the ASD individual, suggesting that Ca2+ 

signaling-dependent mechanisms were compromised in these cells. Ca2+ signaling pathways 

have previously been implicated in ASD etiology; mutations in different voltage-gated Ca+2 

channels and Ca+2-regulated signaling molecules have been identified in ASD 

individuals 76–79. This result, combined with the measured protein levels, reveals that 

disruption of TRPC6 leads to a functionally relevant haploinsufficiency, making the 

existence of a novel disease-relevant protein resulting from a TRPC6 and VPRBP 

combination unlikely.

In human neurons, TRPC6 haploinsufficiency causes other functional and morphological 

alterations that reflect defects in axonal and dendritic growth, such as shortening of neurites, 

a decrease in arborization, and a reduction in dendritic spine density. Alterations in these 

phenotypes were already been described for post-mortem or iPSC-derived ASD 
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neurons 80, 81. Analysis of neurons derived from the ASD individual’s iPSCs also revealed a 

reduction of VGLUT1 puncta density, in agreement with previous work demonstrating that 

TRPC6 expression levels can modulate glutamatergic synapse formation in rat neurons 9. 

Alterations in glutamatergic neurotransmission have been identified in individuals with 

syndromic forms of ASD: dysregulation of the metabotropic glutamate receptor 1/5 

(mGluR1/5) pathway has been well documented in Fragile-X syndrome, and neurons 

derived from RTT patient iPSCs also present a reduction in the number of VGLUT1 

puncta 6, 82, 83. In addition, a reduction in glutamatergic transmission was observed in 

Shank3 heterozygous mice, an ASD mouse model 84. Finally, Na+ currents were also 

decreased in ASD individual’s neurons. This result is in agreement with previous findings 

that demonstrate that TRPC6 channels participate in Na+ cell entry 38. Decreased Na+ 

current densities have previously been reported in other ASD models 85.

Due to the high degree of locus heterogeneity, it is challenging to identify additional 

individuals carrying similar rare variants in the ASD population. Therefore, we used 

complementary functional assays such as loss-of-function experiments and mouse models to 

validate the observation that reduction in TRPC6 expression levels leads to abnormal 

neuronal phenotypes and is important for neuronal homeostasis. Moreover, we have 

demonstrated that several of the phenotypic alterations seen in the TRPC6-mut neurons 

could be rescued by both using hyperforin, which activates the channel, and expressing 

wild-type TRPC6. These TRPC6 loss-of-function and complementation assays underscore 

its importance for neuronal homeostasis. Based on the results obtained from our different 

cellular models, this is likely due to TRPC6 influence on Ca2+-signaling dependent 

mechanisms and neuronal transcriptional regulation. The common altered neuronal 

phenotypes shared by the TRPC6-mutant individual and RTT patients support the idea that 

ASD caused by different genetic mechanisms affect common pathways. Indeed, our data 

suggest that MeCP2 may act upstream of TRPC6, regulating its expression. Previous mouse 

studies 53, 54 suggested similar findings but failed to show a direct link between MeCP2 and 

the TRPC6 promoter through ChIP assays, likely due to the poor conservation between the 

promoter regions in these two species. Additional studies using large samples of idiopathic 

ASD individuals will help address this hypothesis.

Our findings also provide insights supporting the testing of novel drugs in ASD such as 

hyperforin, a drug that specifically activates TRPC6 38, 86, or IGF-1, which might increase 

not only TRPC6 protein levels but also other synaptic components. Therefore, individuals 

with alterations in this pathway might benefit from these drugs. These defects could also be 

rescued by activating the AKT/mTOR pathway using IGF-1. The TRPC6 KO mice exhibit 

reduced exploratory interest, a typical ASD-like behavior, but no impaired social interaction 

or repetitive movements. The lack of some ASD-like behaviors in mouse models is common 

and can be attributed to the inherent differences between human and mouse genetic 

backgrounds and neural circuits 87–90. Alternatively, other genetic alterations may be 

required to develop the full autistic phenotype in this mouse model. Accumulating evidence 

favors the multiple-hit model in a significant proportion of ASD individuals as well as in the 

case of the ASD individual described here 64, 91–94. In fact, while our functional data 

demonstrate that TRPC6 has a crucial role in synaptogenesis and is involved in pathways 
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previously associated with ASD, our mutation screening data suggest rare TRPC6 variants 

may have a more moderate contribution to the disease. Our sequencing findings revealed 

TRPC6 loss-of-function mutations in two ASD families with incomplete penetrance of the 

phenotype, supporting the multi-hit hypothesis for ASD. Indeed, the individual studied here 

also presents other rare genetic variants, such as in the ASD associated gene PDE4A or even 

VPRBP, that might contribute to his phenotype. However, this does not diminish the impact 

of TRPC6 to the phenotype, as our experiments using hyperforin or TRPC6 

complementation rescued the observed cellular alterations. This suggests that while other 

genetic alterations present in the individual might augment the observed phenotypes, TRPC6 

disruption is the predominant contributor to the abnormal neuronal function in this ASD 

individual.

Thus, our results suggest TRPC6 as a novel predisposing gene for ASD that likely acts in 

combination with other genetic variants to contribute to autistic phenotypes. Our work 

demonstrates that individual-specific iPSC-derived neurons can be used to correlate novel 

variants in ASD individuals to the etiology of these highly complex disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mapping the breakpoints in the ASD individual with the 46, XY, t(3;11)(p21;q22) 
karyotype
(a) The allele frequency distribution plot for chromosomes 3 and 11 generated by SNP array 

genotyping showed no gain or loss of genetic material on these chromosomes. (b) The 

schematic view of the BAC probes used and the surrounding breakpoint area on 

chromosome 3. RP11 probes marked in red span the breakpoint, while the black ones do not. 

The shared region between probes RP11-780O20 and RP11-109N8 narrows the breakpoint 

area to a region inside the VPRBP gene. The blue arrows indicate open reading frames. (c) 
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FISH imaging showing that RP11-780O20 probe (red signal) binds to normal and derivative 

chromosome 3 and to derivative chromosome 11, indicating that the probe spans the 

breakpoint (arrows). (d) A schematic view of the BAC probes used and the surrounding 

areas on chromosome 11. A shared region between probes RP11-153K15 and RP11-141E21 

places the breakpoint in TRPC6. (e) FISH image showing the BAC probe RP11-153K15 

(green signal) bound to normal chromosome 11 and both derivatives chromosomes 3 and 11 

(arrows).
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Figure 2. TRPC6 channels regulate the expression of neuronal development genes
(a) Differential gene expression in the controls and ASD individual cells of candidate genes 

located in the translocation region or detected by exome sequencing. Only TRPC6 displayed 

a significant reduction in mRNA levels (P<0.01). (b) Decreasing expression of candidate 

genes upon TRPC6 stimulation with hyperforin/FFA. (c) Genes upregulated in the TRPC6-

mut genetic background after hyperforin/FFA treatment. (d) Representative western blot 

showing increased CREB phosphorylation after 15 and 30 minutes of hyperforin stimulation 

normalized to non-stimulated cells. (e) The level of CREB phosphorylation in DPCs from 
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the TRPC6-mut individual after TRPC6 activation with hyperforin is significantly lower 

compared with the control sample (n = 3, P< 0.05; t-test). The error bars in all panels show 

the s.e.m. *P<0.05; **P<0.01; ***P<0.001.
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Figure 3. Derivation of NPCs and neurons from iPSCs
(a) Representative images depicting morphological changes during neuronal differentiation 

from control and TRPC6-mutant iPSCs. Bar = 100 µm. (b) NPCs are positive for the neural 

precursor markers Musashi-1 and Nestin. Bar = 50 µm. (c) Representative images of cells 

after neuronal differentiation. iPSC-derived neurons express neuronal markers such as 

GABA, MAP2, and synapsin I. (d) Examples of distinct cortical neuronal subtypes present 

differentiating cultures after 3 weeks. Bar = 30 µm. (e) We obtained 30% neurons in our 

cultures with this protocol, as measured by MAP2 staining and infection with the syn::EGFP 

lentiviral vector. Most MAP2-positive cells expressed VGLUT1, in contrast with 12% of 

neurons expressing GABA. Ctip2-positive neurons were more abundant (16%), whereas 

Tbr1-positive neurons were present in a small percentage in the population (6%) at the end 

of the differentiation protocol. (f) Morphology of neurons patched for electrophysiological 

recording. (g) Representative recordings of evoked action potentials in iPSC-derived 

neurons in response to current steps under current patch clamps. (h) Representative Na+ and 

K+ currents in iPSC-derived neurons. The error bars in all panels show the s.e.m.
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Figure 4. Alterations in neural cells derived from the TRPC6-mutant individual
(a) Ca2+ influx dynamics through TRPC6 channels activated by hyperforin plus FFA were 

reduced in the TRPC6-mut cells. Oscillations generated by hyperforin and FFA treatment 

were normalized to the fluorescence of the resting level (F0), synchronized, and averaged. 

(b) The average peak of Ca2+ influx in the 100 cells analyzed was reduced by 30% in the 

TRPC6-mut NPCs compared with the control sample when the cells were stimulated with 

hyperforin and FFA (n=3; P<0.001; ANOVA). (c) Representative western blot of neurons 

derived from a clone of a control and a TRPC6-mutant iPSC line treated or not treated with 

IGF-1. (d) TRPC6-mutant neurons displayed low levels of TRPC6 and synaptic proteins 

Psd95, and synapsin I. IGF-1 treatment significantly increased the protein levels of TRPC6, 

Psd-95, and synapsin I in TRPC6-mutant neurons (n=3, P<0.01; t-test). (e) Bar graphs 

showing that the total length (microns) and (f) number of vertices (neuronal branch points) 

of TRPC6-mutant neurons is reduced compared with controls. Treatment with hyperforin or 

restoring TRPC6 expression levels rescued these defects (P<0.01; ANOVA). (g) 

Representative images of TRPC6-mutant and control neurons before and after neuronal 

tracing. The neuronal morphology was visualized using the syn::EGFP lentiviral vector. Bar 
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= 50 µm. (h) Bar graphs showing that the spine density in TRPC6-mutant neurons was 

reduced compared with the controls and could be rescued after hyperforin treatment or 

restoring TRPC6 expression levels (P<0.01; ANOVA). (i) A specific shRNA against TRPC6 

(shTRPC6) was used to confirm that the phenotype was caused by loss of TRPC6 function 

(P<0.01; ANOVA). (j) Representative images of neuronal spines in control and TRPC6-

mutant neurons. (k) The bar graphs show that the number of glutamate vesicles in TRPC6-

mutant neurons was significantly reduced compared to controls. IGF-1 and hyperforin 

treatment for 2 weeks increased the number of VGLUT1 puncta in TRPC6-mutant neurons 

(P<0.01; ANOVA). (l) Representative images of neurons stained for VGLUT1 and MAP2. 

(m) Control neurons expressing an shRNA against TRPC6 (shTRPC6) exhibited reduced 

numbers of VGLUT1 puncta compared with the neurons expressing a scrambled shRNA 

(shScramble). (n) Representative image of a control neuron expressing an shRNA against 

TRPC6. Bar = 5 µm. (o) The bar graphs show the number of synaptic puncta, as measured 

by synapsin I staining. Synaptic puncta counts in TRPC6-mutant neurons were reduced 

compared to controls. TRPC6-cDNA treatment of TRPC6-mut neurons was sufficient to 

increase synapses to control levels (P<0.01; n=20; ANOVA). (p) Representative image of 

TRPC6-mut neurons with empty vector and with vector expressing wild-type TRPC6 

stained for MAP2 and synapsin I. Bar = 5µm. (q) The whole-cell Na+ current of TRPC6-

mutant neurons was significantly less than that of the control (P<0.01; ANOVA). (r) The 

Na+ current density of TRPC6-mutant neurons was also significantly less than that of the 

control (P<0.01; ANOVA). (s) TRPC6 protein levels were reduced in neurons derived from 

an RTT iPSC clone expressing a non-functional version of MeCP2 compared with an 

isogenic control expressing the functional MECP2 gene. (t) Recruitment of MeCP2 on the 

TRPC6 promoter region by ChIP. Extracts of formaldehyde-fixed neurons were precipitated 

with a MeCP2 antibody and analyzed by quantitative PCR using two distinct primers for the 

TRPC6 promoter. The data show enrichment over the IgG control precipitation. The primers 

for the BDNF promoter were used as controls. The numbers of neurons analyzed (n) are 

shown within the bars in graphs. The error bars in all panels show the s.e.m. For the iPSC 

clones used in each experiment, refer to Table S4. *P<0.05; **P<0.01; ***P<0.001.
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Figure 5. TRPC6 regulates the neural development of adult-born neurons in the dentate gyrus of 
the hippocampus
(a) Mouse primary hippocampal neurons revealed reduced spine density in neurons treated 

with shRNA targeting TRPC6 compared to neurons treated with shRNA scramble control 

(P<0.01; n=14; t-test). (b) Mouse primary hippocampal neurons demonstrated reduced 

synaptic puncta numbers in neurons treated with shRNA targeting TRPC6 compared to 

neurons treated with shRNA scramble control (P<0.01; n=15; t-test). Synaptic puncta were 

labeled using synapsin I antibodies and counted along MAP2+ neuronal dendrites. (c) 

Representative confocal images of neurons expressing shRNA-control and shRNA-
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TRPC6-1 at 28 dpi (days post retroviral injection). Green, GFP; blue, DAPI. Bar = 50 µm. 

Also shown are the divided areas of the dentate gyrus: 1, inner granule cell layer; 2, middle 

granule cell layer; 3, upper granule cell layer; and 4, molecular layer. (d) Summary of cell 

body localization of GFP+ newborn neurons under different experimental conditions at 28 

dpi. The cell migration phenotype was rescued by expression of TRPC6-WTR at 14 dpi. 

Retroviruses co-expressing GFP and TrpC6-WTR were co-injected with retroviruses co-

expressing dsRed and shRNA-TRPC6-1 into the adult mouse dentate gyri. The cell body 

localization of the GFP+, DsRed+, and GFP+DsRed+ neurons are quantified. The values 

represent the mean ± s.e.m. (n = 3; P< 0.01; ANOVA). (e) A 3-dimensional confocal 

reconstruction of dendritic trees of GFP+ dentate granule cells expressing shRNA-control or 

shRNA-TRPC6-1 at 14 dpi. Scale bar, 20 µm. (f) Sholl analysis of the dendritic complexity 

of GFP+ neurons at 14 dpi. Number of crossings refers to the number of dendrites 

intersecting concentric circles spaced 10µm apart starting from the cell body. The error bars 

in all panels show the s.e.m. (n = 3; P<0.05; ANOVA). (g) A sample DIC image of a 

newborn neuron patched in whole-cell configuration in an acute slice of the hippocampus. 

(h) The firing rate of repetitive action potentials of GFP+ neurons under current clamp in 

response to 1-s current injection steps at 21 dpi. Shown on the left is a sample trace of a 

GFP+ neuron expressing shRNA-control; a GFP+ neuron expressing shRNA-TRPC6#-1 is 

shown on the right. (i) Summary of the mean firing rate of newborn neurons. The values 

represent the mean ± s.d. (n = 3; P<0.01; ANOVA). A minimum of 10 GFP+ cells was 

randomly picked from each animal, and at least three animals (n) under each experimental 

condition were used. (j) Behavioral analysis of Trpc6 KO and HET mice. The mean body 

weight and defecation and urination episodes during the test revealed no physiological 

differences between the wild type (WT), heterozygote (HET), and knockout (KO) Trpc6 

animals. Evaluation of time spent in freezing behavior and in grooming behavior revealed 

no significant differences between the groups. Social interaction was assessed by evaluating 

the time spent with a novel object or in nose-to-nose contact with a strange animal. Adult 

mice (6–8 weeks old, male) in a C57BL/6 background were used for the study. At least 12 

animals per group were utilized in biological replicates. The experimenter was blind to the 

genotypes. The data were analyzed using non-parametric Kruskal-Wallis ANOVA. The 

error bars in all panels show the s.e.m. All procedures followed institutional guidelines. 

*P<0.05; **P<0.01; ***P<0.001.
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Table 1

Selected functionally relevant genes differentially expressed between the TRPC6-mutant individual and 

controls.

Gene Fold change* Gene Ontology Regulation by
CREB**

qPCR
validation (p
value)

INA −2.639988194 Nervous system development; neurofilament
cytoskeleton organization

ChIP-on-chip 0.0198

NPTX1 −2.855578291 Growth of neurites; synaptic transmission; central
nervous system development

In silico 0.0885

MAP2 −2.789671289 Growth of neurites; development and elongation of
neurites; patterning of cerebral cortex; polarization of
hippocampal neurons

ChIP-on-chip 0.0363

EPHA4 2.362428255 Guidance of axons; formation of the pyramidal tract;
axon guidance

ChIP-on-chip; In
silico

0.4305

CLDN11 4.066602785 Axon ensheathment; calcium-independent cell-cell
adhesion; migration of neuroglia

In silico
Lui et al., 2007

0.0005

PCDH10 −4.318180517 Cell adhesion; establishment and function of specific
cell-cell connections in the brain

ChIP-on-chip; In
silico

0.3331

CLDN1 4.171417178 Calcium-independent cell-cell adhesion; myelination
of cells

In silico

PTGS2 −3.49316255 Activation of astrocytes; activation of neuroglia;
memory; positive regulation of synaptic plasticity;
negative regulation of synaptic transmission,
dopaminergic; positive regulation of synaptic
transmission, glutamatergic

ChIP-on-chip
Gosh et al., 2007

CDH6 −2.675463010 Cell-adhesion; establishment and function of specific
cell-cell connections in the brain

No evidence 0.0418

SEMA3A 2.314408538 Nervous system development; axonal fasciculation;
regulation of axon extension involved in axon
guidance; distribution of neurons; migration of
neuroglia; growth of neurites; chemorepulsion of
sympathetic neurons

No evidence 0.1828

CASP1 2.545250054 Activation of astrocytes; activation of neuroglia No evidence

VCAM1 4.546975557 Growth of neurites; distribution of neurons; cell
adhesion; guidance of axons

No evidence

ACAN −4.199956627 Growth of neurites; cell adhesion No evidence

CCL2 2.41655874 Cell adhesion; astrocyte cell migration No evidence

HGF 4.252390982 Growth of neurites; complexity of dendritic trees No evidence

PCDH18 2.508559732 Cell adhesion; brain development No data available

*
Logarithmic gene expression difference between ASD individual and controls

**
Evidence of gene transcription regulation by the transcription factor CREB according to the database http://natural.salk.edu/CREB/search.htm. 

Zhang and colleagues (2005) used three different strategies to identify the genes regulated by CREB: in silico analysis, chromatin co-
immunoprecipitation followed by microarray analysis (ChIP-on-ChIP) and expression analysis of genes induced by forskolin (array). The genes for 
which no evidence of CREB regulation was found are annotated as "no evidence"; those for which no information is available in the analyzed 
database are annotated as "no data available".
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