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ABSTRACT

Although artificial C2-H2 zinc fingers can be
designed to recognize specific DNA sequences,
it remains unclear to which extent nuclear receptor
C4 zinc fingers can be tailored to bind novel DNA
elements. Steroid receptors bind as dimers to
palindromic response elements differing in the two
central base pairs of repeated motifs. Predictions
based on one amino acid—one base-pair relation-
ships may not apply to estrogen receptors (ERs),
which recognize the two central base pairs of
estrogen response elements (EREs) via two charged
amino acids, each contacting two bases on oppo-
site DNA strands. Mutagenesis of these residues,
E203 and K210 in ERa, indicated that both con-
tribute to ERE binding. Removal of the electric
charge and steric constraints associated with K210
was required for full loss of parental DNA-binding
specificity and recognition of novel sequences by
E203 mutants. Although some of the new binding
profiles did not match predictions, the double
mutation E203R-K210A generated as predicted a
mutant ER that was transcriptionally active on
palindromes of PUuGCTCA motifs, but not on con-
sensus EREs. This study demonstrates the
feasibility of designing C4 zinc finger mutants with
novel DNA-binding specificity, but also uncovers
limitations of this approach.

INTRODUCTION

Nuclear receptors form a superfamily of ligand-inducible
transcription factors that is characterized by two con-
served domains, the DNA-binding domain (DBD) com-
posed of two C4 type zinc fingers, and the ligand-binding
domain (LBD), which also contains a dimerization

interface (1,2). Nuclear receptors can bind DNA as
homo- and/or heterodimers, and recognize response
elements arranged as direct repeats, palindromes or
inverted palindromes of conserved motifs (3-5). Each
motif is bound by the DBD of a single monomer, the two
zinc fingers of the DBD combining into a single structural
fold with a DNA recognition helix and variable dimeriza-
tion interfaces (6,7).

Consensus estrogen response clements (EREs,
Figure 1A), which are palindromes of PuGGTCA motifs
with a three base-pair spacer (8—10), are bound by estrogen
receptors (ERs) with highest affinity in vitro. Perfect or
imperfect EREs present at promoter-proximal locations
(11-13) or, as revealed by genome-wide screens, at large
distances from the transcriptional start site of estrogen-
regulated genes (14,15), are bound by ERa in vivo and
mediate regulation of estrogen target genes. Other steroid
receptors, including the androgen receptor (AR) and
glucocorticoid receptor (GR), also bind palindromes with
a three base-pair spacer, but the repeated motifs are
PuGNACA sequences (16,17). Non-steroid receptors also
recognize PuGGTCA or related motifs, but these motifs
are arranged as direct repeats or everted repeats with
variable spacing. The affinity and selectivity of nuclear
receptors for single PuGGTCA motifs is generally low, but
can be increased by receptor-specific recognition of
additional 5’ flanking bases (5,13). Thus, nuclear receptors
have achieved selectivity in DNA recognition while
interacting with only two main types of motifs. The fact
that few variations have been observed in the base-
contacting amino acids of the 48 human nuclear receptors
(18) suggests that this type of protein—-DNA recognition
has been conserved throughout evolution, possibly because
it affords the most favorable combination of affinity and
selectivity. Interestingly, however, nuclear receptor homo-
logs identified in Caenorhabditis elegans offer a consider-
ably wider variety of amino acid composition in the DNA
recognition helix. Numerous mutations have also been
described in the DBD of some nuclear receptors such as
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Figure 1. Model for the selectivity of steroid receptor—DNA interac-
tions. (A) Sequence of the consensus ERE and base numbering used in
this study. (B) DNA recognition helix of the estrogen (ER),
glucocorticoid (GR) and androgen (AR) receptors. The position of
amino acids in the DNA recognition helix is indicated by numbers from
1 to 13. The numbering of base-interacting residues in ERa is also
indicated. Base-interacting residues in each receptor are in bold, and
P box amino acids are underlined. (C) Models of the amino acid—base
interactions underlying specific recognition of the estrogen (top) or
glucocorticoid (bottom) response element by their cognate steroid
receptors. Interactions considered in the model proposed by Suzuki and
Yagi (29) are in bold, while interactions described in the ER-ERE
crystal structure (7) but not in the model are in dashed lines.
(D) Predicted interactions between amino acid replacement at position
2 of the DNA recognition helix and bases at position +4 [from (29)].

VDR and AR, but few changes in DNA-binding patterns
have been reported for these mutant receptors (19).

The first clues to the molecular basis of specific DNA
recognition by steroid receptors were provided by
mutagenesis experiments of the ER and GR, which led
to the identification of amino acids responsible for
discrimination between the two types of recognition
motifs bound by these receptors. Exchanging three
amino acids in the ER DBD for the corresponding ones
in the GR DBD resulted in a receptor mutant capable of
transactivating glucocorticoid target promoters (20). The
converse experiment also demonstrated that amino acids
at the same three positions (P box, Figure 1B, underlined
residues) in the GR were crucial for discriminating
between glucocorticoid response clements (GREs) and
EREs (21,22). In addition, a loop in the second zinc finger
was found to be responsible for specific recognition of two
motifs arranged as palindromes with 3 bp spacing (21-23).
Crystallographic analyses of complexes between the ER or

GR DBDs and their response elements have uncovered
the amino acid—base-pair interactions established by these
two receptors (7,24). Two residues of the P box, V at the
third position in the GR and E at the first position in
the ER (E203), contact the central discriminating bases in
the ERE and GRE motifs (Figure 1C). In addition, an
invariant K residue located further C-terminal in the
DNA recognition helix (K210 in ERa) binds the two
central bases on the opposite strand with respect to bases
contacted by E203 in the ERo—ERE complex, but does
not participate in contacts in the GR-GRE complex
(Figure 1C). Other bases common to the ERE and GRE
are contacted by amino acids conserved in ER and GR
(K206 and R211 in ERa). In addition, these interactions
are buttressed by a complex network of amino acid—amino
acid interactions and amino acid—phosphate interactions.

The specificity of response motif recognition by steroid
receptors is thus determined by a small number of specific
interactions established by 3-4 amino acids. As a
consequence, it may be expected that changing the identity
of interacting amino acids in the DNA recognition helix
would alter the selectivity of receptor—-DNA interaction as
can be achieved with artificial C2H2 zinc fingers (25-28).
A simple model for amino acid-base interactions
within the structural framework of the steroid receptor
DBD has been proposed (29). This model relies on
chemical rules for possible pairing of amino acid side
chains and DNA bases through hydrogen bonding or
hydrophobic interactions, and also incorporates stereo-
chemical contraints specific to steroid receptors, based on
the position of the DNA recognition helix with respect to
the major groove of the DNA. Small, medium or large
chains may thus be prefered depending on the position of
the interacting amino acids in the DNA recognition helix
with respect to the bases (see Figure 1D for possible
interactions involving amino acid at position 2). Study of
a spontaneous mutation in the first amino acid of the
P box of the AR has revealed changes in DNA-binding
specificity compatible with the predictions of this model
(19). Replacement of G at the first P box position in the
AR DBD by R resulted in a mutant that could only bind a
subset of the PuGNACA motifs normally bound by
this receptor, and this according to the chemical prefer-
ences of the R residue with respect to the base at the
third position of the motif. However, it remains unclear
whether novel types of DNA specificities can be achieved
through rational design of nuclear receptor mutants,
especially in the case of the ERs, which appear to have
more complex determinants of motif recognition than
other steroid receptors. The purpose of this study was to
examine whether mutating ERo residues that interact
with the two central base pairs of EREs either separately
or in pairs could generate artificial nuclear receptor
DBDs with novel DNA-binding specificities.

MATERIALS AND METHODS
Plasmids

The bacterial expression vector pET3.1-HE81 containing
the ERa DBD has been described previously (23).



The bacterial expression vector pET3.1-ERB-DBD was
constructed by PCR amplification of a cDNA fragment
corresponding to amino acids 140-246 of ERP and
subcloning between the Kpnl and Xhol sites of a
pET3.1, a pET3 (Novagen, San Diego, CA, USA)
derivative modified by insertion of a linker containing
the Kpnl and Xhol sites (23). All ERae DBDs mutants
were constructed by insertion between the Kpnl and Xhol
sites of the pET3.1 vector of a fragment obtained by
site-directed mutagenesis of pET3.1-HE81 using PCR
amplification.

The wild-type ERa and ER[ expression vectors pSG5-
HEGO, pCMV-SPORT-ERf have been described
previously (15,30). Expression vectors for ERaE203A,
ERaE203N, ER«oE203H, ERaE203R, ERaK210A,
ERaE203A-K210A, ERaE203N-K210A, ERaE203H-
K210A, ERaE203R-K210A have been constructed by
substitution of the fragment between the Kpnl and Xhol
sites of pSG1-HE80 (23) by a fragment containing the
mutation excised from the corresponding pET3.1 vector.

The tk-CAT reporter plasmids containing one copy of
the consensus ERE or of palindromes containing base
replaments (pAT-tkCAT, pCT-tkCAT) were derived from
the pBL-CATS8+ reporter vecteur (8) by insertion of
double stranded oligonucleotides containing the response
elements flanked with BamHI-BglII sites at the BamHI
site  upstream of the thymidine kinase promoter.
The TATA-CAT reporter vectors containing two copies
of the consensus ERE or of the CT palindrome were
prepared by substitution of the three EREs in pERE3-
TATA-CAT (31) by double-stranded oligonucleotides
containing two tandem response elements and flanked
by BamHI and BglII sites.

Expression in Escherichia coli of ERo and ERp DBDs and
derivatives thereof

Escherichia coli BL21 DE3 cells were transformed with
pET3.1 expression vectors containing the cDNAs for the
DBDs of ERa, or of mutants of ERa or ERP and
expression was induced in exponentially growing cultures
by IPTG (0.5 mM final) for 2h. Whole bacterial extracts
were prepared by sonication in extraction buffer (Tris-HCI
pH 7.4, 25mM; EDTA pH 8.0, 0.1 mM; NaCl 400 mM;
glycerol 10%; DTT 1mM; PMSF 10mM and protease
inhibitors) followed by centrifugation (at 10000g for
15min) of lysates.

To determine the levels of expression of ER DBDs,
aliquots (1 ml) were taken from each culture before
induction with IPTG. Bacteria were isolated by centrifu-
gation and resuspended in M9 medium containing each
amino acid except methionine and cysteine (0.01% weight/
volume each). Rifampicin was added (200 pg/ml final) to
inhibit bacterial RNA polymerase and expression of the
T7 polymerase was induced with IPTG (0.5 mM final) for
30 min. [>°S]-methionine was then added and bacteria were
further incubated at 37°C for S5min, collected by
centrifugation, resuspended in Laemmli buffer and
boiled for Smin. Labeled proteins were analyzed by
electrophoresis on 12% polyacrylamide-SDS gel and
visualized by fluorography.
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Cell culture and transfection

HeLa cells were maintained in DMEM supplemented with
5% fetal bovine serum (FBS). Cells were switched 3 days
before transient transfection to medium without phenol
red containing 5% FBS pretreated with activated charcoal
to remove traces of hormones. For gel shift assays, cells
were transiently transfected with ER expression vectors
(5 ng completed to 15 pg with carrier DNA in 10 cm dish)
using the calcium phosphate method (32). For CAT
assays, HeLa cells were electroporated (107 cells, 0.24kV,
950 uF in a Bio-Rad Gene Pulser II apparatus) with
varying amounts of expression vectors for wt ERa or for
different ERa mutants, 4 ug of pCMV-BGal, and 4 pg of
tk-CAT reporter vectors containing single copies of
different palindromic response elements. DNA mixes
were completed to 80 pug with salmon sperm DNA in a
final volume of 100 ul of NaCl 210 mM. Electroporated
cells were plated in duplicate for parallel immunoblot and
CAT assays.

Gel shift assays

Two days post-transfection, HeLa cells were treated for
1h with 25nM estradiol and whole cell extracts were
prepared by three cycles of freeze-thawing in extraction
buffer (Tris HCl pH 7.6, 20mM; glycerol 20%; KCI
500mM; DTT 1 mM; EDTA 0.1 mM; PMSF 10mM and
protease inhibitors) followed by centrifugation for 10 min
at 13000g. Cell extracts were diluted to a final KCI
concentration of 125mM. Samples were preincubated
with 2 pg poly(dIdC) for 15min on ice before addition of
[**P]-labeled  double-stranded oligonucleotide probes
(300000 c.p.m. per sample). The consensus ERE used for
gel retardation assays is derived from the Xenopus
vitellogenin A2 gene. Reactions were incubated at 25°C
for 15min then loading buffer (0.1% bromophenol blue,
60% glycerol) was added (1/5V/V). Complexes were
separated by electrophoresis on 5% polyacrylamide gels
in 0.25x TBE (45mM Tris—HCI, 45mM boric acid and
ImM EDTA) and visualized by autoradiography.
Amounts of bound and free probe were quantified using
a Phosphorimaging screen and the Quantity One software
from Bio-Rad.

Gels shift assays with whole bacterial extracts
containing the ERa or ERBDBD were performed as
described above except that extracts were diluted to a
final NaCl concentration of 80 mM and 7% polyacryl-
amide gels in 0.25x TBE were used to separate the
complexes.

CAT assays

Immediately after seeding, cells were treated with estradiol
(25nM) or vehicle (EtOH) for 40h. Cells were then
harvested and extracts were prepared by three cycles of
freeze—thawing in CAT extraction buffer (Tris HCI pHS8.0,
0.25M; DTT 1 mM and protease inhibitors). CAT assays
were performed and standardized over B-galactosidase
activity as described (31).
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Immunoblot analyses

Protein concentrations in whole cell extracts prepared for
gel shift or CAT assays were estimated using a Bradford
assay. Proteins (50 pug) in Laemmli buffer were separated
by electrophoresis on 8% polyacrylamide-SDS gels and
transferred onto a PVDF membrane. Blots were incubated
in blocking solution (PBS 1X, Tween 20 0.05%, BSA 3%)
for 1h and probed with anti-ERa mouse monoclonal
antibody B10 (obtained from Prof. P. Chambon) at
dilution 1:5000. Membranes were then washed and
incubated with a horseradish peroxidase-coupled second-
ary antibody and visualized with an ECL detection kit.

Modeling

Modeling was performed interactively, using the InsightII/
Discover package (Version 2000, Accelrys Inc.,
San Diego, CA, USA). The X-ray structure of the ER
DBD bound to DNA (7) was used as a starting
conformation. Each model was submitted to unrestrained
energy minimization using the AMBER forcefield (33)
until an energy minimum was reached. The presence or
absence of particular pair-wise amino acid—base interac-
tions in the final structure was treated as a possibility or
impossibility to form a particular interaction in a given
structural context. Distance measurements between atoms
were performed with InsightIl tools using a Silicon
Graphics O2 computer.

RESULTS

Patterns of response element binding by isolated ERacand ERf
DBDs are similar to each other and to those of the full-length
receptors

Estrogen receptors bind with high affinity the consensus
palindromic EREs consisting of two PuGGTCA motifs
separated by a three base-pair spacer (Figure 1A).
Although natural response elements are often imperfect
palindromes (12,13), base-pair replacements usually result
in a loss of affinity (12,14). To verify that binding patterns
are mainly derived from the DBDs of ERs, we have
compared the effect of symmetric substitutions at each
position of the consensus ERE on binding by full-length
ERs transiently expressed in HeLa cells (ERa and ER(,
Figure 2A and B, respectively) or by the ERa or ERf
DBD (ERa DBD and ERBDBD, Figure 2C and D,
respectively). The wild-type ERE was bound by either the
full-length ERa receptor or the corresponding DBD with
the highest affinity (note the higher degree of free probe
depletion with wt ERE, Figure 2A and C, lanes 19).
Consistent with our previous observations that the DBDs
of steroid receptors are sufficient to discriminate between
EREs and GREs (23), ER DBDs selectively bound the
array of probes in a pattern similar to that of the full-
length receptors, although all probes were less efficiently
bound with isolated DBDs. This is consistent with a loss
of affinity, but not specificity, resulting from the absence
of the strong dimerization interface in the LBD (34).
In addition, all replacements introduced in both arms of
the ERE reduced binding to the same extent for ERa and

ERp (compare panels A and B, and C and D), which share
a high degree of conservation in their DBDs [90% in
region C as defined in (35)]. Although the expression levels
of transiently expressed full-length ERa and ER[ could
not be compared, note that the DBDs were expressed to
similar levels as assessed by [*>S]Met incorporation (data
not shown).

Point mutations in the consensus ERE destabilize interaction
with ERs according to chemical compatibility and steric con-
straints with interacting amino acids

The DNA recognition helix formed by the C-terminal part
of the first zinc finger of ERa contains several basic amino
acids involved in contacts with bases in the target motifs
(Figure 1B, residues in bold; underlined residues are part
of the P box). Nucleotides G (—5) and G (+2) interact
with residues at position 5 (K206) and 10 (R211) of the
DNA recognition helix, respectively (Figure 1C).
In addition, K210 (position 9 in the DNA recognition
helix) interacts with both G (—4) and T (—3) through
direct and water-mediated contacts (Figure 1C). Thus,
basic residues are involved in recognition of all positions
in the ERE except —/4-6 and —/41, which are not directly
contacted in the crystal structure, although both display
a preference for purines (Figure 2 A-D, lanes 1-3 and
16—-18). These direct interactions involving basic amino
acids conform to general chemical rules, with G and T,
which present only negatively charged groups in the
major groove, being preferred over A, which presents
both a positively and a negatively charged group, and C,
which contains only a positively charged group, leading
to unfavorable electrostatic interactions. Accordingly,
replacement of G by C in a single motif at position
—4 or —5 was sufficient to abolish binding (Figure 3A,
lanes 5 and 8). Of note however, the order of the preferred
bases is not identical for each contacting basic amino acid.
Most noticeably, replacement in a single motif of G
at position +2 by T was sufficient to abolish binding
(Figure 3A, lanes 13). Molecular modeling suggests that
lack of binding to T at position +2 results from steric
hindrance due to the methyl group of T+2, which
prevents productive interaction between the amines of
R211 and O4 of T+ 2 (Figure 3B).

The pattern of recognition of bound response elements
carrying replacements at positions —4 (G>A>T>C) and
=3 (T>G>A>C) also differed from that predicted from
charge preference due to interaction with basic amino acid
K210 (G>T>A>C). Because E203 interacts with bases
at positions +3 and +4, i.c. on the other DNA strand, in
the crystal structure (7), we compared the roles of both
K210 and E203 in modulating patterns of base recogni-
tion. While E203 has an opposite and complementary type
of chemical selectivity for bases (C> A >T > G) compared
to K210, the complex mode of recognition of the two
central base pairs by two amino acids may be expected
to result in increased steric constraints. At position —4,
replacement in a single motif by T drastically reduced
binding (Figure 3A, lane 9) and replacement in both
motifs of the ERE completely eliminated complex forma-
tion (Figure 2A-D, lanes 9) and transactivation [data not
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Figure 2. Effect of replacements in both arms of the ERE palindrome on complex formation with full-length ERs and isolated DBDs. (A and B)
Gel shift assays performed with whole cell extracts of HeLa cells transiently transfected with expression vectors for ERa (B) or ERB (C),
and a panel of probes corresponding to all base possibilities introduced at each position of the response elements in both arms of the palindrome.
(C and D) Gel shift assays performed with bacterial extracts containing the DBDs of ERa (C) or ERB (D), using the same panel of probes as in

A and B.

shown, see also (36)]. This contrasts with the capacity of
other nuclear receptors such as RAR, RXR and VDR to
bind to PuGTTCA motifs [(36,37); see also (5) for a
review]. Energy minimization indicates that movement of
K210 to avoid the methyl group of T-4 prevents
interaction with DNA (Figure 3C). In addition, E203 is
not capable of interacting with the amino group of A at
position +4 (not shown). At position —3, G was less
favorable than T (compare lanes 12 and 19 in Figure 3A
and Figure 2A-D), contrary to what is observed at the
other positions recognized by basic residues (Figure 3A).
Modeling indicates that C+3 would create packing
problems with E203, preventing interaction of this
amino acid with C +4, and K210 is too distant to interact
with G—3 (not shown). Thus, our experimental and

modeling data suggest that both E203 and K210
contribute to the selectivity of response element recogni-
tion with respect to the two central bases of the ERE.

Roles of E203 and K210 in the specificity and affinity of ER
interaction with palindromic response elements

To better analyze the respective roles of E203 and K210 in
determining the specificity and affinity of ER interaction
with response elements, we further characterized the
ER-binding specificity with respect to the two central
base pairs of the palindrome motifs using a panel of 16
probes representing all combinations of these central bases
introduced in both arms of the palindrome. Full-length
ERs and isolated DBDs bound with high affinity only to
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Figure 3. Chemical and steric constraints determine the specificity of
complex formation with wt ERa. (A) Gel shift assays performed with
the isolated ERoo DBD and a panel of probes containing all possible
base replacements introduced at each position of a single motif of the
consensus ERE. Predicted and observed patterns of interactions are
described on the right-hand side of the figure. (B) Interaction between
R211 and G +2 as seen in the crystal structure of the ERDBD/ERE (7)
(top panel). Note the H bond formed between the amino group of
R211 and the N7 atom of G+2. Replacement of G+2 (top panel)
by T+2 (middle panel) results in steric conflict between the amino
groups of R211 and the methyl group of T+ 2; energy minimization
shows that steric hindrance can be relieved, but R211 cannot interact in
the major groove with O4 of T+ 2. (C) Interaction between K210 and
G-4 and T-3 as seen in the crystal structure of the ERDBD-ERE
complex (24) (top panel); note the H bonds formed between the amino
group of K210 and the N7 atom of G-4 and the O4 atom of T-3;
replacement of G-4 (top panel) by T-4 (middle panel) results in steric
conflicts between the side chain of K210 and the methyl group of T-4;
energy minimization shows that displacement of the K210 side chain to
accomodate this methyl group prevents K210 from interacting with
charged groups of T-4 and T-3.

the GT (response elements are designated by bases found
on the minus strand at position —4/—3) combination
found in the wt ERE and, with lower affinity, to the GG
element (Figure 4A—D). Note that complexes formed on
element CC with full-length receptors (lane 6) were also
observed with extracts from cells transfected with the
parental expression vector, and that the smears observed
in some lanes with bacterially expressed ER DBDs also
appeared with extracts from bacteria transformed with the
parental expression vector (not shown).

The very high selectivity of ERs for the two central base
pairs in their response elements differs from that of the
GR or AR, whose DBDs could both recognize all four
PuGNACA-containing palindromes [(20) and data not
shown]. Crystallographic analysis of the GR DBD
indicates that contacts are established only with the base
at position +3 through a V residue (position 6 in the
DNA-binding helix). E203 is replaced by a G residue in
GR and AR, and the K residue corresponding to K210 in
ERa does not contribute to GRE recognition. The higher
selectivity of ER interaction with response elements could
therefore result either from the fact that E203 interacts
with both adjacent +4/43 bases, and/or from the
contribution of K210 in recognizing the —4/—3 bases on
the opposite strand of DNA.

To investigate the respective roles of these two amino
acids to the affinity and/or selectivity of binding, we
replaced either E203 or K210 by A residues in ERa and
examined complex formation with the panel of 16 probes
corresponding to all possible variants at the two central
positions of the repeated motifs. Both mutants still bound
with highest efficiency to the consensus ERE (Figure 5A,
lanes 12), although the intensity of the retarded band was
~5-to 10-fold lower than with the wt ERa (compare
Figure 5A, lanes 12 and 17; see also Figure 5B). However,
the K210A mutation was active in transactivation assays
using a reporter gene containing the consensus ERE
(Figure 8C). Intriguingly, peak transcriptional activity was
~60% higher for K210A than for the wt receptor,
suggesting that K210 plays a negative role in transcrip-
tional activation.

Mutant E203A bound with reduced efficacy to the
consensus ERE compared to the wt ERa (Figure 5A
and B), and formed a weak complex with the PuGATCA
probe (AT, Figure 5A, lane 4), which was not detected
with the K210A mutation. Finally, the double mutant
K210A-E203A bound very weakly to the consensus
ERE probe, and also formed a detectable complex with
the AT probe (Figure 5A, lanes 4, 8, 12 and 16). Binding
of E203A to the AT probe suggests that the main role in
restricting binding to this element in the wt receptor is
played by E203 rather than K210. The absence of high
affinity complexes observed with the K210A mutant
suggests that the role of K210 in the selectivity of response
element recognition is redundant with the role played
by E203.

The effects of mutations of E203 on selective DNA binding are
not predictable from simple chemical and steric compatibility
rules

A simple DNA recognition model for steroid receptors
has been proposed previously (8), based on both the
general rules of chemical compatibility between amino
acids and base pairs, and stereochemical constraints due
to the position of the DNA-binding helix across the major
groove as derived from the crystal structures of the ER
and GR DBDs (Figure 1D for predicted interactions at
amino acid position 2). Note that this model is based on a
one amino acid—one base interaction relationship, and in
particular does not take into account recognition of the
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Figure 4. ERs bind with high selectivity to PuGNNCA palindromes. (A) and (B) Extracts from transiently transfected HeLa cells expressing full-
length ERo (A) or ERB (B) were incubated with **P-labeled oligonucleotide probes containing PuGNNCA palindromes and complexes were
separated on 5% polyacrylamide gels. The position of the dimeric complex is indicated by an arrow. (C) and (D) Bacterial extracts containing the
ERa (C) or ERB (D) DBDs were incubated with the same probes and complexes were separated by electrophoresis on 7% polyacrylamide gels.
The position of specific complexes containing monomers (1) or dimers (2) of ER DBDs are indicated in the figure.

two central bases by both K210 and E203 (Figure 1C,
dotted lines), considering only the role of E203 with C +4
(Figure 1C, bold line). Our finding that E203 and K210
cooperate for selective binding to GT palindromes incited
us to test the predictions of this model for replacement of
E203 by other amino acids. Replacement of E by N is
predicted to switch recognition from C at position +4 to A

(TN elements), and replacement by H or R should lead to
specific recognition of a G at this position (CN elements,
Figure 1D). These mutations were introduced in ERa full
length and in the isolated DBD. Similar expression levels
were obtained for all full-length mutants and the wild-type
receptor as determined by western analysis (data not
shown). Whole cell extracts containing the mutant
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Figure 5. Role of K210 and E203 in the affinity and specificity of
receptor-DNA complex formation. (A) Gel shift assays performed with
wt ERa or the K210A, E203A and E203A-K210A mutants expressed in
HeLa cells and a panel of probes containing all possible base
combinations at the two central positions of each PuGGTCA motifs
in the consensus ERE. Arrows indicate the main specific complexes.
Binding of the wt ERa to the consensus ERE (GT) is shown for
comparison in lane 17. (B) Quantitation of the levels of binding of the
transfected receptors to the consensus ERE probe, expressed as bound
over bound plus free probe. Results are an average of three
experiments, and error bars indicate SD. (C) Levels of expression of
the different transfected receptors as assessed by western analysis using
the monoclonal B10 antibody.

receptors E203N and E203H formed complexes mainly
with the wt ERE (GT probe, Figure 6A and B, lanes 13
and Figure 6D and E, lanes 12). While binding to the wt
ERE was not abolished, the patterns of probe recognition
were altered with both mutants, which bound to the AT
element (Figure 6A and B, lanes 5 and Figure 6D and E,
lanes 4). These interactions are transcriptionally
productive, as demonstrated by transient cotransfection
of CAT reporter vectors containing the corresponding
response elements cloned upstream of the thymidine
kinase promoter with expression vectors for the different
mutants (Figure 8B, ERE-tk-CAT and AT-tk-CAT

reporter vector). Titration curves were performed using
varying concentrations of transfected plamids, and protein
levels were measured by western analysis (Figure 8A).
Surprisingly, saturation was reached at identical protein
concentrations for all receptors on either response
element, indicating that the difference in efficiency of
complex formation in vitro is not observable in our
reporter assay (data not shown). This is possibly due to
cooperative effects with other transcription factors bound
to the promoter, or to chromatin organization. Peak
transactivation levels were similar for the wt and mutant
receptors on the consensus ERE, reflecting intact tran-
scription  activation properties for the mutants
(Figure 8B). On the other hand, mutant E203H, but not
E203N, had ~6-fold lower peak levels of transactivation
on the AT element than on the consensus ERE (Figure 8B;
peak levels on the two response elements were obtained at
the same protein concentration). The differential levels of
maximal transcriptional activation by the E203H mutant
on the two response eclements may be related to the
previously reported allosteric effect of the DNA sequence
on ERa transcriptional activation properties (38,39).

The observed DNA-binding specificity of these mutants
do not correspond to predictions based on the proposed
model, as no stable binding was observed with TN motifs
for E203N (Figure 6A, lanes 14-17), or CN motifs with
E203H (Figure 6B, lanes 6-9). Accordingly, the TT and
CT elements did not confer estrogen responsiveness to the
tk promoter in the presence of these mutants (data not
shown). Note that no specific complexes were observed
with the E203R mutant on any of the PUGNNCA probes
(Figure 6C and F). Lack of binding to the consensus ERE
and lack of transactivation on an ERE-tk-CAT reporter
(Figure 8C) suggest that R at this position has a
destabilizing effect that is stronger than the absence of
side chain (A mutation, see Figure 5). Replacement of
E203 by R in the structure of the ER-ERE complex
reveals that the R side chain is too bulky to fit in the major
groove of DNA, and that the amino groups exert repulsive
effects with the positively charged groups of C+4 and
C+ 5 and steric conflict with C+4 (Figure 9C and data
not shown). In addition, neither binding to CN elements
nor transactivation from reporter vectors containing the
CT palindrome (Figure 8C, CT-tk-CAT reporter vector)
was obtained, indicating again that the predicted switch in
specificity has not occured. These results indicate that a
model based on a one amino acid—one base-pair
relationship is not an accurate description of the interac-
tion between the ER and its target response element, and
suggest that K210 plays a role in modulating the DNA-
binding specificity of receptors carrying mutations at
position 203.

K210 restricts changes in DNA-binding specificity of mutants
at position 203

Contrary to the total absence of binding observed with the
E203R mutant of ERa, mutation of the corresponding
amino acid in the AR (G577) to R led to a different
pattern of response element binding than that of the wt
receptor. While wt AR bound all four PuGNACA
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Figure 6. Mutations of E203 do not generate expected switches in DNA-binding specificity. (A, B and C) HeLa cells were transiently transfected with
expression vectors for ERa mutant E203N (A) E203H (B) or E203R (C). Whole cell extracts were used in a gel shift assay with the sixteen
PuGNNCA probes and complexes were separated by electrophoresis on 5% polyacrylamide gels. The complexes formed are indicated by an
arrowhead. For comparison, the complex formed between wt ERo and the consensus ERE (GT) is loaded on each gel (lane 1). (D, E and F) Similar
assays were performed using bacterial extracts containing mutant ER DBDs carrying the E203N, E203H or E203R mutations.

elements, the G577R mutant bound PuGGACA elements
very weakly, but interacted with the three other
PuGNACA clements, with a preference for the element
containing a G at position +4 (PuGCACA). In the
context of the GR DBD, and presumably also the AR
DBD, the K residue corresponding to K210 (position 9 in
the DNA recognition helix) does not bind DNA, but is
involved in an interaction with E at position 13 in the
DNA recognition helix (Figure 1B). Thus, we investigated
whether mutation K210A may facilitate association of the
E203 mutants to novel binding sites and/or reduce binding
to the consensus ERE. The resulting E203N/K210A and
E203H/K210A double mutants had a much reduced
binding to this probe (Figure 7), confirming the role of
K210 in binding to the consensus element in the absence
of a residue at position 203 recognizing C + 4. However,
these mutants still did not form stable complexes with
probes containing bases predicted to interact with the N or
H residue at position 203 (TN, CN, respectively, see
Figure 7).

In addition to complexes with AT palindromes already
observed with the single mutants, the strongest complexes
detected with E203N/K210A and E203H/K210A double
mutants were with the AC element (Figure 7). On the
other hand, the double mutant E203R-K210A gained
binding to the CT element (Figure 7), as could be
predicted from chemical compatibility between R at
position 203 and G+4 (Figure 1D). This mutant also
bound to the AC element (Figure 7). Thus, the specificity
of base recognition expected from replacing the

E203 residue by R was revealed in the presence of the
K210A mutation, although an additional unpredicted
complex was also formed with comparable efficiency.
As the level of complex formation on the CT element was
much lower than that of the wt receptor on the consensus
ERE, we examined whether the interaction between the
E203R-K210A mutant and the CT probe is transcription-
ally productive. Whereas no estradiol-induced transcrip-
tion could be detected with wt, K210A or E203R on a
CT-tk-CAT reporter vector, the double mutant E203R-
K210A gave rise to a detectable increase in estradiol-
stimulated transcription (Figure 8C). The double mutant,
like the single mutant E203R, was not active on ERE-tk-
CAT, confirming the switch in specificity. The complete
switch in DNA-binding specificity of the double mutant
was confirmed using reporter vectors containing tandem
response elements. No transactivation of the reporter
vector containing EREs was observed in the presence of
the double mutant after estrogen treatment, while peak
stimulation of the reporter vector containing CT elements
was comparable to that of wt ERa on the reporter
containing consensus EREs (Figure 8D).

DISCUSSION

Although C2H2 zinc fingers can be tailored to bind
virtually any DNA sequence, nuclear receptors have not
demonstrated similar flexibility. A possible reason for
success in the rational design of artificial C2H2 zinc finger
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Figure 7. Mutation K210A introduced in E203 mutants reduces
binding to the consensus ERE and reveals the switched specificity of
mutant E203R. (A) Gel shift assays performed with double mutants of
ERa expressed in HeLa cells and the panel of 16 probes containing
all possible base combinations at the two central positions of each
PuGGTCA motifs in the consensus ERE. Arrows indicate the main
specific complexes formed. Note that similar levels of expression were
obtained in western analysis (not shown).

proteins is the modular structure of this type of DBDs,
each finger recognizing three base pairs and multiple zinc
fingers extending the length of bound DNA. On the other
hand, steroid receptors bind DNA as dimers recognizing
palindromic response clements. As dimerization contrib-
utes to the affinity of DNA binding, binding to non-
palindromic sequences would likely be of low affinity.
Nevertheless, the question remains whether steroid
receptors can bind other DNA elements than their two
natural cognate response elements. A previously proposed
model for prediction of specific amino acid—base interac-
tions by the steroid receptor DNA-binding helix (8)
incorporates both chemical rules governing amino acid—
base interactions and stereochemical constraints resulting
from the position of the DNA recognition helix in the
major groove of response element as determined by
crystallographic studies. However, this model relies on
one amino acid—one base-pair relationships and ignores
some of the contacts described in the ER—-ERE cocrystal
structure. In particular, E203 recognizes not only the base
at position +4 (Figure 1C, bold line), but also that at
position +3 (dotted line), and bases on the opposite strand
make contacts with K210. On the other hand, the lysine
residue corresponding to K210 in the context of the GR
does not bind DNA, and its role in binding of ERs to
EREs has not been experimentally confirmed.

Contrary to the GR and AR, which recognize motifs
with variable base composition at position —4 conforming
to the PuGNACA consensus (20), ERs display a high
degree of specificity for bases at position —4/—3. GT was
the only element bound with high affinity, while GG was
tolerated when introduced in only one motif, such as in
the ERE found in the promoter of the rabbit uteroglobin
gene (40), but reduced binding efficacy dramatically when
introduced in both motifs. This binding pattern is
consistent with chemical preferences of E203 for C or A
at position +4 and +3, and of K210 for G or T at position
—4 and —3, with restrictions imposed by steric constraints
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Figure 8. Altered patterns of reporter vector transactivation by ER
mutants. HeLa cells were transiently transfected with variable concen-
trations of expression vectors for the wt ERa or mutants (10 ng—3 pg
per 10cm plate), tk-CAT reporter vectors containing consensus ERE,
AT or CT elements (2 pg per plate), and an internal control CMV-BGal
reporter vector (2pug per plate). Cells were treated with estrogen or
vehicle for 40h and duplicate extracts were assayed ER protein
expression levels in western analysis and for [-galactosidase/CAT
activity. (A) Standardized expression levels of wt ER and different
mutants. Note that some mutants (E203N and E203R-K210A) were
transfected at a 3-fold higher concentration (3 pg) than other expression
vectors (1 pg) to obtain similar expression levels. (B) CAT activity of
wt, E203N and E203H, shown at peak transactivation levels for all
plasmids (corresponding to 300ng for wt and E203H and g for
E203N). (C) Same as in B. except that expression vectors for wt or
the K210A, E203R or E203R-K210A mutants were used together with
tk-CAT reporter vectors containing the consensus ERE or the CT
element. Peak transactivation was obtained at 300 ng (wt or K210A) or
1 ng (E203R-K210A). Other plasmids (K210A, E203R), used here at
300 ng, were inactive even at the highest tested concentration (3 pug; not
shown). (D) Same as in C except that expression vectors for the wt ER
or the E203R-K210A mutant were used together with TATA-CAT
reporter vectors containing two copies of the consensus ERE or the CT
element. Maximal transactivation levels, obtained at 1pg (wt) or 3pug
(E203R-K210A), are shown.

with either amino acids. Mutagenesis of each amino acid
indicated that both contribute to recognition of the two
central base pairs in terms of binding efficiency. E203 also
plays a specific role in restricting binding to AT elements,
since mutation E203A, but not K210A, allowed formation
of complexes. Molecular modeling indicates that this is
due to steric conflicts between the carbonyl group of E203
and the methyl group of thymine +4.
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Figure 9. Modeling of the effect of mutations at position 203 on interaction with palindromic response elements. (A and B) Complexes formed
between the ER mutant E203N (A) or E203H (B) and the AT element after replacement of E203 by N or H in the ER&DBD/ERE crystal structure
and energy minimization. The position of the N and H side chains are restrained by the presence of S193. (C) Steric conflicts and charge repulsion

with the amino groups of C+4 in the consensus response element resulting from replacement of E203 by R.

The contribution of K210 to ERE binding likely
explains the fact that E203N and E203H mutants still
interacted with high affinity with the consensus response
elements (GT). Interactions with the AT element, which
were not predicted by the proposed model, were observed
in gel shift and transactivation assays with both E203N
and E203H mutants, and likely result from removal of
negative constraints exerted by E203 on T + 4, as observed
also in the E203A mutant. Our modeling indicates
that the methyl group of thymine can be accomodated
by side chain rearrangement when E203 is replaced by N
or H (Figure 9A and B). On the other hand, lack of
binding of the E203R mutant to all tested elements and
of transcriptional activity on the consensus ERE and
CT element can be explained by conflicts in charge

preference between R203 and K210 for recognition of
the same base pairs.

The role of K210 in preventing a specificity switch by
mutations at position 203 is demonstrated by the
observation that the double mutant E203R-K210A
could bind the CT eclement, as predicted by base
compatibility between R and G + 4, whereas this interac-
tion was not observed with the single mutation E203R.
As noted above, the K residue in AR at the corresponding
position does not contact DNA, explaining the capacity of
the AR mutant with an R at the position equivalent to 203
to interact with G 4 4. Another difference between the two
receptors is the contribution of V at position 6 in the DNA
recognition helix of AR (Figure 1B) in complex stabiliza-
tion. This may explain the relatively low affinity of the
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E203R-K210A mutant for the CT element. However, this
interaction was transcriptionally productive. Surprisingly,
similar levels of transactivation were obtained with the
mutant receptor on the CT element as with the wt receptor
on the consensus element at comparable protein concen-
trations along a range of amounts of transfected plamids,
failing to reveal a different efficiency of reporter DNA
saturation (data not shown). Titration curves of mutant
E203N and E203H on the consensus ERE and AT element
also failed to reveal a shift in protein concentrations
necessary to reach peak transcriptional activity. This
indicates that our in vivo assay may not discriminate
between binding sites in the range of affinities that is
observable in gel shift assay (within 30-fold of wt ERa-
consensus ERE affinity) and may be due to synergism with
other transcription factors for binding to our reporter
genes in vivo. A higher stringency of in vitro versus in vivo
assays is supported by the observation that half-palin-
dromes, which are not bound in our gel shift assay, are
enriched, albeit to a much lower degree than high-affinity
EREs, in chromatin fragments bound by ERa in a
genome-wide analysis (15). On the other hand, our
transactivation data confirms the total loss of interaction
between the E203R-K210A and the consensus ERE and
thus the switch in specificity toward the CT element.

Binding of the E203R-K210A to some unpredicted
sites, i.e the AC element, reflects the limitations of simple
models in fully accounting for the complex interactions
between these residues and the two central base pairs.
In addition, the expected binding of the E203H-K210A
mutant to the CN palindromes and of the E203N-K210A
mutant to the TN elements were not observed.
Replacement of E203 by N or H reveals that both
residues are too short to interact with charged groups at
position 6 or 7 of A (+4) or G (+4), respectively
(Figure 9A and B). Finally, mutants E203H-K210A or
E203N-K210A still bound the consensus ERE (GT
element), contrary to what was observed with mutation
E203R-K210A. The total abrogation of binding to the
consensus ERE appears due to charge and steric conflict
of R with C+4 (Figure 9C).

Together, our results indicate that simple chemical and
stereochemical rules cannot predict accurately the changes
in the selectivity of ER-DNA interactions induced by
specific mutations in the two central base pairs. A clear
limitation is the need to incorporate the contribution of
several amino acids to recognition of the same base pairs,
and the role of one amino acid in recognizing two adjacent
bases. The combined effects of E203 and K210 in
interacting with the same bases is apparent both at the
level of charge and steric constraints, resulting in the
tighter DNA-binding specificity for the two central base
pairs observed for ER versus other steroid receptors.
Further, steric constraints play an important role in
preventing potential interactions. Additional experiments
will also be necessary to determine whether the effect of
amino acid replacement at other positions in the ERa
DNA-binding helix, which are involved in simpler one
residue—one base interactions, is more easily predictable.
It remains possible that other receptors may be more
amenable to the rational design of mutant receptors with

altered DNA-binding specificity, due to differences in
composition of the DNA-binding helix and/or in the mode
of DBD dimerization. In this respect, it will be of interest
to investigate the DNA-binding specificity of non-classical
C. elegans receptors, which contain widely diverging
combinations of amino acids in their DNA recognition
helix. Finally, combinatorial approaches as performed for
C2H2 zinc fingers (41,42) may help clarify how amino
acids of the DNA-binding helix cooperate toward the
establishment of novel DNA-binding specificities.
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