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The epidemic of cardiovascular diseases (CVDs) is predicted to spread rapidly in

advanced countries accompanied by the high prevalence of risk factors. In terms of

pathogenesis, the pathophysiology of CVDs is featured by multiple disorders, including

vascular inflammation accompanied by simultaneously perturbed pathways, such as

cell death and acute/chronic inflammatory reactions. Epigenetic alteration is involved

in the regulation of genome stabilization and cellular homeostasis. The association

between CVD progression and histonemodifications is widely known. Among the histone

modifications, histone methylation is a reversible process involved in the development

and homeostasis of the cardiovascular system. Abnormal methylation can promote

CVD progression. This review discusses histone methylation and the enzymes involved

in the cardiovascular system and determine the effects of histone methyltransferases

and demethylases on the pathogenesis of CVDs. We will further demonstrate key

proteins mediated by histone methylation in blood vessels and review histone

methylation-mediated cardiomyocytes and cellular functions and pathways in CVDs.

Finally, we will summarize the role of inhibitors of histone methylation and demethylation

in CVDs and analyze their therapeutic potential, based on previous studies.
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INTRODUCTION

As a major trigger of mortality worldwide, the epidemic of cardiovascular diseases (CVDs) is
predicted to spread rapidly in developing and developed countries along with the high prevalence
of risk factors, including hypertension, diabetes, and obesity (1). In 2016, CVDs caused ∼17.9
million deaths globally (2). The mortality of CVDs worldwide is estimated to reach nearly 23.6
million in 2030 (3). Several risk factors, both genetic and behavioral, including diabetes, high blood
pressure, high cholesterol, smoking, unhealthy nutrition, obesity, physical inactivity, aging, and
arterial hypertension, account for the occurrence of CVDs (4). The clinical features of CVDsmainly
include vascular inflammation, endothelial dysfunction, atherosclerosis, fibrosis, and thrombosis
accompanied by multiple simultaneously perturbed pathways, such as cell death and acute/chronic
inflammatory reactions (5).

The structural and functional abnormalities of the heart and blood vessels mainly cause
CVDs. The heart is composed of several types of cells, mainly including cardiomyocytes and
fibroblasts, and an intricate network of blood vessels made up of fibroblasts, connective tissues,
smooth muscle cells, and endothelial cells [ECs; (6)]. Considering the complex composition,
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the dysfunction of these cells in the heart and vasculature
contributes to the pathogenesis of CVDs. CVDs might
be triggered by multiple processes, such as mitochondrial
dysfunction, reactive oxygen species formation, abnormal
calcium homeostasis, deleterious phosphorylation signaling,
proteostasis imbalance, dysregulated nutrient sensing, cellular
senescence, stem cell exhaustion, genomic instability, telomere
attrition, and epigenetic alterations (7, 8). With the rapid advance
in biochemical, molecular, and high-throughput sequencing
technologies, the dysregulated expression profiles of the human
genome in CVD patients have focused on (9). However, dynamic
alterations in the gene expression landscape can contribute to
the progression of CVDs (10). The dynamic gene expression
landscape is subject to different levels of regulation, including
genetics, epitranscriptomics, transcriptomics, and epigenetics
(11). Epigenetics provides the link between genetic programming
and environmental influence that results in the expressed
phenotype (12). Epigenetics plays a major role in the occurrence
and progression of several CVDs, such as cardiac hypertrophy,
heart failure, ischemic heart disease, aortic aneurysm, vascular
calcification, and pulmonary hypertension, by mediating gene
expression and cellular function (13). Furthermore, epigenetics
implies the heritable alteration in the gene expression landscape
without alterations in DNA sequence caused by the changes
in nucleosome remodeling, which represents the architecture
of chromatin and regulates the accessibility of DNA (14). The
altered nucleosome remodeling is attributed to the interaction
between the environment and the genome (15).

Preliminary studies have pointed to the complex association
between CVDs and epigenetic modifications, including DNA
methylation, histone modifications, and RNA-based mechanisms
(16). Histone modification is the methylation, acetylation,
ubiquitination, phosphorylation, SUMOylation, GlcNAcylation,
carbonylation, and ADP-ribosylation of histones, H2A, H2B, H3,
and H4 (17). Post-translational modifications (PTMs) in core
histones effectively modulate the activation and inhibition state
of downstream gene transcription (18, 19). For example, H3K4
methylation can activate the expression of α-MHC gene in the
left ventricle (LV) compared with that in the right ventricle
(RV) (20). Generally, PTMs can be added and removed by
specific enzymes, including “writers,” which add modifiers, and

Abbreviations: CVD, cardiovascular diseases; PTMs, post-translational

modifications; LV, left ventricle; RV, right ventricle; HAT, histone acetyltransferase;

HDAC, histone deacetylases; KMT, histone lysine methyltransferase; LSD,

lysine-specific demethylase; HDM, histone demethylase; JHDM, Jumonji

C-domain-containing family; SMYD, SET domain and MYND domain protein;

JARID, Jumonji, and AT rich interactive domain 1D; FHL1, four-and-a-half LIM

domains 1; TAC, transverse aortic constriction; EZH2, enhancer of zeste homolog

2; SMC, skeletal myocyte; UTX, ubiquitously transcribed tetratricopeptide repeat

on chromosome X; LVH, left ventricular hypertrophy; MEF2C, myocyte-specific

enhancer factor 2C; DMD, Duchenne muscular dystrophy; ROS, reactive oxygen

species; NO, nitric oxide; eNOS, endothelial nitric oxide synthase; EC, endothelia

cell; NF-κB, nuclear factor kappa-B; VSMC, vascular smooth muscle cell; SET,

Su(var)3–9, Enhancer of zeste, and Trithorax; MLL, mixed lineage leukemia

protein; SETD7, SET domain containing 7; EHMT2/G9a, euchromatic histone-

lysine N-methyltransferase 2; PRMT, protein arginine methyltransferase; DOT1L,

DOT1 like histone lysine methyltransferase; WDR5, WD repeat-containing

protein 5; KLF2, Krüppel-like factor 2; JMJD, Jumonji C domain-containing.

“erasers,” which remove modifiers (21). Histone acetylation is
added to lysine residues by histone acetyltransferases (HATs)
and removed by histone deacetylases [HDACs; (22)]. The
aberrant regulation of epigenetic regulators in PTMs is a
predisposing factor for cardiac diseases (23). Considering the
close involvement of epigenetics in the expression of genes
associated with CVDs, the epigenetic mechanism and its critical
role in modulating CVD progression should be determined
(24). A better understanding of the modulatory mechanism in
CVD development may contribute to the discovery of novel
therapeutic targets to provide beneficial effects for patients.
Pharmacologically targeting epigenetic modification for the
treatment of CVDs has been developed and successfully tested
in preclinical models.

HISTONE METHYLATION MODIFICATION

Alterations at the epigenetic level that mediate chromatin
structure are involved in the regulation of genome stabilization
and cellular homeostasis (25, 26). In eukaryotic nuclei, DNA
is wrapped around by four core histone proteins, namely,
H2A, H2B, H3, and H4, which further forms nucleosomes and
chromatin (27, 28). Histone modifications alter the structure of
nucleosomes, regulate gene transcription, and mediate growth
and disease pathogenesis (29, 30). The important and unique
roles of these histone modifications have been reported by a
number of studies (31, 32).

Histone methylation is an essential modification that can
cause monomethylation (me1), dimethylation (me2), and
trimethylation (me3) of several amino acids, thus directly
affecting heterochromatin formation, gene imprinting, X
chromosome inactivation, and gene transcriptional regulation
(33). In general, lysine (Lys or K), arginine (Arg or R), and
rarely histidine (His or H) are the most common histone methyl
acceptors (30, 34, 35). Histone methylation only occurs at
specific lysine and arginine sites of histone H3 and H4 (36).
In histone H3, lysine 4, 9, 26, 27, 36, 56, and 79 and arginine
2, 8, and 17 can be methylated. By comparison, histone H4
has fewer methylation sites, in which only lysine 5, 12, and
20 and arginine 3 can be methylated (37, 38). However, the
methylation of H2A and H2B in histone octamer has not been
confirmed (Figure 1). Histone methylation can occur at distinct
positions with divergent transcriptional activity (39). Histone
methylation is often associated with transcriptional activation
or inhibition of downstream genes (40, 41). The methylation
of histone H3K4, R8, R17, K26, K36, K79, H4R3, and K12 can
activate gene transcription (42, 43). However, the methylation
of histone H3K9, K27, K56, H4K5, and K20 inhibits gene
transcription, confirming the complexity of epigenetic regulation
of histone methylation (44). Interestingly, under different
conditions, the methylation of histone H3R2 can activate and
inhibit transcription (33).

Histone methylation is a reversible process that
promotes homeostasis in healthy organisms (36). Histone
methyltransferases and histone demethylases promote
monomethylation, dimethylation, trimethylation, or
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FIGURE 1 | Existing methylation sites in histones, the enzymes involved, and the effects on the transcription of downstream genes. The existing methylation sites and

the histone methyltransferases and demethylases that catalyze monomethylation, dimethylation, trimethylation, or demethylation are listed. The effect of methylation

modification at each site on downstream gene transcription is labeled as “activation” or “repression”.

demethylation of histones (38, 45). Histone methyltransferases,
particularly histone lysine methyltransferases (KMTs),
are involved in the transfer of methyl group from S-
adenosylmethionine to N-terminal tails of lysine residues present
on histone (46). Histone demethylases such as lysine-specific
demethylase 1 (LSD1) can regulate histone demethylation (47).
Histone H3 and H4 can undergo methylation modification,
and the methylation and demethylation of different sites are
mediated by specific enzymes (Figure 1).

In humans, the following two protein domains carry out
lysine methylation: SET domain [named after three Drosophila
melanogaster proteins originally recognized as containing this
domain, namely, Su(var)3–9, Enhancer of zeste, and Trithorax]
and the seven beta-strand (7βS) domain [non-SET-domain
enzymes; (30, 31)]. These two families account for more than
200 enzymes with different amino acid residue specificity
(48). Histone demethylases (HDMs) also include two groups
in eukaryotes, including the LSD1 family and the Jumonji
C-domain-containing family [JHDMs; (49)]. LSD1 is the
first identified histone demethylase (50). HDMs in JHDMs
include Fe2+- and α-ketoglutarate-dependent hydroxylases, and

seven phylogenetically distinct subfamilies were identified in
this family (51).

In human cells, the methylation and demethylation of
different histone sites are mediated by different enzymes, which
precisely regulate histone methylation and gene expression
(52). For example, various histone methyltransferases regulate
the methylation of histone H3K4, such as mixed lineage
leukemia protein 1 (MLL1)-MLL4, SET domain containing
1A (SET1A)-SET1B, and SET domain and MYND domain
protein 1 (SMYD1)-SMYD3 (27, 36, 53, 54). Several histone
demethylases mediate the demethylation of H3K4, such as
proteins in the LSD family and Jumonji, and AT rich interactive
domain 1D (JARID) family (55). We further summarized the
methyltransferases and demethylases involved in the histone
methylation regulation of different sites (Figure 1). Notably, the
specific histone demethylase that regulates the demethylation
of histone H3R8, R17, K26, K79, H4K5, and K12 has not
been determined.

The crosstalk between miRNAs and histone modification
forms closed epigenetic machinery loops. Histone modification
may activate or inhibit miRNA expression. HDAC inhibition
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TABLE 1 | The known methyltransferases and demethylases involved in CVDs progression.

Regulators Actions Effect

SMYD1/2/3 Methylation of H3K4, H3K36 SMYD1: Mice: Disrupted right ventricle formation and cardiomyocyte maturation;

SMYD3: Zebrafish: Abnormal looping of heart tube, pericardial edema

COMPASS (Ash2,

WDR5)

Methylation of H3K4 Involved in vasoconstriction, endothelial dysfunction, and development in

numerous cardiovascular diseases

SETD7 Methylation of H3K4 Zebrafish: Developmental heart edema

MLL3 Methylation of H3K4me2 Patients with dilated cardiomyopathy

MLL2 Methylation of H3K4 Zebrafish: Abnormal development of the atria and/or ventricle, prominent bulging

of the myocardial wall

Mouse: Embryonic lethal, disorganized interventricular septum

Human: Kabuki syndrome, congenital heart defects

G9a/EHMT2 Methylation of H3K9me2 and H3K27me3

(lesser extent)

Maintain cardiomyocyte homeostasis and interact with MEF2C to silence the

fetal gene program in the adult heart

Promote cardiac hypertrophy in stressed hearts

Blimp-1/PRDM Methylation of H3K9 Mice: Ventricular septal defect and persistent arterial trunk

EHMT1/2 Methylation of H3K9 Protects mice from LVH induced by pressure overload

PRMT5 Methylation of H3R2, H2AR3, and H4R3 Regulate hypertrophic growth via GATA4

EZH2 Methylation of H3K27 Mouse: Failure of myocardial compaction, hypertrabeculation, and ventricular

and atrial septal defects

NSD1 Methylation of H3K36 Sotos syndrome

DOT1L Methylation of H3K79me Reduction of DOT1L activity causes DCM

PTIP Co-factor of H3K4 methylation

Regulates the expression of Kcnip2

Misregulation of PTIP cause cardiac hypertrophy and failure

LSD1 Demethylation of H3K4 Mice: Ventricular septal defects, salt-sensitive hypertension

JMJD2A Demethylation of H3K9me3, H3K4me3,

and H3K27me3

Activate cardiac hypertrophy and alter cardiac gene expression

UTX (KDM6A) Demethylation of H3K27 Regulate cardiac development

JMJD3 Demethylation of H3K27 Deficiency also leads to advanced atherosclerosis

upregulates miR-124 accompanied by the inhibition of the
expression of downstream targets, such as CDK4, CDK6, and
EZH2 (56). miRNA may also regulate histone modifications.
HDAC1 is regulated by miR-34a via binding to the 3′-UTR of
HDAC1mRNA in the foam cells. The overexpression of miR-34a
represses the expression of HDAC1 and increases the acetylation
levels of H3K9ac, causing aberrant lipid accumulation in the
foam cell (57).

HISTONE METHYLATION IN CVD
PROGRESSION

Generally, histones are featured by their large quantity
and various modification residues (46, 58). At least eight
modifications have been identified in histones, and these
modifications are catalyzed by distinct enzymes (59, 60).
A genome-wide analysis depicted that 596 out of 1,109
differentially regulated genes harbor at least one histone modifier
at the promoter region in adult mouse cardiomyocytes under
hypertrophic remodeling, suggesting a key function in the
epigenetic landscape in the transcriptome reprogramming of
hypertrophic cardiomyocytes (27, 61). Histone modifications
(e.g., methylation or acetylation) affect the progression of various
forms of CVDs (22). The function of histone modification
on target gene modulation specifically relies on cell types and

epigenetic marks (62). Epigenetic modifications widely affect
CVDs, and the epigenetic modifications involved in CVD
progression are listed in Table 1.

Histone Methylation of Key Genes in
Cardiomyocytes and Blood Vessels
Considering the close interaction among histone
methyltransferases, demethylases, and the main regulators
of muscle phenotype, the targeted cardiac genes are regulated by
histonemethylation (46, 63). A typical example of this interaction
can be found in skeletal myocytes (SMCs). WDR5, a necessary
component of the SET/MLL family of methyltransferases,
regulates the expression of SMC-specific genes, including
SM α-actin, SM22α, SM-MHC, and myocardia through the
methylation of H3K4 on their corresponding promoters
[Figure 2; (64)]. Ubiquitously transcribed tetratricopeptide
repeat on chromosome X (UTX, a H3K27-specific histone
demethylase), serum response factor (SRF), and other core
cardiac transcription factors, such as Tbx5 and Nkx2.5, interact
together. Their interaction synergistically modulates the
expression of downstream genes, such as the atrial natriuretic
factor (Figure 2). However, the inhibition of the UTX interaction
between cardiac gene enhancers prevents cardiac differentiation
[Figure 2; (65)]. In addition, increased histone acetylation and
dimethylation are associated with increased expression of atrial
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natriuretic peptide and brain-type natriuretic peptide in the LV.
Therefore, ubiquitously expressed histone methyltransferases
and demethylases have regulatory roles in modulating the
expression of genes involved in CVDs. The interactions between
histone methyltransferases, demethylases, and transcriptional
factors also affect the expression of genes exposed to various
stimuli. JMJD2A, a histone demethylase, interacts with
SRF/myocardia to elevate the level of four-and-a-half LIM
domains 1 (FHL1), a cardiac hypertrophy biomechanical stress
sensor when exposed to transverse aortic constriction (TAC,
Figure 2). JMJD2A promotes cardiac hypertrophy. MRTFs
regulate the expression of downstream genes via their interaction
with methyltransferases and demethylases when exposed to
stimuli. In ECs, MRTF-A interacts with Ash2 and WDR5, the
components of COMPASS, and is recruited to the ET-1 promoter,
exerting critical functions in vasoconstriction and endothelial
dysfunction in CVDs in response to Ang II stimulation
(66, 67). SMYD1-mediated histone methylation modulates
the expression of Hand2 and Irx4, which are essential cardiac
transcription factors for RV formation [Figure 2; (68, 69)].
Histone demethylase JHDM2A deficiency modulates the PPARγ

pathway via H3K9 modification (70). Therefore, demethylases
and methyltransferases are involved in the recruitment and
interaction with transcription factors that play a vital role in
CVD pathologies.

In addition to cardiac genes, endothelial genes are also
modulated by the combined regulation between transcription
factors and histone methyltransferases and demethylases (71,
72). The interaction of epigenetic reader MECP2, H3K27
histone methyltransferase, enhancer of zeste homolog 2 (EZH2),
and KLF2 triggers the inhibition of KLF2, which is a
transcriptional factor responsible for the anti-inflammatory and
antithrombotic surface via regulating numerous genes, including
eNOS and thrombomodulin [Figure 2; (24)]. Additionally, the
SMC phenotype switching in atherogenic conditions can be
regulated by histone arginine methylation by targeting the
transcription factor (73, 74). Protein arginine methyltransferase
4 mediates the upregulation of osteopontin through the
dimethylation of R17 on histone H3, and this process promotes
the recruitment of transcription factor USF1 (75, 76). The
recruitment of USF1 is suppressed by arginine demethylase
JMJD6 (77). Considering the sensitivity of ECs toward hypoxia,
transcription factor interaction with epigenetic modification is
also detected in hypoxia-induced upregulation of the glucose
transporter, GLUT3, in ECs (78). The demethylase KDM3A is
recruited to the transcriptional start site and enhancer regions
of GLUT3 and facilitates the demethylation of H3K9 to induce
GLUT3 expression in response to HIF1-α expression (78, 79).
In addition, the interaction between HIF1-α and KDM3A has
been confirmed by co-immunoprecipitation, and this process
is inhibited by HIF1-α depletion (79). Thus, the interaction
between HIF1-α and KDM3A modulates GLUT3 levels for the
homeostasis of glucose levels, and this condition is required for
maintaining energy supply under hypoxic conditions [Figure 2;
(78)]. The demethylase LSD1 could serve as a repressor of
Notch1, which specifically regulates cardiomyocyte proliferation
within the trabeculae [Figure 2; (80)]. Based on these studies,

histone methyltransferases and demethylases could modulate the
expression of CVD-related genes by interacting with multiple
transcription factors.

Role of Histone Methylases and
Demethylases in CVDs
Histone methylases such as G9a, EZH2, MLL2, DOT1L, SMYD1-
SMYD3, and SUV39H1 and demethylases such as LSD1-
LSD2, JMJD2A, UTX, and JMJD3 modulate the transcription
of various cardiovascular genes and play an important role
in cardiovascular development and CVDs. For example, G9a
mediates H3K9 dimethylation and further suppresses the
expression of cardiomyocyte-related genes (81). SMYD1 is a
modulator of cardiac transcription factors for RV formation (68).
H3K27me3, one of the most established histone modifiers, is
modulated by EZH2, UTX, and JMJD3, and affects CVD progress
[Figure 3; (45, 82–84)]. UTX interacts with SRF and other
core cardiac transcription factors to affect heart development.
The inhibition of UTX interaction also suppresses cardiac
differentiation (65). Considering the vital importance of these
methylase and demethylase in cardiac development and function,
aberrant expression and mutation of the histone methylation
modifiers, which can be affected by living habits, genetic factors,
environmental factors, and other CVD risk factors, are critical in
the pathology of CVDs (Figure 3).

Histone Methylation in Atherosclerosis
EZH2 protects against cardiac pathology by inhibiting the
expression of transcription factor Six1-a in cardiac progenitor
cells (85). EZH2 plays a vital role in atherosclerosis (86). EZH2
overexpression leads to the development of atherosclerosis
in ApoE−/− mice by catalyzing the methylation of DNMT1-
mediated ATP binding cassette transporter A1, thereby
inhibiting macrophage cholesterol efflux and promoting
foam cell formation (87). JMJD3 depletion in foam cells
suppresses pro-fibrotic pathways, an important hallmark for
atherosclerosis (38). Myeloid JMJD3 deficiency also leads to
advanced atherosclerosis (88). Histone modification alterations,
such as reduction of H3K9 and H3K27 methylation levels, have
also been observed in patients with atherosclerotic plaques
and carotid artery stenosis (20). Along with the progression
of atherosclerosis, H3K4 methylation accumulates in SMCs;
H3K9ac and H3K27ac are also enriched in atherosclerotic SMCs
and macrophages, thus supporting the elevated HAT activity of
GCN5-like protein 1 and HAT KAT8 (89). Additionally, H3K9ac
accumulates in atherosclerotic plaques in ECs (90).

Histone Methylation in Cardiac
Hypertrophy
PRMT5 ameliorates cardiomyocyte hypertrophy and induces the
methylation of H4R3me2 via the transcriptional activation
of Filip1L and subsequent enhancement of β-catenin
degradation [Figure 2; (63)]. PRMT5 deficiency contributes
to the suppression of H4R3me2 and facilitates the progression
of pathological cardiac hypertrophy (35). The depletion of
muscle-specific SMYD1 (a H3K4 methyltransferase) leads
to severe cardiac developmental defects [Figure 3; (91)].
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FIGURE 2 | Downstream target genes involved in cardiovascular development and CVDs are affected by histone methylation and related enzymes. The downstream

genes involved in the regulation of cardiovascular development can be modulated by histone methyltransferase or demethylase for transcriptional activation or

repression. The abnormal activation or repression eventually contributes to the progression of CVDs.

Furthermore, in adult heart diseases, SMYD1 is elevated to
restrict hypertrophic growth by directly repressing a group of
hypertrophy-associated genes, including TGFβ3 and NPPA (92).
The misregulation of PAX transactivation-domain interacting
protein, a cofactor of H3K4 methylation, causes cardiac
hypertrophy and failure (93). JMJD1C is involved in pathological
cardiac hypertrophy, in which its expression level increases,
and H3K9 methylation decreases during cardiac hypertrophy
in humans and mice (94). JMJD1C contributes to hypertrophic
cardiomyocytes stimulated with Ang II (95). In addition,
cardiomyocyte remodeling occurs with the help of H3K9me3
methyltransferase, SUV39H1 upregulation and the H3K9me3
demethylases, JMJD downregulation [Figure 3; (96)]. As a
H3K9me2 dimethyltransferase, EHMT1/2 protects mice from
left ventricular hypertrophy (LVH) accompanied by increased
global H3K9me2 levels induced by pressure overload (97).

G9a mediates cardiomyocyte homeostasis by repressing genes
involved in cardiomyocyte function, including anti-hypertrophic
genes through its methylation on histone H3K9 and interaction
with EZH2 and transcription factor myocyte-specific enhancer
factor 2C (MEF2C) (81).

Histone Methylation in Noonan Syndrome
The increased histone H3K4 methylation induced by
haploinsufficiency of RREB1 causes a Noonan-like RASopathy,
which refers to the abnormal development in multiple part of
the body including CVD, via SIN3A and KDM1A in human
and murine cells (98). Moreover, disruption of the histone
acetyltransferase MYST4 leads to a Noonan syndrome-like
phenotype and hyperactivates MAPK signaling in humans
and mice (99).
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FIGURE 3 | CVD-related histone methyltransferases and demethylases. Chromatin constitutes two structural states, namely, the methylated (Left) and demethylated

(Right) states, which are catalyzed by methyltransferases and demethylases, respectively. Histone methylation state affects the loosening of the nucleosome, thus

allowing the binding of transcriptional machineries or inhibiting the accessibility of the transcriptional machinery to genes, which are critical for the pathology of CVDs.

Methyltransferases and demethylases can be affected by environmental factors, living habits, genetic factors, and other factors of CVDs.

Histone Methylation in Dilated
Cardiomyopathy
The overexpression of Rae28, which is involved in the protein
regulator of cytokinesis 1 (PRC1) complex in cardiomyocytes,
leads to apoptosis of cardiomyocytes, irregular myofibrils,
and dilated cardiomyopathy (100). By contrast, H3K79me3 is
added by the histone-lysine N-methyltransferase DOT1L, which
is repressed during dilated cardiomyopathy (101). DOT1L-
specific depletion in cardiomyocytes triggers the total depletion
of H3K79me2/3 and finally the reduction of the dystrophin
(DMD) gene, a membrane-associated protein involved in dilated
cardiomyopathy and muscular dystrophy (102). Consistently,
DMD protein level is reduced in DOT1L-ablated hearts, which

displays dilated cardiomyopathy (102). Similarly, the decrease
of H3K9me2/3 and increase of H3K4me2 are correlated with
dilated cardiomyopathy and accompanied by increased levels
of myeloid/lymphoid or mixed-lineage leukemia protein 3 in
the LV (64).

Histone Methylation in Cardiac
Development
H3K4 methyltransferase SMYD3 accumulates during the
development of zebrafish heart, and SMYD3 knockdown
results in severe defects, including pericardial edema and
aberrant expression, of three heart-chamber markers in cardiac
morphogenesis [Figure 3; (103)]. Therefore, histone methylation
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FIGURE 4 | Histone methylation-modifying inhibitors and their targets for the prevention of CVDs. Histone methylation-modifying inhibitors are indicated in bold

together with their respective targets. Each compound specifically targets the enzymes involved in methylation regulation, thus affecting chromatin accessibility and

binding of transcription factors critical for CVDs. These alterations modulate the expression of downstream genes in CVDs.

plays a critical function in the development of the heart, and its
abnormal function leads to severe CVDs.

Histone Methylation in Diabetic
Cardiovascular Complications
Epigenetic modifications are critically involved in the long-
lasting and detrimental effects of hyperglycemia on the
cardiovascular system. Hyperglycemia induces aberrant
changes in H3K4me2 and H3K9me2 in human monocytes.
Monocytes from T2D patients exhibit SETD7-dependent
epigenetic alterations (H3K4m) on NF-kB p65 promoter (104).
Adverse epigenetic remodeling driven by SETD7 was associated
with endothelial dysfunction and oxidative stress (105). The
inhibitor of SETD7 alleviates the burden of CVD in patients
with diabetes.

Histone Methylation in Congenital Heart
Defects
The mutations in epigenetic regulation are vital factors for the
occurrence of congenital heart defects (106, 107). The decreases

in heterochromatin H3K27me3 and its methyltransferase
EZH2 are accompanied by Hutchinson–Gilford progeria
syndrome, exhibiting atherosclerotic CVD phenotypes at an
early age (108).

Histone Methylation in Cardiac
Ischemia/Reperfusion Injury
In response to cardiac ischemia/reperfusion (I/R) injury,
histone, and methyltransferase G9a protein levels increased
in caveolin knockout mice (109). The expression levels of
MLL2 and G9a increased in advanced atherosclerosis compared
with early atherosclerosis (37). Su(var)3–9 methyltransferase
is associated with the pathogenesis of myocardial infarction
(110). SUV39H1 deficiency or inhibition attenuates I/R-
induced infarction and improves heart function in mice
possibly by influencing reactive oxygen species (ROS)
levels in a SIRT1-dependent manner (110). The mechanism
underlying the epigenetic change in cardiac regulation needs
to be elucidated to develop effective therapeutic strategies
for CVDs.
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Combined Modulation of Histone
Methylation and Acetylation in CVDs
Histone methylation and acetylation modification work together
during the development of CVDs (46, 111, 112). For instance,
nitric oxide (NO), which is produced by endothelial nitric oxide
synthase (eNOS), is a major antiatherogenic factor in the blood
vessel (113, 114). The activation of histone modifications, H3K9
and H4K12 acetylation, and H3K4 methylation are enriched at
the proximal promoter site of NOS3 in ECs but not in SMCs, thus
explaining the different expression patterns in ECs and SMCs
(115). SMYD2 exhibits transcription repression on an SV40-
luciferase reporter (116). The dimethylation of histone H3 lysine
36 by SMYD2 is accompanied by its interaction with Sin3, a
HDAC1-containing complex, implying orchestrated regulation
of methylation and acetylation [Figure 3; (117)].

Histone Methylation-Mediated Cellular
Functions and Pathways in CVDs
Histone modification affects many cellular pathways essential
for the normal function and development of the heart and
blood vessels (110, 118–120). The methyltransferase SET7
induces the upregulation of NF-κB p65 as a result of enhanced
monomethylation of H3K4 in aortic ECs (121). SET7 can also
be mediated by transient hyperglycemia, triggering H3K4me1
and further activating NF-κB p65 and NF-κB-dependent
inflammatory genes in ECs, thus suggesting its critical role
in hyperglycemia-mediated vascular complications (105, 122).
SET7 may act as a promising target for the prevention of
atherosclerotic vascular disease in patients with cardiometabolic
disturbances (122, 123). In addition, H3K4me1 is correlated
with the expression of oxidant genes (iNOS and COX-2)
and elevated plasma levels of ICAM-1 and MCP-1 (124).
EZH2 ablation or enzymatic inactivation in the fetal heart
decreases cardiomyocyte proliferation and increases apoptosis
and lethal congenital malformations (85, 86). Although the
function of the paralog gene EZH1 can be disregarded during
early cardiac development, this function is essential for neonatal
heart regeneration (125). EZH1 overexpression leads to cardiac
regeneration in 10-day-old mice, which usually have non-
regenerative heart (126). MLL2, a methyltransferase that is
widely expressed in adult tissues, functions in embryonic
development (127–132). As a H3K36-specific methyltransferase,
HYPB (also known as SETD2 and KMT3A) homozygous
disruption leads to embryonic lethality at E10.5–E11.5 caused
by severe vascular defects in the embryo, yolk sac, and
placenta (133). DOT1L catalyzes the methylation of histone
H3K79 and modulates transcriptional elongation, cell cycle
progression, somatic reprogramming, development, and DNA
damage repair (134–138).

THERAPEUTIC POTENTIAL OF
EPIGENETIC INHIBITORS AS
CARDIOVASCULAR DRUGS

Considering that epigenetic modification plays an important role
in the progression of CVDs, small-molecule epigenetic drugs

against CVDs should be developed. The reversible nature of
epigenetic modifications allows the modulation and restoration
of phenotypes via some inhibitors or dietary restrictions
(139–142). In comparison with the other types of epigenetic
inhibitors, the inhibitors of histone methylation have not been
extensively researched and remain an undeveloped source of
pharmacological interventions.

Among these inhibitors, GSK126 is a potent and
highly selective methyltransferase inhibitor for the histone
methyltransferase EZH2 [Figure 4; (143)]. Given that myeloid
EZH2 deficiency in mice leads to improvement in chronic
inflammatory disorders such as CVDs, GSK126 has been used
to reduce macrophage pro-inflammatory responses (143).
Moreover, EZH2 plays an important role in atherosclerosis.
EZH2 induces lipid accumulation when stimulated with ox-LDL
and macrophage activation and inflammation in THP-1- and
RAW264.7-derived macrophages (144). The overexpression of
EZH2 in mice can augment the atherosclerosis plaque size by
repressing the expression of Abga1/Abcg1 (145). Therefore,
GSK126 has a potential therapeutic effect of GSK126 in
atherosclerosis treatment. Notably, statins can reduce EZH2
expression levels in ECs, suggesting that they can serve as
the potential therapeutic target in atherosclerosis treatment
(145, 146). Additionally, the inhibition of EZH2 by UNC1999
significantly inhibits VSMC proliferation induced by PDGF-BB
and neointima formation caused by wire-guided common
carotid injury, mediated by the enhanced transcription of the
cyclin-dependent kinase inhibitor p16INK4A [Figure 4; (147)].
Inhibition of EZH2 activity by its inhibitor, UNC1999, or
knockdown of EZH2 by its shRNA, leads to VSMC loss, while
overexpression of EZH2 facilitates VSMC growth, therefore
promoting a tear in the inner layer of the aortic wall, which
allows blood to enter into the wall of the aorta, as evidenced by
fragmentation of elastic fibers and VSMC loss (148).

G9a is responsible for the homeostasis of cardiomyocytes
by mediating H3K9 dimethylation to inhibit the expression
of cardiomyocyte-related genes and the formation of a
complex with EZH2 and MEF2C (149). TAC mice, which
were administered with BIX-01294 (a G9a inhibitor), had
improved cardiac function and prevented the development of
hypertrophy (150). BIX01294 promotes the expansion of adult
cardiac progenitor cells without changing their phenotype or
differentiation potential, suggesting that this drug can be used to
generate large numbers of native cardiac progenitor cells for the
treatment of cardiac disease (150). Furthermore, EPZ005687, a
selective inhibitor of Ezh2, significantly inhibits the progression
of pulmonary arterial hypertension induced by TAC (151).
Resveratrol is beneficial for deoxycorticosterone acetate salt-
induced hypertension, a risk factor for cardiac disease, partially
by suppressing H3K27 methylation in the blood vessels (152).
Additionally, Su(var)3–9 methyltransferase is associated with
the pathogenesis of myocardial infarction (110). SUV39H is
upregulated in neonatal rat ventricular myocytes in cardiac
ischemia/reperfusion injury (114). Chaetocin is a promising
epigenetic inhibitor for H3K9 methyltransferase SUV39H
(153). The administration of chaetocin preserved changes in
histone methylation and improved survival in a rat model of
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high-salt-diet-induced heart failure, suggesting the beneficial
effects of methyltransferase inhibitors for the treatment
of heart disease (154). Furthermore, the intraperitoneal
administration of chaetocin improves survival and decreases
infarct size in C57/BL6 mice following myocardial infarction
(155). Chaetocin therapy also suppresses the expression
of MMP9, which is responsible for the destabilization of
plaque (156). Thus, further investigations are needed to
determine the potential use of this compound in CVDs.
Sinefungin, a SET7 inhibitor inhibits the heightened production
of TNFα and IL-6 in a dose-dependent manner following
stimulation with LPS in an atherosclerotic disease mouse
model (157).

KDM3A, a specific H3K9me2 demethylase, results in LVH
and fibrosis induced by pressure overload (158). KDM3A
promotes TAC-induced hypertrophic remodeling in vivo (158).
JIB-04, a pan KDM inhibitor, prevents pressure overload-induced
LVH and fibrosis (159, 160). JIB-04 inhibits KDM3A and the
expression of proteins involved in myocardial fibrosis (159). It
also protects mice against I/R injury (160). AS8351 is a KDM5B
inhibitor that can induce and sustain active chromatin marks to
facilitate the induction of cardiomyocyte-like cells (161). JMJD3
plays a pivotal role in hypertrophy (162). The overexpression of
JMJD3 promotes cardiomyocyte hypertrophy; JMJD3 silencing
or the administration of GSK-J4 (its inhibitor) suppresses ISO-
induced cardiac hypertrophy (163). Another example showed
IOX1, a JMJD2A inhibitor, suppressed the proliferation and
migration of VSMCs induced by angiotensin II by regulating the
expression of cell cycle-related proteins and can therefore serve
as a potential therapeutic agent in the treatment of atherosclerosis
(164). In addition, the inhibition of LSD1withGSK-LSD1 inmice
prevents the development of fibrosis, an EMT-mediated process,
in the heart and dilatation, thus preventing heart failure (165).

Although the critical functions of histone PTMs in CVDs
have been revealed, much work is needed to comprehensively
illustrate the function of these proteins in various processes
and their utilization in therapeutic applications. Currently, no
epigenetically active agents have entered clinical trials for CVDs.
Further investigations on the potential use of epigenetically active
compounds are urgently needed for the treatment of CVDs.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Epigenetic modifications, such as DNA methylation, histone
methylation, and acetylation, are promising therapeutic strategies
for the treatment of CVDs (166–170). Despite the recent
advances in epigenetic modifications in CVDs, the potential
epigenetic inhibitors for CVD therapy have not been identified.
Furthermore, a better understanding of the mechanism of
epigenetic modification that regulates CVD progression is
urgently needed to develop new strategies for the treatment of

CVDs. Further studies are needed to improve the pharmacology
of these potential inhibitors, because a non-specific inhibitor
would cause unnecessary suppression or activation of a set
of genes, causing adverse outcomes. Considering the high
resemblance in the modifications on different histone proteins,
the design of a highly selective inhibitor that targets a particular
protein remains a challenge. Building on the foundation of
currently available knowledge will help us to take full advantage
of the incredible therapeutic capacity of epigenetic drugs.

Considering the complexity of the pathogenesis of CVDs,
the important role of epigenetics, especially histone methylation,
should be determined. In general, histone methylation mainly
regulates the transcription of downstream genes that are closely
related to cardiovascular development or affect the activity
of related signaling pathways. Histone methylation can also
cooperate with acetylation and other modifications to precisely
regulate gene transcription. A deep understanding of the related
processes will help us to clarify the regulatory mechanism of
cardiovascular development and the pathogenesis of CVDs. It
can also provide a theoretical basis for the next step of screening
important therapeutic targets and developing related inhibitors.

With the use histone methyltransferase or demethylase
inhibitors for CVD treatment and intervention, we should
still focus on the various abilities of these inhibitors to
activate or inhibit multiple gene transcription, causing
complex, and potential side effects of related inhibitors. We
should use transcriptomics and proteomics to analyze their
pharmacological mechanism carefully to achieve the best
therapeutic effect. Another important problem is that the
inhibitors of histone methyltransferases and demethylases
generally lack specificity. The next important task is the design
of specific inhibitors for a certain enzyme based on different
methyltransferases or demethylases by using specific three-
dimensional structural analysis methods and combined with
pharmacological approaches. The best therapeutic effect on
CVDs can be achieved by precisely regulating the histone
methylation or demethylation of a specific site.
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