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Abstract: Mycotoxins are secondary metabolites of filamentous fungi and represent one of the most
common groups of food contaminants with low molecular weight. These toxins are considered
common and can affect the food chain at various stages of production, harvesting, storage and
processing. Zearalenone is one of over 400 detected mycotoxins and produced by fungi of the
genus Fusarium; it mainly has estrogenic effects on various organisms. Contaminated products can
lead to huge economic losses and pose risks to animals and humans. In this review, we systemize
information on zearalenone and its major metabolites.
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Key Contribution: The aim of this review is to systematize information on zearalenone and its major
metabolites and to determine the state of contamination by these mycotoxins.

1. Introduction

Zearalenone (ZEN) is a mycotoxin produced by fungi of the genus Fusarium [1],
mainly F. graminearum, F. culmorum, F. cerealis, F. equiseti, F. crookwellense, F. semitectum [2],
F. verticillioides, F. sporotrichioides, F. oxysporum [3] and F. acuminatum [4]. Fungi especially
produce ZEN in temperate and warmer climates [5]. Zearalenone has the general formula
C18H22O5 [6] (Figure 1) and is a 6-(10-hydroxy-6-oxy-trans-1-undecenyl-beta-resorcylic
acid lactone) [6]. It was isolated, for the first time (as F-2), from maize inoculated with
Fusarium [7].
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ZAL and ZEN produced by pig liver microsomes, while chicken microsomes produce the 
highest amounts of β-ZEL, which has, however, a lower estrogenic activity [3,22], but is 
the most frequently detected metabolite in cattle [23,24]. Hydroxylation of ZEN to α-ZEL 
is an activation process, whereas the production of β-ZEL is a deactivation process [3]. 
Böswald et al. [25] investigated the ability of certain yeast strains to metabolize ZEN and 
showed that ZEN, α-ZEL, and β-ZEL were reduced by Candida, Hansenula, Pichia, and 
Saccharomyces species. The fungal species Clonostachys rosea has the ability to metabolize 
the ester bond in the ZEN lactone ring, which reduces its estrogenic activity [26]. Infected 
plants can metabolize fungal toxins mainly by forming glucose conjugates, and studies 
have shown that ZEN can be converted to zearalenone-14-O-β-glucoside, which does not 
interact with the human estrogen receptor in vitro [18]. Based on results, adsorption of 
ZEN can occur on the hydrophobic talc surface, which is more effective than the hydro-
philic diatomaceous earth surface. This makes the use of talc as a sorbent a promising 
method of ZEN decontamination [27]. 

2. The Occurrence of ZEN in Food 
Due to its toxicity, the presence of ZEN in food has been widely studied. The Euro-
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Figure 1. Structural formula of zearalenone.

The name “zearalenone” is derived from the combination of the terms maize
(Zea mays)—“zea”, resorcylic acid lactone—“ral”, —“en” for the presence of a double-
bond, and “one” for the ketone group [6]; ZEN is a non-steroidal estrogen mycotoxin [8]
biosynthesized via the polyketide pathway [9].

The structure of ZEN is similar to that of naturally occurring estrogens such as estra-
diol, estrone, estriol [10], 7β-estradiol [11], and 17-β-estradiol [12]. It has a molar mass of
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318.364 g/mol and is a weakly polar compound in the form of white crystals, with blue-
green fluorescence at 360 nm excitation and green fluorescence at 260 nm UV excitation [13].
The melting point of ZEN is 164–165 ◦C. Although it is insoluble in water [14,15], it dissolves
well in various alkaline solutions such as benzene, acetonitrile, acetone, or alcohols [16].
Zearalenone is thermostable [17], and is not degraded by processing such as milling,
extrusion, storage, or heating [10]. This mycotoxin accumulates in grains mainly before the
harvest, but also after harvesting under poor storage conditions [5].

Suitable conditions for the production of ZEN by fungi are characterized by tempera-
tures between 20 and 25 ◦C and humidity above 20%, when ZEN can be generated within
3 weeks. However, when fungi are exposed to stress and low temperatures of 8–15 ◦C,
they will produce ZEN within a few weeks [3]. Research has shown that high levels of
zearalenone in grains are frequently found in countries with a warm and wet climate [18].

Zearalenone is metabolized in the intestinal cells and has two main metabolites:
α-zearalenol (α-ZEL) (a synthetic form of zearalenone) and β-zearalenol (β-ZEL); they are
formed via the reduction of ZEN [9,19]. Other forms of zearalenone are α-zearalanol
(α-ZAL) and β-zearalanol (β-ZAL) [20]. In its metabolized form, it can be conjugated with
glucuronic acid [10]. Due to the double bond in the lactone ring (C11 and C12), ZEN can
exist as two isomers: trans and cis, of which the cis form has a greater affinity for estrogen
receptors [21]. Of the metabolites, α-ZEL has increased estrogenic activity compared to
α-ZAL and ZEN produced by pig liver microsomes, while chicken microsomes produce
the highest amounts of β-ZEL, which has, however, a lower estrogenic activity [3,22], but is
the most frequently detected metabolite in cattle [23,24]. Hydroxylation of ZEN to α-ZEL
is an activation process, whereas the production of β-ZEL is a deactivation process [3].
Böswald et al. [25] investigated the ability of certain yeast strains to metabolize ZEN
and showed that ZEN, α-ZEL, and β-ZEL were reduced by Candida, Hansenula, Pichia,
and Saccharomyces species. The fungal species Clonostachys rosea has the ability to metabolize
the ester bond in the ZEN lactone ring, which reduces its estrogenic activity [26]. Infected
plants can metabolize fungal toxins mainly by forming glucose conjugates, and studies
have shown that ZEN can be converted to zearalenone-14-O-β-glucoside, which does not
interact with the human estrogen receptor in vitro [18]. Based on results, adsorption of ZEN
can occur on the hydrophobic talc surface, which is more effective than the hydrophilic
diatomaceous earth surface. This makes the use of talc as a sorbent a promising method of
ZEN decontamination [27].

2. The Occurrence of ZEN in Food

Due to its toxicity, the presence of ZEN in food has been widely studied. The European
Commission has specified the maximum standards of ZEN in selected food products
(Commission Regulation (EC) No. 1881/2006 and Commission Recommendation No.
2006/576/EC, as amended) [28,29] (Table 1).

Zearalenone has been detected frequently in different cereals, such as wheat, barley,
maize, sorghum, rye [2,5], rice [2], corn silage [3], sesame seed, hay [10], flour, malt,
soybeans, beer [30], and corn oil [26].

It can also occur in grain-based products such as grains for human consumption,
baked goods, pasta breakfast cereals [5], and bread [31]. When cows consume foods
contaminated with ZEN, it can be detected in their milk [32,33], thereby reaching the
human food chain.

The result of research on the presence of ZEN in food conducted by scientists from
around the world are presented in the tables below (Table 2).

The data presented in Table 2 refer to presence of ZEN in food. On their example,
the following conclusions can be drawn: the most contaminated samples are samples of
maize, raw maize, corn, beans, grains and feed mixtures for fattening pigs (over 75% of
positive samples in the described examples), while the least contaminated are samples
of wheat, peas, barley, cow’s milk-based infant formula and beer (up to 15% of positive
samples in the described examples). The highest levels of ZEN were found in samples
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of corn, corn grains, fibrous feed, feed mixtures for fattening pigs and fish feed. This con-
firms that grains and feeding stuff are the most exposed to the presence of ZEN. However,
it should be remembered that these are data selected from many publications by authors
from around the world. The data presented in Table 3 refer to presence of ZEN metabolites
in food products. On their basis it can be concluded that the ZEN metabolites are not
common in food as ZEN itself. The most common was α-ZEL in the chicken heart and
chicken gizzard samples, nevertheless, the levels detected were relatively low—mean
3.60–4.01 µg/kg. The highest level of α-ZEL was found in the fish feed—188.4 ng/mL.

Table 1. Maximum standards of zearalenone in selected food products (Commission Regulation (EC) No. 1881/2006 and
Commission Recommendation No. 2006/576/EC, as amended).

Product Highest Permissible Value [µg/kg]

Unprocessed cereals other than maize 100
Unprocessed maize 350
Cereals intended for direct human consumption, cereal flour, bran as end product
marketed for direct human consumption and germ 75

Refined corn oil 400
Maize intended for direct human consumption, maize snacks, and maize-based
breakfast cereals 100

Bread (including small bakery wares), cakes, biscuits, cereal snacks, and breakfast cereals,
excluding maize snacks and maize based breakfast cereals 50

Processed cereal-based foods (excluding processed maize-based foods) and baby foods for
infants and young children 20

Processed corn-based foods for infants and young children 20
Compound feed for piglets, gilts, puppies, kittens, dogs, and cats intended
for reproduction 0.1

Compound feed for adult dogs and cats other than those intended for reproduction 0.2
Compound feed for sows and porkers 0.25
Compound feed for calves, dairy cattle, sheep (including lambs), and goats
(including goatlings) 0.5

Table 2. The presence of zearalenone in different food items.

Country Products % of Positive Samples
(Number of Samples) Results References

Croatia Maize 80% (12/15) range 0.62–3.2 µg/kg [34]

Argentina Raw maize 100% (26/26) mean 15 µg/kg,
maximum 42 µg/kg [35]

Bulgaria Maize 21.1% (4/19) mean 80.6 µg/kg,
maximum 148 µg/kg [36]

Morocco Corn 15% (3/20) mean 14 µg/kg,
maximum 17 µg/kg [37]

Germany Corn 85% (35/41) mean 48 µg/kg,
maximum 860 µg/kg [38]

Argentina Corn grains 36% (21/58) maximum 1560 µg/kg [39]
Spain Corn snacks 23.6% (17/72) maximum 22.8 µg/kg [40]
Germany Wheat 63% (26/41) mean 15 µg/kg [38]

Bulgaria Wheat 1.9% (1/54) mean 10 µg/kg,
maximum 10 µg/kg [36]

Germany Oats 24% (4/17) mean 21 µg/kg [38]

Germany Hay 42% (12/28) mean 24 µg/kg,
maximum 115 µg/kg [38]

Germany Peas 0% - [38]
South Korea Beans 100% (1/1) maximum 15 µg/kg [15]
South Korea Grains 77% (17/22) maximum 277 µg/kg [15]

Bulgaria Barley 11.1% (2/18) mean 29 µg/kg,
maximum 36.6 µg/kg [36]
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Table 2. Cont.

Country Products % of Positive Samples
(Number of Samples) Results References

Germany Soya meal 69% (9/13) mean 51 µg/kg,
maximum 211 µg/kg [38]

South Korea Fibrous feed 50% (4/8) maximum 1315 µg/kg [15]
South Korea Food byproducts 62% (8/13) maximum 176 µg/kg [15]
Croatia Feed mixtures for fattening pigs 93.3% (28/30) range 8.93–866 µg/kg [41]

Kenya Fish feed 40% (31/78) range from <
38.0–757.9 ng/mL [42]

China Eggs 44% (32/72) range between
0.30–418 µg/kg [43]

Pakistan Eggs 45% (18/40) mean ± SD
2.23 ± 0.51 µg/kg [44]

Pakistan Chicken meat 52% (60/115) mean ± SD
2.01 ± 0.90 µg/kg [44]

Iran Buffalo meat 41.42% (29/70) range from 0.1–2.5 ng/mL [45]
Iran Buffalo liver 68.57% (48/70) range from 0.1–4.34 ng/mL [45]
Italy Cow’s milk-based infant formula 9% (17/185) maximum 0.76 µg/L [46]

Pakistan Bread (corn) 43% (6/14) mean ± SD
9.45 ± 2.76 µg/kg [47]

Spain Sliced bread 43.6% (31/71) maximum 20.9 µg/kg [40]
Spain Beer 11.3% (8/71) maximum 5.1 µg/kg [40]
Spain Pasta 14.3% (10/70) maximum 5.9 µg/kg [40]

Several studies have found ZEN metabolites in various food items (Table 3).

Table 3. Presence of zearalenone metabolites in foods.

ZEN
Metabolites Country Products % of Positive Samples

(Number of Samples) Results References

α-ZEL Italy Cow’s milk-based
infant formula

26% (49/185) maximum 12.91 µg/L
[46]

β-ZEL 28% (53/185) maximum 73.24 µg/L

α-ZEL China
Chicken heart 40% (8/20) mean 3.60 µg/kg

[43]Chicken Gizzard 40% (8/20) mean 4.01 µg/kg

α-ZEL Kenya Fish feed
24% (19/78) range from <

22.2–288.4 ng/mL [42]
β-ZEL 33% (26/78) range from < 16.0–79.8 ng/mL

3. The Occurrence of ZEN in Body Fluids

ZEN and its metabolites are absorbed by the body when ingested with food. For this
reason, it can appear in biological fluids such as blood, urine and milk (including women
breast milk). Research on biological fluids of various species is carried out in many
countries around the world. The table below (Table 4) presents the results of research by
scientists from individual countries. ZEN occurrence in body fluids indicates the presence
of ZEN in a body. This is disadvantageous because of the damage to the organism that
ZEN causes.

Table 4 shows examples of the occurrence of ZEN in body fluids such as serum,
milk and urine. Of all examples presented, the highest level of ZEN was found in urine
of pig’s samples (male—350 µg/L and female—390 µg/L), while in humans it was in the
urine of men from Germany—100 ng/L. High levels of ZEN have also been found in the
urine of breastfed (784 ng/L) and non-exclusively breastfed infants (678 ng/L). This may
indicate that ZEN is metabolized more slowly in infants than in adults.

Mauro et al. in 2018 [63] conducted a study whose results showed that ZEN is
present in the serum of obese women. This may be related to meat consumption and body
mass index. The level of ZEN however, was lower than that of women of normal weight.
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0.405 ± 0.403 ng/mL and 0.711 ± 0.412 ng/mL, respectively. In addition, the same study
showed that the mean values of conjugated metabolites of ZEN in premenopausal women
were higher than in postmenopausal women—1.40 ± 0.645 and 1166 ± 1007 ng/mL,
respectively.

Table 4. The results of studies of ZEN metabolites found in body fluids.

Country Body Fluid % of Positive Samples
(Number of Samples) Results References

Romania Pig’s serum 17.3% (9/52) mean 0.8 ng/mL, maximum 0.96 ng/mL [48]
Bulgaria Pig’s serum 50% (5/10) mean ± SD 0.24 ± 0.12 µg/L [49]
Bulgaria Pig’s serum 50% (5/10) mean ± SD 0.33 ± 0.17µg/L [49]
Iran Buffaloes milk 21.42% (15/70) range between 0.1–3.55 ng/mL [45]
Spain Breast milk 37% (13/35) range between 2.1–14.3 ng/mL [50]
Italy Breast milk 100% (47/47) range between 0.26–1.78 µg/L [51]

Italy Breast milk (women
with Celiac Disease) 4% (12/275) range between 2.0–17 ng/mL [52]

Italy Breast milk 8% (15/178) range between 2.0–22 ng/mL [52]
China Raw milk 100% (30/30) mean ± SD 14.9 ± 6.0 ng/kg [53]
China Liquid milk 100% (12/12) mean ± SD 20.5 ± 11.1 ng/kg [53]

Croatia Pig’s urine (male) 100% (11/11) mean ± SD 238 ± 30 µg/L,
range between 104–350 µg/L [54]

Croatia Pig’s urine (female) 100% (19/19) mean ± SD 187 ± 27.1 µg/L,
range between 22.7–390 µg/L [54]

Sweden Pig’s urine 92% (179/195) mean ± SD 2.44 ± 4.39 ng/mL [55]

Cameroon Human urine 3.6% (8/220) mean 0.97 ng/mL, range between
0.65–5.0 ng/mL [56]

Nigeria Human urine 0.8% (1/120) mean 0.3 µg/L [57]
Italy Human urine 100% (52/52) mean 0.057 ng/mL, maximum 0.120 ng/mL [58]
Sweden Human urine 37% (92/252) mean ± SD 0.09 ± 0.07 ng/mL [59]

Germany Male urine (control) 100% (13/13) mean ± SD 31 ± 23 ng/L, range between
7–90 ng/L [60]

Germany Male urine
(Mill worker) 100% (12/12) mean ± SD 42 ± 26 ng/L, range between

4–100 ng/L [60]

Germany Female urine
(Mill worker) 100% (5/5) mean ± SD 35 ± 28 ng/L, range between

6–78 ng/L [60]

Nigeria Human urine 81.7% (98/120) mean 0.75 ng/mL, range between
0.03–19.99 ng/mL [61]

Nigeria Breastfed infants urine 57% (13/23) mean 148 ng/L, range between 17–784 ng/L [62]

Nigeria Non-exclusively
breastfed infants urine 83% (35/42) mean 140 ng/L, range between 13–678 ng/L [62]

In the last few years, the influence of ZEN and its metabolites on human health has
been increasingly studied. In 2002, Pillay et al. [64] Conducted a study of the serum of pa-
tients with breast cancer, cervical cancer, other gynecological diagnoses and healthy. The re-
search did not show any significant changes between the presence of ZEN and its metabo-
lites in the tested samples. Mean ± SD ZEN values ranged between 0.457 ± 1.06 µg/mL,
0.381 ± 0.82 µg/mL, 0.200 ± 0.38 µg/mL, 0.346 ± 0.51 µg/mL in breast cancer, cervical
cancer, other gynecological diagnoses and healthy samples respectively. Mean ± SD α-ZEL
values ranged between 0.193 ± 0.50 µg/mL, 0.154 ± 0.26 µg/mL, 0.070 ± 0.16 µg/mL,
and 0.378± 0.89 µg/mL in breast cancer, cervical cancer, other gynecological diagnoses and
healthy samples respectively, also mean ± SD β-ZEL values ranged between
0.233 ± 0.69 µg/mL, 0.707 ± 1.51 µg/mL, 0.215 ± 0.60 µg/mL, 0.110 ± 0.51 µg/mL in
breast cancer, cervical cancer, other gynecological diagnoses and healthy samples respec-
tively. A similar study was conducted by Fleck et al. [65]. Their results showed the
presence of ZEN in only 1 out of 11 urine samples of pregnant women with value to the
limit of quantification.
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Another study was conducted in 2017 by De Santis et al. [66]. The authors investigated
the possible relationship between the occurrence of ZEN in the body and autistic disorders.
Urine and serum samples of children with autism were examined, the maximum level
of ZEN was 6.5 and 3.9 ng/mL, respectively as well as urine and serum samples of their
siblings where the maximum ZEN level was 2.8 and 1.2 ng/mL, respectively. These results
suggest that patients with autistic disorder have significantly more mycotoxin from body
fluids than their healthy siblings who should have similar food habits.

Moreover, Tassis et al. [67] carried out a boar semen analysis. The authors showed
that ZEN negatively affects various sperm parameters such as sperm viability and motility.

4. The Impact of ZEN on Organisms

Zearalenone is a mycotoxin with immunotoxic [9], hepatotoxic [9], and xenogenic
effects [68]. The activity of ZEN in living organisms depends on the immune status of the
organism and the state of the reproductive system (adolescence or pregnancy stage) [69].
In the liver, ZEN induces histopathological changes, with the subsequent development of
liver cancer [70]; according to Rai et al. [22], the liver is the major organ of ZEN distribution.
In the case of liver injury, ZEN can cause an increase in serum transaminases and bilirubin
levels in rodents [31]; in addition, it can lead to weight loss in rats [71] and fish [72].

Zearalenone has hematotoxic effects by disturbing blood coagulation and modifying
blood parameters [2,22,30]. Studies have shown that in the serum of mice treated with ZEN,
the levels of ALT (Alanine Aminotransferase), ALP (Alkaline Phosphatase), and AST
(Aspartate Aminotransferase) were increased, while those of total protein and albumin
were decreased [22]. In studies conducted in rats, an increase in hematocrit and MCV
(mean corpuscular volume) index was observed, while the number of red blood cells
remained unchanged; the number of platelets was significantly decreased and that of white
blood cells was increased. The same study also showed that the blood creatinine value was
decreased in the samples with ZEN [73]. Zwierzchowski et al. [74], in a study on gilts that
received small doses of ZEN orally, showed that after the first administration of the toxin,
its concentration in the blood serum was high; however, after administration of the same
dose in the following days, its level decreased (until day 4) and then increased again.

Zearalenone is a mycotoxin with strong estrogenic [13,75,76] and anabolic effects [75,76].
One of the metabolites of ZEN, α-ZAL, is used as a growth promoter due to its anabolic
activity [23]. Zearalenone and its derivatives show estrogenic effects in various animal
species. In humans, ZEN can bind to alpha and beta estrogen receptors and disrupt the
functioning of the endocrine system [18]. The species most sensitive to the effects of ZEN
are pigs [3,8,20,22] and ruminants [20], while the most resistant ones are birds [20], such as
chickens [31] and poultry [77]. The estrogenic effects of ZEN include fertility disorders
(infertility or reduced fertility), vaginal prolapse, vulvar swelling and breast enlargement
in females, feminization of testicular atrophy, and enlargement of the mammary glands
in males in various animal species [78]. It can also cause enlargement of the uterine,
increased incidence of pseudopregnancy, decreased libido, stillbirths, and small litters [3].
In female pigs, redness and swelling of the vulva, enlargement of the uterus, cyst formation
on the ovaries, and enlargement of the mammary glands have been observed, whereas
in male pigs, testicular atrophy and reduced sperm concentration are common [79]. Zear-
alenone inhibits the secretion of steroid hormones, interferes with the estrogen response
in the pre-ovulatory phase, and inhibits follicle maturation in mammals [24]. Higher con-
centrations of ZEN cause permanent estrus, pseudo-pregnancy, and infertility in gilts [80].
In cows, symptoms of ZEN actions are swollen vulva, disturbances in estrus cycles, infer-
tility, inflammation of the uterus and mammary gland, miscarriages, placental retention,
and vaginitis [81]; ZEN is also responsible for the hyperestrogenic syndrome [24,82].
Newborn female mice that received ZEN orally showed altered oocyte development and
folliculogenesis later in life [24]. In humans, ZEN causes premature puberty [83]. In preg-
nant women, long-term exposure to ZEN via food may result in decreased embryo survival
and reduced fetal weight, as well as decreased milk production. It is also assumed that
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ZEN can change uterine tissue morphology and cause a decrease in LH and progesterone
levels [2]. In men, ZEN reduces the number of sperm and their viability [84]; it can also
impede spermatogenesis [2].

Studies on the estrogenic effect of ZEN and its modified forms have been carried out
in zebrafish (model fish species), showing that ZEN passively crosses the cell membrane
and binds to ER receptors. The ZEN receptor complex is rapidly transported to the
nucleus, where it binds to estrogen-responsive elements, resulting in gene transcription [85].
Pietsch et al. [72] fed carp (Cyprinus carpio L.) with ZEN-contaminated feed and showed
that the estrogenic activity in these animals was not increased, indicating that ZEN is
rapidly metabolized in carp.

According to Gil-Serna et al. [2], ZEN is also genotoxic and can form DNA adducts
in vitro. Further, it causes DNA fragmentation, micronucleus formation, chromosomal
aberration, cell proliferation, and cell apoptosis [22]. Research shows that ZEN and β-ZEL
can mimic the ability of 17-β-estradiol to stimulate estrogen receptor transcriptional ac-
tivity [86]. The International Agency for Research on Cancer (IARC) has classified ZEN
as a Group 3 substance (not carcinogenic to humans) [15]. Zearalenone cytotoxicity can
manifest by apoptosis in the germ cells of male rats [87].

The WHO/FAO determined the lowest observed adverse effect level (LOAEL) of
ZEN at 200 µg/kg bw/day study in a 15-day pig study [88], 56 µg/kg bw/day for sheep,
17.6 µg/kg bw/day for piglets, 200 µg/kg bw/day for gilts, and 20 µg/kg bw/day for
dogs [85]. The no effect level (NOEL) was 40 µg/kg bw/day for pigs [30,31], 9200 µg for
mice [89], 28 lg/kg bw/day for sheep [85], 100µg/kg bw for rats [10,30], 10.4 µg/kg bw/day
for piglets, and 40 µg/kg bw/day for gilts [85].

Obremski et al. investigated the effect of LOAEL doses on gilts and showed that
an orally administered dose of 200 µg/kg (the LOAEL dose) caused mild symptoms of
hyperestrogenism in sexually immature gilts on the fourth day after toxin administration,
whereas a dose twice as high (400 µg/kg) resulted in more pronounced symptoms of
hyperestrogenism on the third day after oral administration of the toxin [90].

The oral LD50 ZEN dose for mice, rats, and guinea pigs is above 2000 mg/kg bw [91],
and the median toxic dose (TD50) was established at 20,000 µg for mice [89]. The EFSA
Panel on Contaminants in the Food Chain stated a tolerable daily intake (TDI) for ZEN of
0.25 µg/kg bw [5,18].

Table 5 shows the various parameters of ZEN.

Table 5. Comparison of parameters describing ZEN.

Parameter Value

LOAEL 200 µg/kg bw/day (15-day pig study)
LOAEL 56 µg/kg bw/day (sheep)
LOAEL 17.6 µg/kg bw/day (piglets)
LOAEL 200 µg/kg bw/day (gilts)
LOAEL 20 µg/kg bw/day (dogs)
NOEL 40 µg/kg bw/day (pigs)
NOEL 9200 µg (mice)
NOEL 100 µg/kg bw (rats)
NOEL 28 µg/kg bw/day (sheep)
NOEL 10.4 µg/kg bw/day (piglets)
NOEL 40 µg/kg bw/day (gilts)
LD50 2000 mg/kg (mice, rats, and guinea pigs)
TD50 20,000 µg (mice)

5. Toxicokinetics of ZEN

The toxicokinetics of ZEN mainly include issues such as the rate at which it can enter
the body, absorption, distribution, metabolism and excretion. The main way for ZEN to
enter organisms is through its consumption with contaminated food. In organisms, it can
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undergo structural changes through the intestinal microflora. These changes lead to the
production of various ZEN metabolites [22].

After oral administration, ZEN is rapidly absorbed. In the intestinal walls of mono-
gastric animals and the human gastrointestinal tract, ZEN is metabolized by enterocytes
to the major metabolites α- and β-ZEL and α- and β-ZAL, followed by biotransforma-
tion [31,92] via two pathways. The first is based on hydroxylation, leading to the for-
mation of α- and β-ZEL when catalyzed by 3α- and 3β-hydroxysteroid dehydrogenases
(HSD). The α form has a greater affinity for estrogen receptors and is therefore more toxic
than ZEN, while the β form has a lower affinity for these receptors, making it practi-
cally harmLess. The second biotransformation pathway relies on uridine-5-diphospho-
glucuronosyltransferase (UDPGT)-catalyzed conjugation of ZEN and its metabolites with
glucuronic acid. In humans, ZEN biotransformation occurs in the liver, lungs, kidneys,
and intestines [9,20,84]. Nevertheless, in human organisms, it is mainly in the liver that
ZEN is converted into α and β isomers via microsomes. In it, the metabolizing ZEN is
through monohydroxylation via cytochrome P450 (CYP) [22].

After oral administration, ZEN is rapidly absorbed. In pigs, it has been detected in
plasma less than 30 min after starting feeding. It is deposited in the reproductive tissues,
adipose tissue, and testicular cells [3], as well as in the kidney cells [5]. Its half-life in pigs
is approximately 86 h [3,22], and in these animals, absorption from the gastrointestinal
tract occurs to 80–85% [5]. In other organisms, ZEN and its metabolites have a short
half-life of less than 24 h [93] and are mainly excreted in the bile [22,70], feces [3,10,22],
and urine [3,9,22] after 72 h [3]. Metabolism includes Phase I of the reduction reaction and
Phase II of the glucuronidation or sulfonation reaction [12]. Metabolism of phase I reduce
keto group at C-6′ resulting α-ZEL or β-ZEL. Following reduction of the double bond
C11-C12 leads to α-ZAL or β-ZAL. Studies show that the reduction of the ketone group is
catalyzed by HSD [31]. Hepatic biotransformation may be influenced by species differences
and related ZEN sensitivities. The largest amounts of α-ZEL, which has the highest
estrogenic activity, are produced by the liver microsomes of pigs, while the microsomes of
chickens, which produce the most β-ZEL, which has the lowest estrogenic activity [3].

ZEN and its metabolites can interact with the cytoplasmic receptor it binds to 17β-
estradiol and transfer receptors to the nucleus, where RNA simulation leads to protein
synthesis which is the reason why the estrogenic symptoms occur [3].

In conclusion, ZEN and its metabolites are eliminated relatively slowly from the tissues
by enterohepatic circulation. The carry-over to milk is quite low, confirming that human
exposure to food of animal origin is significantly lower than direct exposure through the
use of defective feed and grains [31].

6. Conclusions

Zearalenone is the main mycotoxin produced by Fusarium and can negatively affect
most species. It causes various changes and disorders related to the reproductive system,
generating considerable economic losses. Regarding the toxicity of zearalenone and its
metabolites, they pose a potential risk to mammals, especially when exposed to high
doses over prolonged periods. Consuming excessive amounts of mycotoxins can cause
poisoning, the so-called “mycotoxicosis”, posing a considerable threat for animals and
humans. In this review, we present the various effects of zearalenone and its metabolites.
Based on the ubiquitous occurrence of these compounds, it is crucial to develop methods
of decontamination and to impede the production of zearalenone.
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