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Abstract

Background: Jaundice is one of the most common problems encountered in newborn infants, due to immaturity of hepatic
conjugation and transport processes for bilirubin. Although the majority of neonatal jaundice is benign, some neonates
with severe hyperbilirubinemia develop bilirubin encephalopathy or kernicterus. Accumulation of unconjugated bilirubin
(UCB) in selected brain regions may result in temporary or permanent impairments of auditory, motor, or cognitive function;
however, the molecular mechanisms by which UCB elicits such neurotoxicity are still poorly understood. The present study
is undertaken to investigate whether prolonged exposure of rat organotypic hippocampal slice cultures to UCB alters the
induction of long-term synaptic plasticity.

Methodology/Principal Findings: Using electrophysiological recording techniques, we find that exposure of hippocampal
slice cultures to clinically relevant concentrations of UCB for 24 or 48 h results in an impairment of CA1 long-term
potentiation (LTP) and long-term depression (LTD) induction in a time- and concentration-dependent manner. Hippocampal
slice cultures stimulated with UCB show no changes in the secretion profiles of the pro-inflammatory cytokines, interleukin-
1b and tumor necrosis factor-a, or the propidium ioide uptake. UCB treatment produced a significant decrease in the levels
of NR1, NR2A and NR2B subunits of N-methyl-D-aspartate (NMDA) receptors through a calpain-mediated proteolytic
cleavage mechanism. Pretreatment of the hippocampal slice cultures with NMDA receptor antagonist or calpain inhibitors
effectively prevented the UCB-induced impairment of LTP and LTD.

Conclusion/Significance: Our results indicate that the proteolytic cleavage of NMDA receptor subunits by calpain may play
a critical role in mediating the UCB-induced impairment of long-term synaptic plasticity in the hippocampus. These
observations provide new insights into the molecular mechanisms underlying UCB-induced impairment of hippocampal
synaptic plasticity which, in turn, might provide opportunities for the development of novel therapeutic strategies that
targets these pathways for treatment.
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Introduction

Bilirubin, an oxidative end product of heme catabolism, is

excreted by liver after glucuronidation by hepatic uridine

diphosphate-glucuronyl transferase [1]. Hyperbilirubinemia is

one of the most common clinical phenomena observed in the

neonatal period. Nearly all newborn infants may experience

temporary, mild to moderate ‘physiological’ jaundice, due to

immaturity of hepatic conjugation and clearance processes for

unconjugated bilirubin (UCB) [2]. In the vast majority of cases,

neonatal jaundice represents a benign phenomenon and the

modest elevation of plasma UCB may exert neuroprotective effects

owing to its antioxidant properties [3]. Some newborns, however,

especially preterm infants with hemolytic diseases, the concentra-

tion of UCB may rise to higher levels that cause bilirubin

encephalopathy or may progress to kernicterus resulting in severe

neurological dysfunctions [2]. The brain regions particularly

vulnerable to UCB toxicity include the cerebellum, cochlear and

oculomotor nuclei of the brain stem, the hippocampus, and the

basal ganglia [4]. The core clinical features of UCB encephalop-

athy may range from mild mental retardation and subtle cognitive

disturbances to deafness and severe cerebral palsy, seizure or death

from kernicterus [2,5]. Data from several prospective controlled

studies have revealed cognitive disturbances in children with

elevated levels of UCB in the infant period [6–9]. Hence,

considerable interest is now focused on understanding the

molecular mechanisms by which UCB exerts such neurodevelop-

mental abnormality in order to generate effective therapeutic

strategies targeting these pathways for treatment. Because

mechanistic studies in humans are limited, a plausible way to

address this question is to use an experimental model that

simulates the clinically relevant UCB concentration exposure in

the developing brain.

Activity-dependent persistent synaptic modifications are gener-

ally thought to be the cellular mechanisms underlying the

refinement of neuronal connections in the developing nervous
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systems [10,11] and contributing to the processes of learning and

memory in the mature brain [12,13]. Persistent synaptic

modifications can involve alterations in both of the function of

synaptic transmission and the structure of neuronal connections.

Studies of synaptic plasticity have shown that repetitive electrical

activity can rapidly induce persistent changes in the strength of

synaptic transmission, known as long-term potentiation (LTP) and

long-term depression (LTD) [14,15]. The molecular mechanisms

of LTP and LTD have been extensively characterized [16],

especially in hippocampus, has been implicated in memory

formation of spatial learning tasks in rodents an area implicated

in spatial memory formation in rodents [17]. Induction of LTP

and LTD in the CA1 region of the hippocampus involves

numerous protein kinases and/or phosphatases [13,18], which are

believed to be critical for the translation of electrical activity into

persistent subcellular alterations that may modulate synaptic

strength. Interestingly, the adult rats received a bolus intravenous

injection of either 30 mg/kg or 60 mg/kg of bilirubin has been

found to inhibit the induction of LTP in the hippocampal CA3

region in vivo [19]. Thus, we assumed that UCB might affect the

cognitive development during neonatal life through changes in the

bidirectional hippocampal synaptic plasticity.

In the present study, we used rat organotypic hippocampal slice

cultures, which maintain cytoarchitecture of the intact brain and

are well suited for prolonged pharmacological treatments [20,21],

to investigate whether prolonged clinically relevant UCB concen-

tration treatment may alter the induction of CA1 LTP and LTD

and characterize the possible underlying mechanisms. Our data

constitute the first evidence that UCB-induced impairment of CA1

LTP and LTD induction in the hippocampus occurs through the

stimulation of calpain-mediated proteolytic cleavage of N-methyl-

D-aspartate (NMDA) receptor subunits.

Results

Effect of prolonged UCB exposure on basal synaptic
transmission

We initially examined whether the basal synaptic transmission

at the Schaffer collateral-CA1 synapses was altered by prolonged

UCB exposure. The stimulus-response relationships for extracel-

lular field excitatory postsynaptic potentials (fEPSPs) obtained

from UCB exposure and control slices were compared. As shown

in Figure 1A, exposure of UCB at a concentration of 1 mM for

24 h had no effect on the stimulus-response curve, maximal

response, and fEPSP waveform. In contrast, when exposure of

slices to 1 mM UCB for 48 h or the concentration of UCB was

increased to 10 mM for 24 or 48 h, the stimulus-response curve

significantly exhibited a rightward shift (p,0.05) and the maximal

response of fEPSPs was significantly reduced (Figure 1A and B). In

order to test whether the deficit in fEPSPs were due to the

alterations in the excitability of the afferent fibers, we measured

the presynaptic fiber volley amplitude in the presence of AMPA/

kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione

(CNQX, 20 mM) and NMDA receptor antagonist D-2-amino-5-

phosphonovalerate (D-APV, 50 mM) and found no difference in

slices treated 10 mM UCB for 24 or 48 h compared with the

control slices at all stimulus intensities measured (Figure S1). These

results indicate that prolonged treatment with a higher concen-

tration of UCB (10 mM) can produce a decrease in basal synaptic

transmission without altering the excitability of afferent fibers.

Given the similarity of the results with 24 and 48 h control slices,

the two sets of results were averaged throughout the work.

To determine whether prolonged UCB exposure alters the

presynaptic function, we examined the paired-pulse facilitation

(PPF), a transient form of presynaptic plasticity in which the

second of two closely spaced stimuli elicits enhanced transmitter

release [22]. As shown in Figure 1C, pairs of presynaptic fiber

stimulation pulses delivered at interpulse intervals of 20, 40, 60,

80, and 100 ms evoked nearly identical amounts of PPF in slices

from UCB (1 mM or 10 mM) exposure for 24 h and control. In

contrast, exposure of slices with 10 mM UCB for 48 h, but not

1 mM UCB for 48 h, resulted in a significant increase in the

amounts of PPF. These results suggest that the presynaptic

function at the Schaffer collateral-CA1 synapses is altered by

prolonged UCB exposure only at higher concentrations.

Prolonged UCB exposure impairs the induction of long-
term potentiation and long-term depression

To examine the effects of prolonged UCB exposure on long-

term synaptic plasticity, we analyzed the induction of LTP and

LTD in the CA1 region of the hippocampus. We first examined

LTP induced by two 1-sec trains of 100 Hz stimuli separated by

intertrain interval of 20 sec, a protocol that normally produces a

stable LTP of fEPSPs. In control slices, this protocol consistently

induced a robust LTP of fEPSPs, whereas in slices treated with

1 mM UCB for 48 h or 10 mM UCB for 24 h or 48 h, LTP was

significantly impaired (50 min after HFS: control, 126.565.2% of

baseline, n = 21; 1 mM UCB for 48 h, 102.564.5% of baseline,

n = 11; 10 mM UCB for 24 h, 105.365.5% of baseline, n = 8;

10 mM UCB for 48 h, 98.663.4% of baseline, n = 10; p,0.05)

(Figure 2A and B). However, no change in LTP induction was

observed in slices treated with 1 mM UCB for 24 h (123.463.9%

of baseline, n = 8; p.0.05) (Figure 2A). A LTD-inducing low-

frequency stimulation (LFS, 1 Hz lasting 15 min) was then

delivered to the Schaffer collateral afferent fibers. As shown in

Figure 2C, following the LFS, there was a robust LTD of fEPSPs

in control slices (50 min after the end of LFS: 76.564.3% of

baseline, n = 16). The magnitude of LTD was not significantly

affected by treatment of the slices with 1 mM UCB for 24 h

(81.664.8% of baseline, n = 8) or 48 h (84.265.1% of baseline,

n = 8) or 10 mM UCB for 24 h (84.564.5% of baseline, n = 8). In

contrast, LTD was not induced by LFS in slices treated with

10 mM UCB for 48 h (93.563.2% of baseline, n = 7) (Figure 2D).

To confirm that the observed deficits in LTP and LTD are not due

to the residual UCB in the slices, we tested the effect of acute

application of UCB (10 mM) on the induction of LTP and LTD in

age-matched slice cultures at 5 days in vitro (DIV). Compared with

the control slices, bath application of 10 mM UCB had no

significant effect on basal synaptic responses and the induction

of LTP (132.665.3% of baseline, n = 5) and LTD (79.863.8% of

baseline, n = 5) (Figure S2). These results rule out a possible role of

residual UCB in the slices in governing the deficits of LTP and

LTD occurred after prolonged UCB exposure.

The observations that prolonged UCB exposure impairs LTP

and LTD induction suggested the possibility that it may produce

an alteration of synaptic modification properties. To explore this

possibility, we stimulated the Schaffer collateral afferent fibers with

a range of frequencies (5, 10, and 50 Hz) and examined the

consequent changes in the synaptic strength. Our results

experimentally confirmed the theoretical model of synaptic

plasticity originally postulated by Bienenstock, Cooper, and

Munro (BCM) [23]; HFS leads to LTP, intermediate frequency

stimulation produces only a minor or no change in synaptic

strength, and LFS produces LTD. In control slices, 900 pulses of

1 Hz and 5 Hz stimulation induced a LTD of synaptic strength.

Moreover, two 1-sec trains of 50 Hz or 100 Hz stimuli induced a

significant LTP of synaptic strength. No change in the frequency-

response curve was observed in slices treated with 1 mM UCB for
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Figure 1. Effects of prolonged UCB exposure on basal synaptic transmission and paired-pulse facilitation (PPF). (A, B) Input-output
curves of field excitatory postsynaptic potentials (fEPSPs; V/s) versus stimulus intensity (mA) at the Schaffer collateral-CA1 synapses of hippocampal
slice cultures in the absence (control) or presence of 1 or 10 mM UCB for 24 h (A) or 48 h (B). Inset shows example fEPSPs (average of three responses)
recorded in slices from control and UCB-treated slices. (C, D) Comparison of PPF ratio in slices from control and treated with 1 or 10 mM UCB for 24 h
(C) and 48 h (D). The plot summarizes facilitation of the second fEPSP slope relative to first one as a function of the interpulse intervals of 20 to
200 ms. Inset shows example PPF (average of three responses) obtained with interpulse interval of 40 ms in slice from control and UCB-treated slices.
Error bars indicate SEM.
doi:10.1371/journal.pone.0005876.g001
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24 h (Figure 2E). In contrast, both the induction of LTD by 5 Hz

LFS and the induction of LTP by 50 Hz or 100 Hz by HFS were

impaired in slices treated with 1 mM UCB for 48 h or 10 mM

UCB for 24 and 48 h, respectively (Figure 2E and F). Together

these results suggest that prolonged UCB exposure can induce a

time- and concentration-dependent impairment of the inducibility

for synaptic modification at the Schaffer collateral-CA1 synapses.

Having established that prolonged UCB exposure impairs the

induction of both LTP and LTD, we next asked whether these

effects are mediated by an alteration of NMDA receptor function,

which is critical determinant for the induction of LTP and LTD in

the hippocampal CA1 region [16,18]. To address this issue, we

compared the ratio of NMDA to AMPA receptor components of

evoked excitatory postsynaptic currents (EPSCs) in CA1 pyramidal

neurons of control and UCB-treated slices. We recorded EPSCs

when the cell was clamped at +50 mV. In this condition, both

NMDA and AMPA receptors are activated by synaptically

released glutamate, and their respective contribution to the EPSCs

was determined by pharmacological application of NMDA

receptor antagonist D-APV (50 mM). Exposure of slices to

10 mM UCB for 24 h (0.7160.04, n = 6; p,0.05) or 48 h

(0.4960.08, n = 6; p,0.05) underwent a significant reduction in

the NMDA/AMPA ratio when compared with control slices

(0.8760.05, n = 7) (Figure 3A).

A reduction in the NMDA/AMPA ratio could reflect a reduction

in the function of NMDA receptors, an increase in the function of

AMPA receptors, or a combination of both. To distinguish between

these possibilities, we first examined the effect of UCB on

pharmacologically isolated AMPA receptor-mediated EPSC (EPS-

CAMPA) recorded at a holding potential of 270 mV in the presence

of GABAA receptor antagonist bicuculline methiodide (20 mM) and

NMDA receptor antagonist D-APV (50 mM). As shown in

Figure 3B, the stimulus-response curve of EPSCAMPA was shifted

to the right for the slices exposure of 10 mM UCB for 48 h

compared with curve generated from the control slices, confirming a

UCB-related reduction in synaptic strength. In addition, the

NMDA receptor-mediated EPSC (EPSCNMDA) was also isolated

at a holding potential of 260 mV in Mg2+-free aCSF solution

containing bicuculline methiodide (20 mM) and CNQX (20 mM).

Similarly, the stimulus-response for EPSCNMDA was decreased in

slices treated with 10 mM UCB for 48 h compared with control

slices (Figure 3C). Interestingly, at a concentration of 10 mM

treatment for 48 h, UCB caused a significantly greater reduction of

the amplitude of EPSCNMDA (by <45%) than that of EPSCAMPA

(by <25%). Theoretically, equal depression of the AMPA and

NMDA components would indicate involvement of exclusively

presynaptic mechanisms, whereas differences in depression would

also indicate involvement of postsynaptic mechanisms. These results

therefore suggest that prolonged UCB exposure not only causes a

decrease in presynaptic transmitter release but also impairs the

postsynaptic NMDA receptor function.

To further verify the effect of UCB on presynaptic transmitter

release, we recorded AMPA receptor-mediated miniature EPSCs

(mEPSCs). As shown in Figure 3D, in slices treated with 10 mM

UCB for 24 h (0.960.2 Hz, n = 5; p,0.05) or 48 h (0.660.3 Hz,

n = 6; p,0.05), the mean frequency of mEPSCs was significantly

reduced compared with the control slices (1.560.2 Hz, n = 8). No

change in the mean amplitude of mEPSCs was observed in slices

treated with 10 mM UCB for 24 or 48 h. Together, these results

suggest that the decrease in the NMDA/AMPA ratio of EPSCs is

mainly attributed to a greater inhibition of UCB on NMDA

receptor-mediated postsynaptic response.

We also compared inhibitory postsynaptic currents (IPSCs)

recorded in CA1 pyramidal neurons of control and UCB-treated

slices. Monosynaptic IPSCs were evoked while clamping the cell at

270 mV in the presence of CNQX (20 mM) and D-APV (50 mM).

Figure S3 depicts the relationship between stimulus intensities and

IPSC amplitudes. We found that the stimulus-response relation-

ships in slices from control and 10 mM UCB treatment for 48 h

are essentially identical, indicating that there are no obvious

changes in GABA-mediated synaptic transmission after prolonged

UCB exposure.

Prolonged UCB exposure increases proteolytic cleavage
of NMDA receptor subunits by calpain

We next identified the possible mechanisms underlying the

reduction of NMDA receptor-mediated synaptic transmission by

prolonged UCB exposure. A decrease in the NMDA receptor-

mediated synaptic transmission could reflect a decrease in the

number of NMDA receptors. To test this possibility, we compared

the protein expression levels of NMDA receptor subunits in the

CA1 region of control and UCB- treated slices by Western blot

analysis. Using antibodies that selectively label NR1, NR2A, or

NR2B subunits, we found that the protein levels of NR1, NR2A,

and NR2B subunits were significantly decreased by 10 mM UCB

treatment for 24 or 48 h (Figure 4). However, no change in the

levels of NR1, NR2A, and NR2B subunits was observed in slices

treated with 1 mM UCB for 24 h. Level of b-actin was not altered

significantly by UCB.

The decrease in the protein expression levels of NMDA

receptor subunits could be preceded by a decrease in gene

expression. Real-time polymerase chain reaction analysis showed

that the mRNA expression profiles for NR1, NR2A, and NR2B

subunits were not significantly changed by 10 mM UCB treatment

for 48 h (p,0.05) (Figure 5). Thus, UCB-induced decrease in

NMDA receptor subunit protein expression is not due to the

change of gene expression profiles.

It has been shown that UCB can reduce glutamate uptake in

astrocytes and in turn induces neuronal injury or death [24,25].

We therefore asked whether the impairment of LTP and LTD

induction observed in UCB-treated slices is attributed to UCB-

mediated excitotoxicity. With propidium iodide (PI) staining, UCB

(1 or 10 mM) treatment for 24 h or 48 h did not result in higher PI

uptake than in control slices (Figure 6A and B). In contrast,

exposure of slice to kainic acid (60 mM) for 24 or 48 h resulted in a

significant increase in the PI staining. These results indicate that

the UCB treatment regimen used in the present study did not

affect neuronal viability.

Figure 2. Prolonged UCB exposure impairs the induction of long-term potentiation (LTP) and long-term depression (LTD) in the
CA1 region of the hippocampus. (A, B) Summary of experiments showing that the slices from 1 mM UCB exposure for 48 h (B) or 10 mM UCB for
24 h (A) or 48 h (B) displayed a deficit in high frequency stimulation (HFS)-induced (two 1-sec trains of 100 Hz stimuli separated by an intertrain
interval of 20 sec) LTP. (C, D) Summary of experiments showing that the slices obtained from control, 1 or 10 mM UCB exposure for 24 h showed a
reliable LTD after a prolonged low-frequency stimulation (LFS, 900 stimuli delivered at 1 Hz) (C), whereas slices from 1 or 10 mM UCB exposure for
24 h did not (D). (E, F) Summary of experiments showing the frequency-response curves in slices from control, 1, or 10 mM UCB exposure for 24 h (E)
or 48 h (F). The percentage changes in synaptic strength from baseline in all slices were measured at 50 min after stimulation at the indicated
frequencies. Error bars indicate SEM. *p,0.05 as compared with the control group by unpaired Student’s t-test.
doi:10.1371/journal.pone.0005876.g002

UCB Alters Synaptic Function

PLoS ONE | www.plosone.org 5 June 2009 | Volume 4 | Issue 6 | e5876



Figure 3. Effect of prolonged UCB exposure on NMDA/AMPA ratio of excitatory postsynaptic currents (EPSCs) and AMPA receptor-
mediated miniature EPSCs (mEPSCs). (A) NMDA/AMPA ratio of EPSC (at +50 mV) was determined by subtracting the averaged traces obtained in
50 mM D-APV from those collected in its absence and was found to be significantly lower in slices treated with 10 mM UCB for 24 or 48 h compared
with control slices. The intensity of each stimulation was adjusted to evoke the same peak amplitude of EPSCs (<250 pA) in each slice culture.
Representative traces show EPSCs before (1) and after application of D-APV (50 mM) (2) in control and 10 mM UCB-treated slices. The NMDA receptor-
mediated component (3) was derived by subtracting the AMPA receptor-mediated component (2) from the compound EPSC (1). (B) Representative
traces and input-output curves of AMPA receptor-mediated EPSC (EPSCAMPA; at 270 mV in the presence of 20 mM bicuculline methiodide and 50 mM
D-APV) versus stimulus intensity (mA) at the Schaffer collateral-CA1 synapses of hippocampal slice cultures in the absence (control) or presence of
10 mM UCB for 48 h. (C) Representative traces and input-output curves of NMDA receptor-mediated EPSC (EPSCNMDA; at 260 mV in the presence of
20 mM bicuculline methiodide and 20 mM CNQX) versus stimulus intensity (mA) at the Schaffer collateral-CA1 synapses of hippocampal slice cultures
in the absence (control) or presence of 10 mM UCB for 48 h. (D) Representative voltage-clamp recordings of AMPA receptor-mediated mEPSCs (at
270 mV in the presence of 20 mM bicuculline methiodide, 50 mM D-APV, and 1 mM tetrodotoxin) from control slices (left) or slices treated with 10 mM
UCB for 24 h (middle) or 48 h (right). The bar graphs show mean6SEM of the effects of UCB on the average frequency and amplitude of mEPSCs.
Number of experiments is indicated in the parenthesis. *p,0.05 as compared with the control group by one-way ANOVA (Tukey-Kramer test).
doi:10.1371/journal.pone.0005876.g003
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Previous studies have shown that prolonged exposure of

astrocytes to UCB can trigger release of pro-inflammatory

cytokine release such as tumor necrosis factor (TNF)-a and

interleukin (IL)-1b [26,27]. Because these pro-inflammatory

cytokines have an inhibitory effect on the induction of both LTP

and LTD in the hippocampal CA1 region [28–30], we next

investigated whether such mechanism could provide a possible

explanation for the impairment of LTP and LTD induction

observed in UCB-treated slices. A two-way repeated measure

ANOVA of IL-1b showed no significant interaction among group

and time course (F6,116 = 1.52, p = 0.14) (Figure 7A). Likewise, no

significant increase in the level of TNF-a release was observed in

slices treated with 1 mM or 10 mM UCG for 24 h compared with

the control slices (group6time interaction: F6,137 = 0.64, p = 0.29)

(Figure 7B). These results exclude the involvement of IL-1b or

TNF-a in the inhibitory effect of UCB on hippocampal CA1 LTP

and LTD.

Since a number of previous studies have proposed a role of

NMDA receptors in UCB-induced brain injury [31–33], we then

examined whether UCB would exert its inhibitory effect on

hippocampal synaptic plasticity through NMDA receptor-mediat-

ed mechanisms. Simultaneous treatment of slices with UCB

(10 mM) and the NMDA receptor antagonist D-APV (50 mM) for

48 h induced no significant changes in the levels of NR1, NR2A,

and NR2B subunits (Figure 8A–D). We also evaluated the

contribution of the L-type voltage-gated Ca2+ channels in the

UCB-induced down-regulation of NMDA receptor subunit

proteins. However, blockade of L-type voltage-gated Ca2+

channels by nimodipine (10 mM) did not prevent a decrease in

the expression of NMDA receptor subunits induced by 10 mM

UCB treatment for 48 h. In parallel experiments, we also found

that D-APV almost completely abolished UCB-induced impair-

ment of LTP (APV-control: 132.565.3% of baseline, n = 10;

APV-UCB 10 mM for 24 h: 134.565.7% of baseline, n = 7; APV-

UCB 10 mM for 48 h: 129.765.2% of baseline, n = 7; p.0.05)

and LTD induction (APV-control: 76.564.4% of baseline, n = 16;

APV-UCB 10 mM for 24 h: 79.465.3% of baseline, n = 9; APV-

UCB 10 mM for 48 h: 74.765.1% of baseline, n = 7; p.0.05)

(Figure 8E and F). In contrast, UCB-induced decrease in the

frequency of mEPSCs was not significantly affected by co-

treatment with D-APV (UCB: 0.660.3 Hz, n = 6; APV-UCB:

0.860.3 Hz, n = 5; p.0.05) (Figure S4). In this series of

experiments, to prevent the residual D-APV in the slices to affect

the induction of LTP and LTD, slices were maintained in the

perfusing chamber for a minimum of 1 h prior to recording, a

period at least over which D-APV was washed out of the slices.

These results indicate a decisive role of NMDA receptors in

mediating the cellular effects of UCB.

On the basis of the data demonstrating the downregulation of

NR1, NR2A and NR2B subunit levels after prolonged UCB

exposure, it was assumed that the decrease in the number of

NMDA receptors may account for the inhibitory effects of UCB

on LTP and LTD induction. One mechanism that could produce

this effect is an increase in the proteolytic cleavage of NMDA

receptor subunits. Because biochemical studies have clearly

demonstrated that the c-terminal region of the NR2 subunit is a

Figure 4. Prolonged UCB exposure decreases the protein levels of NMDA NR1, NR2A and NR2B subunits in rat organotypic slice
cultures. (A) Representative immunoblots showing 10 mM UCB treatment for 48 h decreases NR1, NR2A and NR2B subunit expression in the
hippocampal CA1 homogenate fractions. (B–D) Corresponding densitometric analysis showing the relative levels of NR1 (B), NR2A (C), and NR2B (D)
subunits similar to those shown in (A). Number of experiments is indicated in the parenthesis. Error bars indicate SEM. *p,0.05 as compared with the
control group by unpaired Student’s t-test.
doi:10.1371/journal.pone.0005876.g004
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substrate for the calcium-activated neutral protease calpain [34–

36], we sought to assess whether calpain-mediated NR2 subunit

cleavage is involved in the mechanism leading to UCB-induced

decrease in NMDA receptor number. To test this premise, we first

used calpain-mediated spectrin and NR2B subunit cleavage as

markers for calpain activation. Western blot analysis found that

UCB (10 mM) treatment significantly induced a time-dependent

increase in spectrin and NR2B subunit cleavage compared with

control slices (Figure 9A). The level of b-actin, a poor calpain

substrate [37], was not affected. To directly quantify total amount

of intracellular calpain activity, a fluorescent peptide Suc-LLVY-

AMC was used as a substrate for calpain [38]. Similarly, we

observed a significant increase in calpain activity within 20 min

after UCB (10 mM) treatment and the levels were stable over time

(Figure 9B). The increased levels of calpain activity correlated

temporally with the spectrin and NR2B subunit cleavage analyzed

by Western blot analysis. Furthermore, in slices treated with

10 mM UCB for 24 h, the calpain activity was significantly

increased (153.6614.5%, n = 9; p,0.05), which was completely

blocked by simultaneous addition of D-APV (50 mM, 87.968.2%,

n = 4) or the specific calpain inhibitors, leupeptin (100 mM,

112.1610.2%, n = 7) and calpeptin (100 mM, 95.367.6%, n = 5)

(Figure 9C).

To examine the functional consequences of the blockade of

calpain activity on the UCB effects, slices were co-exposure to

UCB (10 mM) and leupeptin or calpeptin. As shown in

Figure 10A–D, both leupeptin (100 mM) and calpeptin (100 mM)

completely prevented UCB-induced down-regulation of NR2A

and NR2B subunit proteins. However, UCB-induced decrease in

NR1 subunit was not affected by addition of either leupeptin or

calpeptin (Figure 10B). In parallel experiments, we also found that

calpeptin completely abolished UCB-induced impairment of LTP

(calpeptin-control: 142.565.6% of baseline, n = 10; calpeptin-

UCB 10 mM for 24 h: 135.266.7% of baseline, n = 8; calpeptin-

UCB 10 mM for 48 h: 129.564.5% of baseline, n = 8; p.0.05)

and LTD induction (calpeptin-control: 72.662.3% of baseline,

n = 10; calpeptin-UCB 10 mM for 24 h: 69.564.5% of baseline,

n = 9; calpeptin-UCB 10 mM for 48 h: 75.665.4% of baseline,

n = 7; p.0.05) (Figure 10E and F). However, simultaneous

treatment with calpeptin had no significant effect on UCB-

induced decrease in mEPSC frequency (UCB: 0.660.3 Hz, n = 6;

calpeptin-UCB: 0.760.2 Hz, n = 4; p.0.05) (Figure S4). Togeth-

er, these results suggest that calpain activation mediates UCB-

induced down-regulation NMDA receptor number and the

impairment of LTP and LTD induction in the hippocampal

CA1 region.

Discussion

Although the toxic effects of UCB have been documented in

numerous biological systems, the molecular mechanisms underly-

ing its neurotoxicity have not yet been fully clarified. The present

study demonstrates that prolonged exposure of clinically relevant

concentrations of UCB impairs the induction of hippocampal CA1

LTP and LTD in rat organotypic slice cultures. These UCB-

mediated inhibitory effects are mediated, at least in part, through

overstimulation of NMDA receptors, which results in Ca2+-

induced calpain activation leading to proteolytic cleavage and

degradation of NMDA receptor subunits. In addition, we showed

that such impairments occur before significant UCB-induced

release of the pro-inflammatory cytokines TNF-a and IL-1b or a

decrease in neuronal viability.

It is well established that the induction of LTP and LTD at the

Schaffer collateral-CA1 synapses of the hippocampus requires the

activation of NMDA receptors [16,18]. Inhibition of NMDA

receptors blocks LTP and LTD induction, although recent studies

using pharmacological NMDA receptor subtype blockade ap-

proach has proposed that LTP induction is specifically dependent

on activation of NR2A-containing receptors and LTD requires

activation of NR2B-containg receptors [39,40]. It is therefore

reasonable to hypothesize that a pathological change in the

function of NMDA receptors might be involved in UCB-mediated

impairment of LTP and LTD. Consistent with this hypothesis, we

provide the first evidence that prolonged UCB exposure leads to

decreased protein levels of NR1, NR2A, and NR2B subunits. Our

results further showed that the NMDA to AMPA ratio of EPSCs is

Figure 5. Effect of prolonged UCB exposure on the expression
of NR1, NR2A and NR2B mRNAs. (A–C) Real time-PCR analysis
showing the relative expression of hippocampal CA1 NR1 (A), NR2A (B)
and NR2B (C) mRNAs in slices from control and 10 mM UCB treatment
for 48 h. Number of experiments is indicated in the parenthesis. Error
bars indicate SEM.
doi:10.1371/journal.pone.0005876.g005

UCB Alters Synaptic Function

PLoS ONE | www.plosone.org 8 June 2009 | Volume 4 | Issue 6 | e5876



reduced in UCB-treated slices, while no change in the amplitude

of AMPA receptor-mediated mEPSCs was observed. Given that

the mRNA profiles for NR1, NR2A, and NR2B subunits were not

significantly altered following prolonged UCB exposure, it seems

likely that UCB-induced decrease in NMDA receptor subunit

expression is not due to the change in gene expression

mechanisms. Nevertheless, our data do not allow us to rule out

the possibility that the abnormal intracellular signaling events

downstream of NMDA receptor activation are also involved in the

establishment of UCB-induced impairment of hippocampal long-

term synaptic plasticity. Further studies are needed, however, to

definitively clarify this issue.

The stimulus-response relationships for the fEPSPs and

EPSCAMPA were shifted to the right for the slices treated with

10 mM UCB for 48 h, suggesting that prolonged UCB exposure

may lead to an inhibition of glutamatergic synaptic transmission.

Although a decrease in the synaptic transmission could result from

a reduction in the function of postsynaptic AMPA receptors, a

reduction in presynaptic glutamate release is a more likely

interpretation, because UCB-treated slices exhibited an increase

Figure 6. Effects of prolonged UCB exposure on propidium iodide (PI) staining in hippocampal slice cultures. (A) Representative
images of PI staining in slices from control or treatment with UCB (1 mM or 10 mM) or kainic acid (60 mM) for 24 or 48 h. (B) Densitometry
quantification of PI staining similar to those shown in (A). Data are expressed as fold of increase over the respective control group. Number of
experiments is indicated in the parenthesis.
doi:10.1371/journal.pone.0005876.g006
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in PPF ratio and a decrease in the frequency of AMPA receptor-

mediated mEPSCs. In addition, we observed no differences in the

amplitude of mEPSCs between UCB-treated and control slices.

The present findings are in line with previous studies demonstrat-

ing that short-term exposure to UCB in vitro [41] or in vivo [42] can

lead to an impairment of synaptic transmission. Regarding

possible mechanisms by which UCB inhibits glutamate release,

one possibility may involve the inhibition of synapsin I

phosphorylation [43], which plays an important role in neuro-

transmitter release process [44].

What mechanism might contribute to UCB-mediated decrease

in the NMDA receptor subunit proteins? Because the decrease in

levels of NMDA receptor subunits observed in UCB-treated slices

is correlated with an increase in calpain activity and the blockade

of calpain activation almost completely abolished the effects of

UCB, we therefore suggest that calpain activation may be

involved. To our knowledge, this is the first demonstration that

calpain activation participates in the action of UCB to promote

NMDA receptor destruction. These observations are compatible

with previous findings showing that the C-terminal regions of

NR2A and NR2B subunits are substrates for calpain in situ and

calpain-mediated proteolytic cleavage of the C-terminus may

result in NMDA receptor degradation and reduced activity [34–

36]. Interestingly, blockade of NMDA receptors but not L-type

voltage-gated Ca2+ channels also prevented the UCB-mediated

decrease in the NMDA receptor subunits, indicating that

activation of NMDA receptors is critical for the stimulation of

calpain by UCB. This is in line with previous evidence that

NMDA receptor antagonists are capable to prevent UCB-induced

neurotoxicity, both in vivo [31] and in vitro experiments [32,33]. A

pressing question that follows from these observations is that how

UCB might affect NMDA receptor activation. So far, there is no

evidence that UCB can activate NMDA receptors directly. One

possible mechanism is that UCB may decrease the uptake of

glutamate and thus prolong the presence of glutamate in the

synaptic cleft, which ultimately lead to overstimulation of NMDA

receptors [45]. An alternative, but not mutually exclusive,

mechanism may involve functional interactions between UCB

and NMDA receptors leading to the enhanced NMDA receptor

function. Previous evidence has shown that that UCB exposure in

vivo in newborn piglets can increase the binding affinity of NMDA

receptors for MK-801 [46].

A recent study has emphasized the importance of pro-

inflammatory cytokine TNF-a and IL-1b release in UCB-induced

loss of cell viability [27]. In contrast to this view, however, we

found no significant changes in the levels of TNF-a and IL-1b
after UCB exposure. The reason for this discrepancy is not clear

but could be attributed to the use of different doses of UCB

challenges (50 mM versus 10 mM) or cultured model systems

(astroglial cell cultures versus organotypic hippocampal slice

cultures), resulting in stimulating different cellular processes that

may vary in their mode of action. In accordance, we did not find

significant changes in cell viability after UCB exposure. One

argument might be that the organotypic slice culture model is not

suitable for studying inflammatory reactions. Indeed, there is

excellent evidence showing that this system is an ideal model to

study the functional consequences of changes in inflammatory

responses caused by acute or chronic excitotoxic insults [47,48].

The concentration of UCB in the brain and the duration of

exposure to UCB are important determinants of the development

of UCB neurotoxicity [49–51]. Virtually most published studies of

UCB-mediated neurotoxicity have been carried out at concentra-

tions of UCB that exceeded those seen in jaundiced neonates with

clinical signs of bilirubin encephalopathy, rendering uncertain

relevance for the observations to the clinical manifestations of

neurotoxicity [50]. To exclude this concern, we studied the effects

of UCB on the induction CA1 LTP and LTD in developing rat

organotypic hippocampal slice cultures at theoretically calculated

free fraction concentrations of 3 to 30 nM. It is evident that

jaundiced neonates have total serum bilirubin concentrations of 7

to 17 mg/dL and serum bilirubin concentrations higher than

20 mg/dL may cause kernicterus [49,52]. Using the corrected

affinity constants at pH 7.4, it was estimated that the concentra-

tion of free UCB may exceed 70 nM of its maximum aqueous

solubility when total serum concentration exceeds approximately

5 mg/dL [50]. Therefore, the concentrations of UCB used in the

present study are clinically relevant. It is also known that UCB has

multiple physical states, including monomers, oligomers, metasta-

ble aggregates and sedimentable particles [53]. Given the

Figure 7. Effects of prolonged UCB exposure on IL-1b and TNF-
a release in hippocampal slice cultures. Hippocampal slice cultures
were treated with 1 or 10 mM for the indicated time period. IL-1b (A)
and TNF-a (B) concentrations in medium were determined by ELISA.
Error bars indicate SEM. A two-way repeated measure ANOVA was used
to compare the differences of the levels of IL-1b and TNF-a release
between groups and changes in post UCB treatment measurements
over time. Data are obtained from 5–8 independent experiments
performed in duplicate.
doi:10.1371/journal.pone.0005876.g007
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Figure 8. Prevention of UCB-mediated inhibitory effects by blockade of NMDA receptors in hippocampal slice cultures. (A)
Representative immunoblots showing protein levels of NR1, NR2A, and NR2B subunits in slices treated with 10 mM UCB for 48 h in the absence or
presence of NMDA receptor antagonist D-APV (50 mM) or L-type voltage-gated Ca2+ channel blocker nimodipine (10 mM). (B–D) Corresponding
densitometric analysis showing the relative levels of NR1 (B), NR2A (C), and NR2B (D) subunits similar to those shown in (A). Number of experiments is
indicated in the parenthesis. *p,0.05 as compared with the UCB alone group by unpaired Student’s t-test. #p,0.05 as compared with the control
group by unpaired Student’s t-test. (E) Summary of experiments showing the induction of HFS-induced LTP in slices simultaneously treated with
10 mM UCB with D-APV (50 mM) for 24 or 48 h. (F) Summary of experiments showing the induction of LFS-induced LTD in slices simultaneously
treated with 10 mM UCB with D-APV (50 mM) for 24 or 48 h. The superimposed fEPSPs in the inset illustrates respective recordings from example
experiments taken at the time indicated by number. Error bars indicate SEM.
doi:10.1371/journal.pone.0005876.g008
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Figure 9. Calpain activation in response to UCB treatment in hippocampal slice cultures. (A) Representative immunoblots showing UCB
(10 mM)-induced a time-dependent cleavages of a-spectrin and NR2B subunit protein for the indicated time period. (B) Summary of experiments
showing UCB (10 mM)-induced a time-dependent increase in calpain activity. Calpain activity was measured by cleavage of the fluorescent substrate Suc-
LLVY-AMC (80 mM). (C) Schematic representation of the protocols used for studying the basal calpain activity after 10 mM UCB treatment for 24 h. The
bar graphs show mean6SEM of the effects of 10 mM UCB treatment for 24 h on the basal calpain activity in the absence or presence D-APV (50 mM),
nimodipine (20 mM), leupeptin (100 mM), and calpeptin (100 mM). *p,0.05 as compared with the vehicle control group by unpaired Student’s t-test.
doi:10.1371/journal.pone.0005876.g009
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Figure 10. Effects of calpain inhibitors on UCB-induced inhibitory effects in hippocampal slice cultures. (A) Representative
immunoblots showing protein levels of NR1, NR2A, and NR2B subunits in slices treated with 10 mM UCB for 48 h in the absence or presence of
calpain inhibitors, leupeptin (100 mM) or calpeptin (100 mM). (B–D) Corresponding densitometric analysis showing the relative levels of NR1 (B), NR2A
(C), and NR2B (D) subunits similar to those shown in (A). Number of experiments is indicated in the parenthesis. *p,0.05 as compared with the UCB
alone group by unpaired Student’s t-test. (E) Summary of experiments showing the induction of HFS-induced LTP in slices simultaneously treated
with 10 mM UCB with calpeptin (100 mM) for 24 or 48 h. (F) Summary of experiments showing the induction of LFS-induced LTD in slices
simultaneously treated with 10 mM UCB with calpeptin (100 mM) for 24 or 48 h. The superimposed fEPSPs in the inset illustrates respective recordings
from example experiments taken at the time indicated by number. Error bars indicate SEM.
doi:10.1371/journal.pone.0005876.g010
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estimated free concentrations of UCB used in the present study are

below its maximum aqueous solubility, it is unlikely that the

inhibitory effects of UCB observed in our experimental conditions

were mediated by precipitation of UCB aggregates. Instead, it

seems that UCB executes its action in monomers or other

oligomeric form [54].

In conclusion, our work supports the notion that prolonged

exposure of clinically relevant UCB concentrations may lead to a

time- and concentration-dependent inhibitor effect on the

induction of hippocampal CA1 long-term synaptic plasticity in

rat organotypic slice cultures and, more importantly identifies

specific molecular mechanisms to support this contention. The

data presented here will help elucidate how UCB affects the

signaling pathways in the hippocampus, possibly shedding light on

how elevated levels of UCB in the infant period cause

hippocampal dysfunction leading to temporary or permanent

impairment of mental function. Because calpain inhibition can

prevent the inhibitory effects of UCB on hippocampal neurons,

this study point to calpain inhibitor as a new potential therapeutic

approach for UCB-induced neurotoxicity in the hippocampus.

Finally, our results indicate that the organotypic hippocampal slice

cultures have potential as model system to study mechanisms of

UCB neurotoxicity that can be useful to develop novel therapeutic

strategies.

Materials and Methods

Organotypic hippocampal slice cultures
All experimental procedures were carried out according to the

guidelines laid down by the Institutional Animal Care and Use

Committee of National Cheng Kung University. Organotypic

cultures of the hippocampus were prepared and maintained

according to the standard interface method described previously

[55,56]. Briefly, hippocampi from 6- to 8-d-old male Sprague-

Dawley rats were dissected and cut into 400 mm slices with a

McIlwain tissue chopper (Mickle Laboratory Engineering, Gom-

shall, Surrey, UK). Only slices from the middle third of the

hippocampus were used for culturing. Individual slices that

displayed an intact dentate gyrus and pyramidal cell layer were

transferred to sterile Millicell-CM (Millipore, Bedford, MA)

membrane inserts (0.4 mm) in six-well culture plates with 1 ml

growth medium. The growth medium composition was 50%

minimal essential medium, 25% Hank’s balanced salt solution,

25% heat-inactivated horse serum, 25 mM HEPES, pH 7.3,

supplemented with glutamax (Invitrogen Molecular Probes,

Carlsbad, CA), glucose (6.5 mg/ml), penicillin (100 units/ml;

Invitrogen Molecular Probes) and streptomycin (100 mg/ml;

Invitrogen Molecular Probes). The cultures were grown in an

incubator with 5% CO2 and 95% atmospheric air at 35uC and the

medium was changed the day after slicing.

UCB treatment
Slices were maintained in vitro for a minimum of 3 days prior to

use, a period at least over which tissues recover from experimental

trauma caused by the isolation procedure [48]. Moreover, the use

of this time in culture also matches up to brain growth rate in full-

term neonate [57]. At the start of experiments, the culture medium

was replaced with 1 ml of serum-free neurobasal medium

(Invitrogen Molecular Probes) with 1 mM L-glutamine, and B27

supplement (Invitrogen Molecular Probes). UCB was obtained

from Sigma (St Louis, MO) and purified according to the method

of McDonagh [58]. UCB (1 or 10 mM), in the presence of human

serum albumin (HSA, 2 or 20 mM), was added to the medium for

24 or 48 h at 35uC. A 10 mM UCB stock solution in 0.1 M

NaOH was prepared immediately before use under light

protection to avoid photodegradation; the pH was restored to

7.4 by addition of equal amounts of 0.1 M HCl. Control slices

were processed in parallel without addition of UCB. Under the

present experimental conditions, the theoretically calculated free

fraction of UCB concentrations were 3 and 30 nM, respectively,

according to the model proposed by Weisiger et al. [59]. These

free UCB concentrations were below the aqueous solubility limit of

70 nM [50]. In order to characterize the cellular mechanisms by

which UCB can affect the induction of LTP and LTD, slice

cultures were additionally treated, in some experiments, with

calpain inhibitors, NMDA receptor antagonist, or L-type voltage-

gated Ca2+ channel blocker. For this purpose, the calpain

inhibitors, leupeptine (100 mM) and calpeptin (100 mM), NMDA

receptor antagonist, D-APV (50 mM), as well as L-type voltage-

gated Ca2+ channel blocker, nimodipine (10 mM), were added to

the culture medium, respectively, just before UCB administration

and then left for 24 or 48 h. D-APV, nimodipine, leupeptine, and

calpeptin were purchased from Tocris Cookson (Bristol, UK). All

reagents were added to medium, which was equilibrated at 35uC,

5% CO2 before their addition to the slices. Drug concentrations

were selected on the basis of previously published studies or our

preliminary results.

Electrophysiological recordings
Slice cultures on membrane inserts were transferred to a

submersion-type recording chamber continually perfused with 30–

32uC oxygenated (95% O2–5% CO2) artificial cerebrospinal fluid

(aCSF) solution containing (in mM): 117 NaCl, 4.7 KCl, 2.5

CaCl2, 1.2 MgCl2, 25 NaHCO3, 1.2 NaH2PO4 and 11 glucose.

Extracellular and whole-cell patch-clamp recordings were carried

out with Axoclamp-2B or Axopatch 200B amplifier (Axon

Instruments, Foster City, CA) as described previously [60]. The

responses were low pass filtered at 2 kHz, digitally sampled at 5–

10 kHz, and analyzed using pCLAMP software (Version 8.0;

Axon Instruments). The evoked postsynaptic responses were

induced in CA1 stratum radiatum by stimulation (0.02 ms

duration) of Schaffer collateral/commissural afferents at

0.033 Hz with a bipolar stainless steel stimulating electrode. Field

EPSPs were recorded with a glass pipette filled with 1 M NaCl (2–

3 MV resistance) and the initial slope was measured. The strength

of synaptic transmission was quantified by measuring the slope of

fEPSP. PPF was assessed by using a succession of paired pulses

separated by intervals of 20, 40, 60, 80, 100, and 200 ms. LTP was

induced by high-frequency stimulation, at the test pulse intensity,

consisting of two 1-sec trains of stimuli separated by an intertrain

interval of 20 sec at 100 Hz. LTD was induced using a standard

protocol of 900 stimuli at 1 Hz. The stimulation intensity during

low-frequency stimulation application was the same as the test

pulse intensity. Whole-cell recording of EPSCs was made from

CA1 pyramidal cells, which were identified under a DIC

microscope. For EPSC recordings, patch pipettes (3–5 MV) filled

with the following internal solution were used (in mM): 130

CsMeSO3, 8 NaCl, 10 HEPES, 0.5 EGTA, 4 Na2ATP, 0.3

Na3GTP, 5 QX-314 N-(2,6-Dimethyl-phenylcarbamoylmethyl)

triethylammonium bromide; which had an osmolarity of 290–

295 mOsm and pH of 7.2. The amplitude of evoked EPSCs was

measured. To ensure stability of the whole-cell recordings,

electrical stimulation was initiated before the cell was patched.

We waited for approximately 5 min in the cell-attached

configuration before break-in to wash off any residual internal

solution spilled from the approaching pipette. For recording the

ratio of NMDA to AMPA receptor component of EPSCs, cells

were clamped at +50 mV to reduce Mg2+ blockade of the NMDA
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receptors. The intensity of each stimulation was adjusted to evoke

the same peak amplitude of EPSCs (<250 pA) in each slice

culture. The NMDA/AMPA ratio was determined by subtracting

the averaged traces obtained in D-APV (50 mM) from those

collected in its absence. EPSCAMPA was recorded in the presence

of D-APV (50 mM) and bicuculline methiodide (20 mM) at a

holding potential of 270 mV. When recording EPSCNMDA, cells

were clamped at 260 mV in Mg2+-free aCSF containing CNQX

(20 mM) and bicuculline methiodide (20 mM). For recording

IPSCs, cells were clamped at 270 mV in the presence of CNQX

(20 mM) and D-APV (50 mM). The composition of intracellular

solution for recording IPSCs was (mM): 150 CsCl, 10 HEPES, 2

MgCl2, 0.5 EGTA, 4 Na2ATP, 0.3 Na3GTP, 5 QX-314. In the

experiments involving recordings of AMPA receptor-mediated

mEPSCs, slices were bathed in the presence of bicuculline

methiodide (20 mM), D-APV (50 mM), and tetrodotoxin (1 mM).

Neurons were held at 270 mV and spontaneous activity was

recorded. The software detects events based on amplitudes

exceeding a threshold set just above the baseline noise of the

recording (23 pA). All detected events were re-examined and

accepted or rejected based on subjective visual examination.

Background current noise was estimated from the baseline with no

clear event and was subtracted from signals for analysis. The

mEPSC frequencies were calculated by dividing the total number

of detected events by the total time sampled. Series and input

resistances were monitored throughout each experiment. Data

were discarded if series resistance changed more than 15% during

an experiment.

Western Blotting
The microdissected slice samples for each experimental

condition were transferred into ice-cold lysis buffer (pH 7.4)

containing a cocktail of protein phosphatase and proteinase

inhibitors (50 mM Tris-HCl, 100 mM NaCl, 15 mM sodium

pyrophosphate, 50 mM sodium fluoride, 1 mM sodium orthova-

nadate, 5 mM EGTA, 5 mM EDTA, 1 mM phenylmethylsulfonyl

fluoride, 1 mM microcystin-LR, 1 mM okadaic acid, 0.5% Triton

X-100, 2 mM benzamidine, 60 mg/ml aprotinin, and 60 mg/ml

leupeptin) to avoid dephosphorylation and degradation of

proteins, and ground with a pellet pestle (Kontes glassware,

Vineland, NJ). Samples were sonicated and spun down at

15,0006g at 4uC for 10 min. The supernatant was then assayed

for total protein concentration using Bio-Rad Bradford Protein

Assay Kit (Hercules, CA). Each sample was separated in 7% SDS-

PAGE gel. Following the transfer on nitrocellulose membranes,

blots were blocked in TBS containing 3% bovine serum albumin

and 0.01% Tween 20 for 1 h and then blotted for 2 h at room

temperature with antibody that recognize NR1 (1:1000; Chemi-

con, Temecula, CA), NR2A (1:1000; Santa Cruz Biotechnology,

Santa Cruz, CA), NR2B (1:1000; Santa Cruz Biotechnology),

NR2B (an N-terminal antibody to 251 amino acid sequence,

1:500; Zymed Laboratories Inc., San Francisco, CA), spectrin

(1:500; Biomol, Plymouth Meeting, PA) or b-actin (1:20000;

Sigma-Aldrich, St Louis, MO). It was then probed with HRP-

conjugated secondary antibody for 1 h and developed using the

ECL immunoblotting detection system (Amersham Pharmacia

Biotech, Piscatway, NJ). Immunoblots were analyzed by densi-

tometry using Bio-profil BioLight PC software. Only film

exposures that were in the linear range of the ECL reaction were

used for quantification analysis. Expression of NR1, NR2A and

NR2B was evaluated relative to that for b-actin. Background

correction values were subtracted from each lane to minimize the

variability across membranes.

Quantitative Real-Time RT-PCR
Total RNA was isolated from frozen hippocampal CA1 region

of the slice cultures using TriReagent kit (Molecular Research

Center, Cincinnati, OH), treated with RNase-free DNase (RQ1;

Promega, Madison, WI) to remove the potential contamination of

genomic DNA. Approximately 1 ng of RNA was reverse-

transcribed and amplified following the quantitative one-step

real-time RT-PCR technique (Titanium One-Step RT-PCR kit,

BD Biosciences Clontech, Palo Alto, CA), with both RT and PCR

in the same tube. Real-time RT-PCR was performed on the

Roche LightCycler instrument (Roche Diagnostics, Indianapolis,

IN) using the FastStart DNA Master SYBR Green I kit (Roche

Applied Science) as described by the manufacturer. The PCR

mixtures were incubated at 95uC for 10 min, and then 35 PCR

cycles were conducted (95uC for 10 sec, 55uC for 15 sec and 68uC
for 20 sec). The primer combinations were designed by referring

to the rat studies by Pickering et al. [61] and Ku et al. [62]: NR1

59-CTGCAACCCTCACTTTTGAG-39 (forward) and 59-

TGCAAA AGCCAGCTGCATCT-59 (reverse); NR2A, 59-

GACGGTCTTGGGATCTTA AC-39 (forward) and 59-TGAC-

CATGAAATTGGTGCAGG-39 (reverse); NR2B 59-TGC

ACAATTACTCCTCGACG-39 (forward) and 59-

TCCGATTCTTCTTCTGAGCC-39 (reverse); b-actin, 59-

TTCTACAATGAGCTGCGTGTGGC-39 (forward) and 59-

CTCATAGCTCTTCTCCAGGGAGGA-39 (reverse). Real-time

RT-PCR reactions on mRNA obtained from control or neonatal

isolated rat hippocampal CA1 total RNA samples were performed

at the same time. PCR amplifications were repeated in duplicate.

A melting curve was created at the end of the PCR cycle to

confirm that a single product was amplified. Data were analyzed

by the LightCycler quantification software to determine the

threshold cycle above the background for each reaction. The

relative transcript amount of the gene of interest, which was

calculated using standard curves of serial RNA dilutions, was

normalized to that of b-actin of the same RNA.

Assessment of neuronal damage by propidium iodide
uptake

Neuronal death in the slice cultures was assessed by measurement

of the fluorescent exclusion dye propidium iodide (PI; Invitrogen

Molecular Probes) uptake as described in detail elsewhere [47]. PI

only enters cells with damaged cell membrane, interacting with

DNA to yield a bright red fluorescence. PI (5 mg/ml) was added to

the culture medium together with different treatment. After 3 h

incubation, PI fluorescence was visualized using a 56objective with

a fluorescent microscope (Olympus BX51, Tokyo, Japan), and

images of PI-labeled slices were captured with a digital camera

system (Olympus Optical DP70). Except for adjustment to the

contrast and brightness levels, no other manipulations were done in

any of the images. Images were analyzed quantitatively by

densitometry with NIH Image 1.62 analysis software.

Quantification of IL-1b and TNF-a release by ELISA
The culture supernatants from control and treated slice cultures at

appropriate time points was collected, centrifuged at 6006g for 5 min,

and stored in aliquots at 270uC. Concentrations of IL-1b and TNF-a
were measured with commercial DuoSet ELISA Development kit (R

& D Systems, Minneapolis, MN) according to the manufacturer’s

instructions. IL-1b and TNF-a levels are expressed as pg/ml.

Calpain activity assay with Suc-LLVY-AMC
Cleavage of the fluorogenic calpain substrate Succinyl-Leu-Leu-

Val-Tyr-7-amino-4-methylcoumarin (Suc-LLVY-AMC; Calbio-
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chem, La Jolla, CA) to its fluorescent product AMC was used to

measure intracellular calpain activity as described previously [36].

Suc-LLVY-AMC (80 mM) was added to the culture medium

together with different treatment. After 1 h incubation, the slice

culture samples for each experimental condition were transferred

into ice-cold lysis buffer, sonicated, and spun down at 15,0006g at

4uC for 15 min. The supernatant was then assayed for total

protein concentration using Bio-Rad Bradford Protein Assay Kit

(Hercules, CA) and for calpain activity assay. The fluorescence was

assessed using a 96-well fluorescent microplate reader (Gemini

Spectra XPS, Molecular Devices, Union City, CA) with a 365 nm

excitation and a 460 nm emission. In some experiments, slice

cultures were pretreated Suc-LLVY-AMC (80 mM) for 30 min

before UCB added and calpain activity was assayed from 0 to

60 min after UCB application.

Data Analysis
All data are expressed as means6SEM, and unless stated

otherwise, the statistic significance was determined using a one-

way analysis of variance (ANOVA) for repeated measurements

with a post-hoc Tukey-Kramer test or Student’s t-test. We used a

two-way repeated measure ANOVA to compare the differences of

the levels of IL-1b and TNF-a release between groups and

changes in post UCB treatment measurements over time. The

Fisher’s protected LSD post-hoc test was used for pair-wise

comparisons after ANOVA. Probability values of p,0.05 were

considered to represent significant differences. All data analyses

were performed using SPSS commercially available statistical

analysis software (SigmaStat Version 2.0; Chicago, IL, USA).

Supporting Information

Figure S1 Effects of prolonged UCB exposure on the presyn-

aptic fiber volley. Input-output curves of the amplitude of

presynaptic fiber volley versus stimulus intensity (mA) at the

Schaffer collateral-CA1 synapses of hippocampal slice cultures in

the absence (control, n = 5) or presence of 10 mM UCB for 24

(n = 5) or 48 h (n = 5). Representative traces (average of three

responses) show example fiber volley recorded in slices from

control and UCB-treated slices in the presence of CNQX (20 mM)

and D-APV (50 mM).

Found at: doi:10.1371/journal.pone.0005876.s001 (7.01 MB TIF)

Figure S2 Effects of acute UCB exposure on the induction of

LTP and LTD in the CA1 region of the hippocampus. (A)

Summary of experiments showing that bath application of UCB

(10 mM, n = 5) had no significant effect on basal synaptic

transmission and the induction of HFS-induced LTP in slice

cultures at 5 DIV. (B) Summary of experiments showing that bath

application of UCB (10 mM, n = 5) had no significant effect on the

induction of LTD by LFS in slice cultures at 5 DIV.

Representative traces of fEPSPs were taken at the time indicated

by number. Error bars indicate SEM.

Found at: doi:10.1371/journal.pone.0005876.s002 (5.33 MB TIF)

Figure S3 Effects of prolonged UCB exposure on the inhibitory

postsynaptic currents (IPSCs). Input-output curves of the ampli-

tude of IPSCs versus stimulus intensity (mA) at the Schaffer

collateral-CA1 synapses of hippocampal slice cultures in the

absence (control, n = 5) or presence of 10 mM UCB for 48 h

(n = 5). Representative traces show example IPSCs (average of

three responses) recorded in slices from control and UCB-treated

slices at 270 mV in the presence of CNQX (20 mM) and D-APV

(50 mM).

Found at: doi:10.1371/journal.pone.0005876.s003 (4.18 MB TIF)

Figure S4 Effects of D-APV and calpeptin on UCB-induced

decrease in the frequency of mEPSCs. The bar graphs show

mean6SEM of the effects of UCB (10 mM) on the average

frequency (A) and the amplitude (B) of AMPA receptor-mediated

mEPSCs in slices simultaneously treated with D-APV (50 mM) or

calpeptin (100 mM) for 48 h. Number of experiments is indicated

in the parenthesis. *p,0.05 as compared with the control group

by one-way ANOVA (Tukey-Kramer test).

Found at: doi:10.1371/journal.pone.0005876.s004 (4.09 MB TIF)
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