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ABSTRACT

Background. The begomovirus, squash leaf curl virus (SLCuV) is one of the causal
agents of squash leaf curl (SLC) disease, which is among the most destructive diseases
of cucurbit crops in tropical, subtropical, and semiarid regions worldwide. This disease
was originally reported in the American continent with subsequent spread to the
Mediterranean basin. Up to now, SLCuV has only been detected by PCR in Mexico.
This study provides the first complete sequence of a Mexican SLCuV isolate from
Baja California Sur (BCS). In addition, the genome of the virus was characterized,
establishing its phylogenetic relationship with other SLCuV isolates.

Methods. The full genome (DNA-A and DNA-B) was amplified by rolling circle am-
plification, cloned and sequenced and the open reading frames (ORF) were annotated.
Virus identification was performed according to the International Committee on
Taxonomy of Viruses (ICTV) criteria for begomovirus species demarcation. To infer
evolutionary relationship with other SLCuV isolates, phylogenetic and recombination
analyses were performed.

Results. The SLCuV-[MX-BCS-La Paz-16] genome (DNA-A and DNA-B) had 99%
identity with SLCuV reference genomes. The phylogenetic analysis showed that SLCuV-
[MX-BCS-La Paz-16] is closely related to SLCuV isolates from the Middle East
(Egypt, Israel, Palestine and Lebanon). No evidence of interspecific recombination was
determined and iterons were 100% identical in all isolates in the SLCuV clade.
Conclusions. SLCuV-[MX-BCS-La Paz-16] showed low genetic variability in its
genome, which could be due to a local adaptation process (isolate environment),
suggesting that SLCuV isolates from the Middle East could have derived from the
southwestern United States of America (USA) and northwestern Mexico.

Subjects Agricultural Science, Genomics, Molecular Biology, Plant Science, Virology
Keywords Leaf curl disease, Iterons, Recombination, Genetic stability, Squash clade

INTRODUCTION

Viruses of the genus Begomovirus (family Geminividae) are devastating pathogens that affect
a variety of agronomic crops worldwide (Rojas et al., 2018). Begomoviruses are commonly
associated with vegetables (Varma ¢ Malathi, 2003) and have also been reported in
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medicinal and aromatic plants (Saeed ¢ Samad, 2017). The genus Begomovirus has 388
species, which have importance by their worldwide distribution and their direct and
negative impact over a wide range of crops (Zerbini et al., 2017). Begomoviruses can be
divided based on their geographic location and genomic organization. In the Old World
(OW) they can be mono- or bipartite and are often associated with DNA-satellites, while
those in the New World (NW) are mostly bipartite (Rojas et al., 2005; Duffy ¢ Holmes,
2007; Melgarejo et al., 2013). Two additional groups associated with a specific host instead
of geographical location are the sweepoviruses (monopartite begomoviruses that affect
sweet potato) (Trenado et al., 2011) and the legumoviruses (bipartite begomoviruses that
affect legumes), constituting two divergent monophyletic groups distinct from OW and
NW begomoviruses (Ilyas et al., 2009).

Squash leaf curl virus (SLCuV) is a typical NW, bipartite begomovirus which
infects squash (Cucurbita pepo L.) in North America (Flock ¢» Mayhew, 1981) and the
Mediterranean basin (Antignus et al., 2003; Lapidot et al., 2014). SLCuV popoulation
from the Middle East show a low degree of genetic variability (Lapidot et al., 2014),
and there is little genetic differentiation between population from North America and
the Middle East (Rosario et al., 2015). Although it has been found in mixed infections
with other begomoviruses (Kuo et al., 2007; Sufrin-Ringwald & Lapidot, 20115 Ali,
Mohammad ¢ Khattab, 2012; Ahmad, Odeh ¢ Anfoka, 2013), recombinants have not
been detected (Rosario et al., 2015). However, the recent migration and rapid spread of the
SLCuV from the Americas into the Middle East could influence the appearance of new
virulent strains and the expansion of the host range of the virus in native flora (Abudy
et al., 2010). Thus, surveillance is necessary to monitor the appearance of new strains.
The objective of this study was to characterize a SLCuV isolate from Mexico to infer its
phylogenetic and evolutionary relationships with other isolates.

MATERIALS AND METHODS

Samples collection and DNA extraction

Plant samples of Cucurbita pepo L. showing the characteristics of SLC disease were collected.
Samplings were performed in the most important squash crops in the southern part of Baja
California Sur State (BCS) during the spring/summer and autumn/winter cycles from 2016
to 2017. Total nucleic acids were isolated using a CTAB method (cetyl trimethylammonium
bromide) (Doyle, 1991).

SLCuV PCR detection

To detect and identify SLCuV, samples were tested by PCR. One microliter of total DNA
from each sample (50 ng/nL) was used as template. The reaction mixture consisted of
0.5 uM forward and reverse primers (SqA2F and SqAI1R; Table 1), 10 pL of 2xPhusion
High-Fidelity PCR Master Mix (New England Biolabs, Inc., Ipswich, MA, USA) in 20 pL
of final reaction volume. The PCR reaction was carried out as follows: initial denaturation
step (98 °C 30 s, one cycle), amplification step for 35 cycles (98 °C 10 s, 55 °C 30 s and
72 °C 30 s, for each cycle), and a final elongation step (72 °C, 5 min).

Medina-Hernandez et al. (2019), PeerJ, DOI 10.7717/peer|.6774 2/11


https://peerj.com
http://dx.doi.org/10.7717/peerj.6774

Peer

Table 1 Primers used for detection and assembly of the full-length (DNA-A and DNA-B) of the squash leaf curl virus (SLCuV) in Baja Califor-

nia Sur, Mexico.

Name primer Sequence (5'-3') pb Temp. Reference

Target DNA-A
SLCVF-Sall TATAGTCGACGTTGAACCGGATTTGAATG 2,667 57 Farraget al. (2014)
SLCVR-Sall TATAGTCGACCTGAGGAGAGCACTAAATC
SqA2F TATCTCCCATCTTGGCAAGG 601 55 Sobh et al. (2012)
SqA1R AGCTGTATCTTGGGCAACAGA
SLCVA2295F CAGATAATTGAATGAGGCAG 1,500 57 Lapidot et al. (2014)
Xho-SLCV-R TGTACTCGAGAATCATGAAATAAAATTC
SLCVA2314R CTGCCTCATTCATTCAATTATCTG 1,300 57 Lapidot et al. (2014)
Xho-SLCVA-F CATGATTCTCGAGTACATAATTTAC

Target DNA-B
SLCVDNABIF GTGGTTATGCAAGGCGTCGACCCAAC 1,316 57 Lapidot et al. (2014)
SLCVDNABIR GCAAACTGAAGCTATCGTCGGCGAAGC
SLCVDNAB2F GCTTCGCCGACGATAGCTTCAGTTTGC 1,644 57 Lapidot et al. (2014)
SLCVDNAB2R GTTGGGTCGACGCCTTGCATAACCAC
BgMP-BC1F WGCAAGACTVARTCGWAGCTGYATGAA 600 55 This article
BgMP-BC1R TTKRGCCCCHAYTATDGAAGCHGAM

SLCuV full-length genome amplification

From SLCuV positive samples, total DNA was used as template for rolling circle
amplification (RCA) using the TempliPhi Kit (GE Healthcare, Chicago, IL, USA)
following the manufacturer’s protocol. RCA amplification products were digested

with restriction enzymes Cla I and Xba I (New England Biolabs) to linearize DNA-A

and DNA-B, respectively. Both DNA-A and DNA-B linearized genomic segments were

isolated and ligated into pGEM-T Easy vector (Promega, Madison, WI, USA) according

to the manufacturer’s protocol, and then used to transform Escherichia coli DH5-a.

Recombinant clones were Sanger sequenced bidirectionally using SLCVE-Sall, SLCVR-
Sall, SLCVA2295F, XhoSLCVR, XhoSLCVAF, SLCVA2314R primers for DNA-A and
SLCVDNABIF, SLCVDNABIR, SLCVDNAB2R, SLCVDNAB2F, BgMP-BC1F, BgMP-

BCIR primers for DNA-B (Table 1).

Genome assembly and annotation
The resulting Sanger sequencing reads were used to assemble the SLCuV-[MXBCS:La
Paz-16] full genome. All reads of DNA-A and DNA-B were mapped with reference

to a SLCuV isolate from Palestine (PAL) (KC441465 and KC441466, respectively). To
assemble the genome and identify the open reading frames (ORFs) “Geneious mapper

and ORF finder” of Geneious R10 bioinformatics suite (https://www.geneious.com)

were used. In addition, the identified ORFs for both DNA-A and DNA-B segments were
confirmed with Frame Plot v4.0 beta and Global Align programs (Ishikawa ¢ Hotta (1999);
https://www.ncbinlm.nih.gov/orffinder/). The DNA-A and DNA-B full sequences were
aligned with 11 SLCuV isolates (Table S1) using the MUSCLE algorithm implemented
in MEGA7 (Kumar, Stecher ¢ Tamura, 2016). Virus identification was performed based

Medina-Hernandez et al. (2019), PeerJ, DOI 10.7717/peer|.6774 3/11


https://peerj.com
http://www.ncbi.nlm.nih.gov/nuccore/KC441465
http://www.ncbi.nlm.nih.gov/nuccore/KC441466
https://www.geneious.com
https://www.ncbi.nlm.nih.gov/orffinder/).
http://dx.doi.org/10.7717/peerj.6774#supp-3
http://dx.doi.org/10.7717/peerj.6774

Peer

on the DNA-A sequence, by pairwise comparison using Species Demarcation Tool (SDT)
v2.0 (Muhire, Varsani ¢ Martin, 2014), following the ICTV species demarcation criteria
(Brown et al., 2015).

Phylogenetic, recombination and iterons analysis

Phylogenetic analysis was performed using complete DNA-A and DNA-B nucleotide
sequences as well as replication-associated (Rep) and capsid (CP) protein amino acid
sequences (see Table S1 for details of the sequences used). Phylogenetic trees were
constructed with MEGA7 (Kumar, Stecher & Tamura, 2016) using the Neighbor-Joining
(NJ) algorithm with the Kimura 2-parameter substitution model and 1,500 bootstrap
replications. The RDP4 program was used to identify putative recombination events
(Martin et al., 2015). The comparative analysis of the conserved elements in the IR
(Argiiello-Astorga et al., 1994) was performed using Clustal X2 and MEGA?7.

RESULTS

Virus detection

A typification of the SLC disease was performed in the field observing symptoms of
thickened leaf vein-banding, mild chlorosis, severe leaf curling, reduction in the size of leaf,
leaf distortion and mottled interveinal tissue (Fig. 1). In preparation for viral detection, we
performed a PCR-based detection with specific primers (SqA2F and SqA2R) obtaining the
expected ~ 600 pb size product.

SLCuV genome annotation and identification

Several positive samples were analyzed by RCA to obtain both DNA components. DNA-A
is 2,638 nt in length and contains five ORFs: AV1 (755 nt), AC1 (1,046 nt), AC2 (395 nt),
AC3 (404 nt) and AC4 (377 nt) while DNA-B is 2,608 nt with two ORFs, BV1 (851 nt) and
BCI (881 nt) (Fig. 2). DNA-A ORFs have identity percentages ranging from 97 to 99%
with other SLCuV isolates, while DNA-B ORFs have identities from 93 to 94%. In addition,
lengths of the different ORFs are homogeneous ( £ 4 nt) when compared with other SLCuV
isolates(Table 2). The highest identities for DNA-A, of 99% were with isolates from Egypt
(DQ285019), Israel (HQ184436), Jordan (JX444577), Lebanon (HM368373) and Palestine
(KC441465) (Table 2). Identities with isolates from southwest USA (M38183, DQ285016,
AF256203) were of 98% (Table 2). Based on pairwise DNA-A sequence comparisons and
following the species demarcation criteria for begomoviruses (Brown et al., 2015; Zerbini
et al., 2017), the BCS isolate is a member of the species Squash leaf curl virus (SLCuV),
with the acronym SLCuV-[MX-BCS-La Paz-16]. The sequences of SLCuV-[MX-BCS-La
Paz-16] were deposited in GenBank with accession numbers MF187211 and M(G544926
for the DNA-A and to DNA-B, respectively.

Phylogenetic analysis

The phylogenetic tree based on full-length DNA-A nucleotide sequences revealed that
SLCuV-[MX-BCS-La Paz-16] forms a monophyletic group with other SLCuV isolates
and a separate group with related NW begomoviruses that infect cucurbits and other
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Figure 1 Symptoms associated to squash leaf curl virus (SLCuV) in Cucurbita pepo: thickened leaf
vein-banding, mild chlorosis, severe leaf curling, reduction in the size of leaf, leaf distortion and mot-
tled interveinal tissue were observed in squash plantation. Photograph by Mayela Vargas-Salinas.

Full-size &l DOI: 10.7717/peer;j.6774/fig-1
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Figure 2 Genomic organization of the squash leaf curl virus Mexico (SLCuV-MX-BCS-La Paz-16)
showing the predicted open reading frames (ORFs), size and position in the genomes. (A) DNA-A, (B)
DNA-B. Arrows indicate direction in the viral sense (clockwise) and strained (anti-clockwise) direction. IR
(intergenic region), CR (common region), ORFs in the DNA-A; AV1 (CP), AC1 (Rep), AC2 (Trap), AC3
(REn) and ORFs in the DNA-B; BV1 and BC1 (movement proteins) are represented in scale according to
nucleotide size. The unique cutting by enzymes sites are shown in both genomes.

Full-size & DOI: 10.7717/peerj.6774/fig-2
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Table 2 Percentage nucleotide identity of squash leaf curl virus Mexico (SLCuV-[MX-BCS-La Paz-16]) isolated from infected squash in La Paz
in the Peninsula of Baja California compared with the selected SLCuV clade members. ! ORF, Open Ready Frame. 2NA, Data not available.

Isolate Access number DNA-A DNA-B AV1 AC1 AC2 AC3 AC4 BV1 BC1
SLCuV-[US:1V:79] M38183 98 94 92 NAl 98.8 98.1 NA 96.9 98.8
SLCuV-[US:IV:04] DQ285016 98 94 98 99 99 98 98 93 97
SLCuV-[US:AZ:W:04] AF256203 98 94 98 99 99 98 98 93 97
SLCuV-[EG:Cai:06] DQ285019 99 NA 99 99 100 98 98 NA NA
SLCuV-[JD:Mal:06] EF532620 97 94 99 95 99 98 89 92 98
SLCuV-[IL:03] HQ184436 99 NA 99 99 98 99 98 NA NA
SLCuV-[EG:Ism:12] KC895398 97 NA 99.6 95.1 98.7 97.3 91.8 NA NA
SLCuV-[LB:09] HM368373 99 94 99 99 100 98 99 99 99
SLCuV-[JO:Hor:11] JX444577 99 93 99 99 99 98 99 99.2 98.6
SLCuV-[PL:10] KC441465 99 NA 99 99 100 98 99 NA NA
SLCuV-[JO:Sarv:11] JX131281 99 93 99 98.6 100 98.3 98.4 96.9 98.9
MCLCuV-[CR:Gua:98] AY064391 89 73 88 86 89 90 NA 83 67

hosts. SLCuV-[MX-BCS-La Paz-16] shows the closest relationship with SLCuV isolates
from the Middle East, including Egypt, Lebanon, Palestine and Jordan (Fig. 3A). The
phylogenetic analysis was well supported with high bootstrap values, and is consistent with
pairwise sequence identity analyses. We carried out the same phylogenetic analysis with
the DNA-B component (Fig. 3B), confirming the close phylogenetic relationship among
SLCuV isolates. Phylogenetic trees based on amino-acid sequences of REP and CP also
indicated that the SLCuV-[MX-BCS-La Paz-16] formed a single cluster with other SLCuV
isolates (Fig. S1).

Recombination and iterons analysis

In the analyses to search for potential recombination events in the DNA-A, we used the
same data set used for the DNA-A phylogenetic analysis, including the NW and OW groups
as well as other cucurbit begomoviruses. No putative recombination events were identified
between SLCuV and other cucurbit begomoviruses. Using a second data set comprising
only SLCuV isolates, two putative recombination events were supported by five of the
seven different methods of the RDP package, indicating major parents Middle East isolates
and the USA isolate US-AZ-04 as the minor parent. In the analysis of the intergenic region,
the TAATATTAC sequence at the hairpin structure of geminiviruses was conserved in
SLCuV-[MX-BCS-La Paz-16]. The analysis of the iterons located in the promoter region
associated with the Rep protein showed four direct repeats and two inverted repeats, with
100% identity in the sequences of iterons with other SLCuV isolates (Fig. S2).

DISCUSSION

This study sequenced the full genome (DNA-A and DNA-B) of a SLCuV isolte from
Mexico (SLCuV-[MX-BCS-La Paz-16]). It is worth noting that this is the first SLCuV full
genome sequenced in Mexico, with all previous SLCuV detections having been limited
to PCR-based diagnosis (Ramirez-Arredondo et al., 1995; Lugo et al., 2011). Despite the
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Figure 3 Phylogenetic tree showing the genetic relationship of the squash leaf curl virus Mexico with
other begomoviral isolates from SLCuV, based full (A) DNA-A and (B) DNA-B. The values below node
represent percentages of statistical support of evolutionary branch length in 1500 bootstrap replicates,
branches with less than 60% bootstrap support have been collapsed.

Full-size Gl DOI: 10.7717/peerj.6774/fig-3

presence of SLCuV in North America and the Middle East, the genome seems to be
very stable (Lapidot et al., 2014; Rosario et al., 2015) with no substantive changes in the
sequence since the first genomic characterization of the virus (Cohen et al., 1983; Antignus
et al., 2003). Our isolate is a typical SLCuV isolate with only slight modifications in the
nucleotide sequence but without changes in the ORFs sizes and organization. The absence
of genetic variations and the iteron analysis (without changes in sequence, number and
orientation) is further evidence of the genomic stability observed in SLCuV-[MX-BCS-La
Paz-16] with respect to other SLCuV isolates. SLCuV-[MX-BCS-La Paz-16] formed a
discrete monophylogenetic group with the SLCuV clade but closer with the isolates from
Middle Eastern countries (Egypt, Lebanon, Jordan and Palestine) than with the isolates
from the USA. Despite the selection pressures, the interaction of the virus with the host and
its vector and the biological-ecological interactions that confronts the viral populations,
the genomic stability of the SLCuV seems to be maintained over time, preserving its genetic
and structural functionality (Gibbs et al., 1999; Sdnchez-Campos et al., 2002).

CONCLUSION

The complete genome of SLCuV was sequenced for the first time in the Mexico, in the
southern part of the Baja California peninsula. The molecular characterization indicated a
closer relationship with isolates from Middle East rather than with isolates from the USA,
suggesting that SLCuV might have reached BCS from the Middle East or vice-versa and
not from the USA as it had been previously assumed. In order to confirm this hypothesis,
phylogeographic studies should be performed to determine the paths of dispersion.
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