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ABSTRACT

The identification of evolutionarily conserved fea-
tures of protein structures can provide insights
into their functional and structural properties. Three
methods have been developed and implemented as
WWW tools, CAMPO, SCR_FIND and CHC_FIND, to
analyze evolutionarily conserved residues (ECRs),
structurallyconserved regions (SCRs)andconserved
hydrophobic contacts (CHCs) in protein families
and superfamilies, on the basis of their 3D structures
and the homologous sequences available. The pro-
grams identify protein segments that conserve a
similar main-chain conformation, compute residue-
to-residue hydrophobic contacts involving only
apolar atoms common to all the 3D structures
analyzed and allow the identification of conserved
amino-acid sites among protein structures and their
homologous sequences. The programs also allow
the visualization of SCRs, CHCs and ECRs directly
on the superposed structures and their multiple
structural and sequence alignments. Tools and
tutorials explaining their usage are available
at http://schubert.bio.uniroma1.it/SCR_FIND, http://
schubert.bio.uniroma1.it/CHC_FIND and http://
schubert.bio.uniroma1.it/CAMPO.

INTRODUCTION

The results obtained from the concurrent detection of struc-
turally conserved interaction patterns and the analysis of
sequence conservation in a protein family can be of great
value for deciphering complex biological phenomena, such
as protein folding or the evolutionary emergence of distinct
catalytic properties from a common scaffold, and for planning
protein design and engineering experiments (1,2). In this

sense, the rapid increase in the number of sequences and
structures owing to structural and genomic projects represents
a major challenge, i.e. how to best exploit this information in
order to extract biologically relevant features. Here, we pre-
sent a suite of publicly available web services we implemented
for the identification of evolutionarily conserved regions and
contacts in protein families and superfamilies: CAMPO,
SCR_FIND and CHC_FIND.

CAMPOis a fully automatedweb tool that enables the assess-
ment of the evolutionary conservationgrade of protein residues.
Usually, the evolutionary conservation grade is a useful meas-
ure of the importance of a residue: for example, the catalytic
center of an enzyme is highly conserved since, if a mutation
occurs at that site, the catalytic activity of the enzyme is likely to
be lost, leading to a decreased fitness of the organism (3). The
evolutionary conservation grade can be determined by the vari-
ability of residues in the columns of a multiple sequence align-
ment of homologous proteins (4). The algorithm implemented
in CAMPO assigns a score to each column of a multiple
sequence alignment throughout the application of a user-
defined mutational matrix and incorporates a weight based
on the percentage of sequence identity between proteins
being compared. The results obtained can be mapped onto
a reference protein structure to allow the identification of
functionally important residues andsurface regions.Optionally,
CAMPO also allows to measure the evolutionary conservation
of a spatial region of arbitrary radius, centered on every atom of
the 3D structure. Once identified, most of the evolutionarily
conserved residues (ECRs) of homologous proteins can be fur-
ther analyzed to assess if their conservation reflects a functional
role (i.e. substrate binding, catalysis, interaction with other
macromolecules) or a structural role [i.e. residues interacting
through hydrophobic contacts, which are thought to be neces-
sary for the proper fold and structural stability of proteins (5,6)].

SCR_FIND and CHC_FIND are able to identify structurally
conserved regions (SCRs), similar 3D patterns of protein
segments that conserve the same main-chain conformation,
and their conserved hydrophobic contacts (CHCs), in members
belonging to a family or superfamily of proteins (7). SCRs and
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CHCs are presumably subjected to similar constraints during
the divergent evolution of a family or superfamily of proteins
from a common ancestor; therefore, they possibly contain
most of the determinants necessary to maintain the fold (8).
Although many public domain tools and WWW servers are
able to analyze structural and sequence relationships (9,10),
a server devised to the extraction of SCRs and CHCs from
aligned protein structures at different similarity thresholds is,
to our knowledge, not yet available.

Finally, an interface to the CE–MC multiple protein struc-
ture alignment algorithm was made available (11), modified so
that its output is suitable for the SCR_FIND and CHC_FIND
tools (http://schubert.bio.uniroma1.it/CEMC).

METHODS

CAMPO, SCR_FIND and CHC_FIND are coded in C,
PERL-CGI and JavaScript and run on a Digital Alpha station,
under UNIX operating system.

CAMPO makes use of a procedure similar to that adopted by
ConSurf to obtaina fully automatedmultiple sequencealignment
starting from a sequence probe (12). CAMPO utilizes the stand-
alone version of BLAST, with an E-value threshold set by the
user to accept or reject the sequences (13). Identified sequences
are filtered out (see below) and then aligned with ClustalW (14);
in addition, CAMPO allows the choice of the following options:
(i) protein database used to retrieve homologous sequences [cur-
rently nrdb (15) and SwissProt (16) are incorporated, and other
databases can be readily added]; (ii) minimum and maximum
percentages of sequence identity to the probe, and minimum
percentage of residues aligned to the probe to accept the
sequences found. Furthermore, CAMPO allows the user choose
the most appropriate mutational matrix (PAM and BLOSUM
series are implemented) to align and assign a conservation score
to the filtered sequences (Supplementary Material 1). Since in
extensive tests of sequence alignments the BLOSUM and PAM
matrix series on average gave superior results compared with
matrices based on physicochemical properties (17), it seemed
appropriate to adopt these mutational matrices to assign a score
for the amino acid exchanges (18). To measure the sequence
conservation, CAMPO assigns to each position of the multiple
sequence alignment the following score, which is formally sim-
ilar to the one proposed by Karlin and Brocchieri (19):
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whereOk is the score assigned for every position k of themultiple
sequence alignment, n is the number of sequences included in the
alignment, i and j refers to the ith and the jth sequence, respect-
ively, Bscorekij, Bscorekii andBscorekjj are the scores assigned to
the residue exchange in position k between the ith and the jth
sequence according to the BLOSUMorPAMmutationalmatrix,
nidij is the number of identical residues and nalij is the number of

aligned residues between the ith and the jth sequence, respect-
ively. For every possible exchange at a particular position of the
multiple alignment, a normalized conservation index is com-
puted, based on the score of a mutational matrix. Since the
matrix scores for matching the same amino acids vary for dif-
ferent residues, conservation indices for invariant positions of
the multiple sequence alignment would depend on residue type;
normalization is used to avoid different conservation scores for
invariant positions. Indels are assigned a fixed gap penalty score,
according to the mutational matrix chosen by the user. At vari-
ance with the method of Karlin and Brocchieri (19), a weighting
scheme is incorporated in which every residue exchange is
corrected by the inverse of the sequence similarity between
the proteins being compared, measured as their percentage iden-
tity. Thus, sequence weighting attempts to normalize against
redundancy in the alignment. More sophisticated tree-based
weighting schemes were adopted by Altschul et al. (13) and
Armon et al. (20). However, as stated by Valdar (21), tree-based
weighting schemes require more assumptions than those based
directly on the sequence alignments and can introduce additional
uncertainty to the final score.

The mean �OO and the standard deviation s for the distribution
of Ok values are then determined; the significance R of every
conservation index of the alignment is then calculated by
dividing the difference between Ok and �OO by s. The scores
computed on every position of the multiple alignment can be
optionally utilized as weights to compute the evolutionary
conservation of a spatial region of arbitrary radius D, centered
on every atom of the 3D structure, applying a percolation
theory-inspired technique (22):
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where n is the number of atoms of the molecule, Rinew rep-
resents the recalculated score for atom i, Ri and Rj are the
initial scores assigned to atom i and j, respectively, corres-
ponding to the conservation score computed for the residues to
which the atoms belong, dij is the distance between the centers
of mass of the residues to which atoms i and j belong, and D is
the user-defined arbitrary radius. This approach enables the
user to achieve a better resolution of the boundaries of con-
served patches on the 3D protein structure, possibly interacting
with small ligands and macromolecules.

In order to assess the reliability of the conservation indexes
computed on the ECRs of the described sample cases (see
below), the following null hypothesis is tested: the average
evolutionary conservation of the ECRs for a given sample is no
higher than that obtained by randomly resampling the original
dataset of n sequences with m sites each, and realigning them.
Two m sites are randomly drawn from each sequence a
million times (random sequences) and fifty times (pseudorep-
licate sequences), and their position interchanged. The new
sequences are realigned and conservation scores recomputed
on every position of the multiple alignment. Five hundred
multiple sequence alignments are generated for each sample
case. The normalized distribution of the obtained conservation
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values for each sample case, compared with the average
evolutionary conservation of the ECRs, is shown in Supple-
mentary Material 2. The results show that the ECRs of all
proteins analyzed are statistically (P < 0.05) more conserved
than expected for a distribution of scores derived from random
and pseudoreplicate sequences.

SCR_FIND is a tool for the identification of SCRs, starting
from a multiple structure alignment and the corresponding
superposed 3D coordinates. These two files can be (i) obtained
by using the interface to the CE–MCmultiple protein structure
alignment algorithm (11), at http://schubert.bio.uniroma1.it/
CEMC/index.html; (ii) downloaded directly from the CE
site (http://cl.sdsc.edu/ce.html); (iii) manually edited, follow-
ing the CE standard file format. For every structurally equiva-
lent position i of the multiple structural alignment, SCR_FIND
computes a score SCi based on the root-mean-square deviation
(RMSD) from the center of mass of the structurally equivalent
Ca atoms and an arbitrary gap penalty GP, which is added for
every gap found (Ngaps):

SCi ¼
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where xji, yji and zji are the Cartesian coordinates of the jth
Ca atom at position i of the alignment and �xxi‚ �yyi and �zzi are
the coordinates of the center of mass computed over the N
atoms found at position i. A window of arbitrary size w is then
scrolled through the alignment. Each time three or more
consecutive positions with a mean score below a user-given
score threshold value are found, w is increased iteratively by
1 position until the mean score does not raise above the thres-
hold value, or until the window reaches the end of the align-
ment. The scores computed for every position of the alignment
and details concerning the SCRs found (residues constituting
the SCRs, positional RMSD, mean positional RMSD for each
SCR and score for each position), constitute the output of the
program, along with the 3D coordinates of the SCRs.

The output of SCR_FIND can be used as input for
CHC_FIND. This program exploits the algorithm by Drabløs
(6), which computes pairwise atom contact areas between
non-polar atoms from a standard PDB coordinate file, to
calculate the pairwise residue contact areas for every possible
pair of residues belonging to the SCRs of the structures ana-
lyzed. CHCs are then classified on the basis of their
location (intra-SCR and inter-SCR CHCs), the number of
structures in which the hydrophobic contact is conserved
and the mean apolar contact area of the structurally equivalent
residues of each structure. If two positions of the multiple
structural alignment, x and y, have residues in hydrophobic
contact in at least two of the structures, then a candidate CHC
is detected. CHCs are then classified on the basis of their
strength sxy, defined as:

sxy ¼
PN

i¼1 Ai x‚yð Þ
N

‚ 4

where Ai is the apolar contact area of the ith structure between
residues at absolute positions x and y of the structural align-
ment, and N is the number of superposed structures.

Finally, ECRs, SCRs and CHCs can be mapped onto the
sequences and structures with a color code reflecting the mean
and standard deviation of the values found, through a CHIME/
Rasmol (23) interface (Supplementary Material 3).

RESULTS

Two sample cases are presented here and will be utilized
to demonstrate how these tools may be used and what kind
of information they are expected to present. The first example
explains the usage of CAMPO in a well-studied case, the
potassium channel from Streptomyces lividans (Kcsa, PDB
code 1BL8), and its performance compared with ConSurf
(20), one of the most commonly used servers for the identi-
fication of functionally important regions and ECRs. In the
second example, it is shown how SCR_FIND and CHC_FIND
can be used to predict and explain experimental data, through
the analysis of the well-studied trypsin inhibitor protein fold.
For additional examples see Supplementary Materials 4–6.

The potassium channel from S.lividans

To demonstrate the ability of CAMPO to detect evolutionarily
conserved patches that are likely to be required for protein
activity and stability, we report as example the analysis carried
out on the potassium channel from S.lividans (Kcsa, PDB code
1BL8), a well-studied protein for which suitable sequence and
structural information is known, and regions of functional
importance have already been determined. The potassium
channel from S.lividans is an integral membrane protein
with sequence similarity to all known K+ channels, particu-
larly in the pore region. It has been observed that sequence
conservation among K+ channels is strongest for the amino
acids corresponding to the pore region (residues 61–85) and
the inner helix (residues 86–119), whereas the N-terminal,
outer helix (residues 23–60) is less conserved (24). CAMPO’s
results for 1BL8, chain A, are available at http://schubert.
bio.uniroma1.it/transitoCAMPO/kcsa/ (see also Figure 1).
CAMPO identified 68 homologous sequences using default
parameters (E-value threshold of BLAST, 0.001; minimum
and maximum percentages of identity to accept a sequence
for further analysis, 20 and 80%, respectively; minimum per-
centage of residues aligned to the probe to filter the sequences
found, 80%). A BLOSUM62 mutational matrix was chosen
to align the sequences and assign the conservation score.
CAMPOwas able to detect the most conserved residues facing
the inner face of the channel (Phe 114, Leu 110, Val 106, Gly
104, Leu 105, Gly 99, Ile 100, Thr 74, Thr 75, Trp 68 and Pro
83) and interacting with the other subunits that constitute the
tetrameric structure (Trp 67, Tyr 78 and Asp 80). In particular,
residues Gly 77, Tyr 78 and Gly 79, which are known to
interact with the K+ ion and to be absolutely required for K+

selectivity, were highlighted as the most conserved ones in the
inner protein core. The difference between the inner and outer
surface of the channel was even more evident when the initial
scores were clustered into spatial regions of increasing radii,
allowing a ‘percolation’ of the evolutionary conservation to
detect the most conserved patches (Figure 1A and B). At 5 s

radius, when the ratio between interacting and not-interacting
atoms enclosed by the sphere is maximum, the differences
between the mean conservation values obtained for the inner
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Figure 1.Mapping of evolutionary conservation on the (A) inner and (B) outer surface of the potassium channel protein from S.lividans, as scored by CAMPO, and
(C) plot of themean conservation scores against different radius (D) thresholds for the outer helix (open triangle), inner helix (filled circles) and the pore region (open
squares) of the potassium channel. The results obtained are expressed in units of standard deviation from themean conservation value. According to CAMPO’s color
scheme, dark blue corresponds to maximal variability, red to maximal conservation. Potassium ions are displayed as pink CPKs.

Figure 2. An adapted sample output of SCR_FIND and CHC_FIND, showing the CHCs found. Chymotrypsin inhibitor 2 (PDB code 2CI2), L.usitatissimum trypsin
inhibitor (PDBcode 1DWM)andC.maxima trypsin inhibitor (PDBcode 1TIN). The 3D structures are colored according to the strongest value ofmean apolar contact
surface in which they are involved. Residues involved in the strongest hydrophobic contacts and the protease-binding loop are also highlighted.More information is
available at http://schubert.bio.uniroma1.it/SCR_FIND and http://schubert.bio.uniroma1.it/CHC_FIND.
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helix, the outer helix and the pore region are the most evident
(Figure 1C). This observation is in agreement with the results
previously obtained by Doyle et al. (24). The analysis per-
formed by ConSurf on the same protein and the comparison
of the results obtained by the two servers are presented as
Supplementary Material 4, as well as the analysis carried
out by CAMPO on three conserved hypothetical proteins,
1VKI, 1VKB and 1VK4 (Supplementary Material 5).

The trypsin inhibitor fold

The folding process of many small globular proteins is often
a spontaneous event in vitro that takes place in an apparent
two-state reaction mechanism (25). These reactions are char-
acterized by the presence of a single, rate-limiting transition
state separating the unfolded and the folded states, with no
other apparent observable intermediates (26). It is suggested
that the interactions in the transition state ensemble are
mostly native-like, with the residues involved forming a nuc-
leation hydrophobic core (8). So far, site-directed mutagenesis
approaches have been applied to obtain insights into the fold-
ing mechanism of a variety of small, globular proteins [P22
Arc repressor (27); CI2 (28); CheY (29)]. A well-studied case,
the trypsin inhibitor fold, will be discussed to demonstrate
a possible usage of SCR_FIND and CHC_FIND to help the
user highlight possible targets of site-directed mutagenesis
experiments.

Hordeum vulgare chymotrypsin inhibitor 2 (CI2) [PDB
code 2CI2 (30)], Linum usitatissimum trypsin inhibitor [PDB
code 1DWM (31)] and Cucurbita maxima trypsin inhibitor
[PDB code 1TIN (32)] are small single domain proteins
that share a similar fold (Figure 2). An extended nucleus of
interactions is identified using SCR_FIND and CHC_FIND,
structured around the N-terminal a-helix and the C-terminal
b-sheet of the proteins. Most conserved hydrophobic interac-
tions are engaged in by (numbering refers to 2CI2): Leu 27
with Val 38 (mean apolar contact surface: 23.9 s

2) and Ile 39
with Val 66 (mean apolar contact surface: 25.3 s

2). Other
hydrophobic residues display well-conserved patterns of inter-
actions: Trp 24 and Ala 35 with Leu 27 (19.8 and 17.0 s

2,
respectively), Val 50 with Leu 68 (17.7 s2), Val 70 with Ile 76
(17.7s2), Leu 68 with Ile 76 (17.0s2), and Leu 51 with Phe 69
(22.7 s

2). Some of these contacts have been previously iden-
tified in folding intermediates, using engineering approaches
(33). It has been demonstrated that complementation of pep-
tide fragments to gain a native-like structure occurs only when
the cleavage is located in the protease-binding loop at position
Met 59-Glu 60 (34). Accordingly, this region is not involved in
any CHC (Figure 2). The results for the trypsin inhibitor are
available at http://schubert.bio.uniroma1.it/transitoCHC/ci2/.

Another example, the acyl CoA binding protein fold, is
discussed in the Supplementary Material 6.

CONCLUSIONS

We presented a suite of web services for structural analysis,
CAMPO, SCR_FIND and CHC_FIND, along with several
examples to explain their usage and show their capabilities.
We suggest that the use of these tools, along with others
already available such as ConSurf, can shed light into
the evolutionary history and functional properties of

protein families for which suitable structural information is
available.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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Ricerca’ (MIUR). Funding to pay the Open Access publication
charges for this article was provided by MIUR.

Conflict of interest statement. None declared.

REFERENCES

1. Prasad,T., Prathima,M.N. and Chandra,N. (2003) Detection of
hydrogen-bond signature patterns in protein families. Bioinformatics,
19, 167–168.

2. Kuhlman,B., Dantas,G., Ireton,G.C., Varani,G., Stoddard,B.L. and
Baker,D. (2003)Designof a novel globular protein foldwith atomic-level
accuracy. Science, 302, 1364–1368.

3. Pils,B. and Schultz,J. (2004) Inactive enzyme-homologues find new
function in regulatory processes. J. Mol. Biol., 340, 399–404.

4. Lesk,A. and Chothia,C. (1980) How different amino acid sequences
determine similar protein structures: the structure and evolutionary
dynamics of the globins. J. Mol. Biol., 136, 225–270.

5. Gallet,X., Charloteaux,B., Thomas,A. and Brasseur,R. (2000)
A fast method to predict protein interaction sites from sequences.
J. Mol. Biol., 302, 917–926.

6. Drabløs,F. (1999) Clustering of non-polar contacts in proteins.
Bioinformatics, 15, 501–509.

7. Murzin,A.G., Brenner,S.E., Hubbard,T. and Chothia,C. (1995)
SCOP:a structural classificationofproteins database for the investigation
of sequences and structures. J. Mol. Biol., 247, 536–540.

8. Shakhnovich,E., Abkevich,V. and Ptitsyn,O. (1996) Conserved residues
and the mechanism of protein folding. Nature, 379, 96–98.

9. Sobolev,V., Sorokine,A., Prilusky,J.,Abola,E.E. andEdelman,M. (1999)
Automated analysis of interatomic contacts in proteins. Bioinformatics,
15, 327–332.

10. Shindyalov,I.N. and Bourne,P.E. (1998) Protein structure alignment
by incremental combinatorial extension (CE) of the optimal path.
Protein Eng., 11, 739–747.

11. Guda,C., Lu,S., Scheeff,E.D., Bourne,P.E. and Shindyalov,I.N. (2004)
CE-MC: a multiple protein structure alignment server. Nucleic Acids
Res., 32, 100–103.

12. Glaser,F., Pupko,T., Paz,I., Bell,R.E., Bechor-Shental,D., Martz,E. and
Ben-Tal,N. (2003) ConSurf: identification of functional regions in
proteins by surface-mapping of phylogenetic information.
Bioinformatics, 19, 163–164.

13. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST:
anewgenerationofproteindatabase searchprograms.NucleicAcidsRes.,
25, 3389–3402.

14. Thompson,J.D., Higgins,D.G. and Gibson,T.J. (1994) CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment
through sequence weighting position-specific gap penalties and weight
matrix choice. Nucleic Acids Res., 22, 4673–4680.

15. Holm,L. and Sander,C. (1998) Removing near-neighbour redundancy
from large protein sequence collections. Bioinformatics, 14, 423–429.

16. Junker,V., Contrino,S., Fleischmann,W., Hermjakob,H., Lang,F.,
Magrane,M., Martin,M.J., Mitaritonna,N., ÒDonovan,C. and
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