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Abstract: The comparison of the landscape of somatic alterations in circulating tumor cells (CTCs)
versus metastases is challenging. Here, we comprehensively characterized the somatic landscape
in bulk (amplified and non-amplified), spike-in breast cancer cells, CTCs, and metastases from
breast cancer patients using whole-exome sequencing (WES). We determined the level of genomic
concordance for somatic nucleotide variants (SNVs), copy number alterations (CNAs), and structural
variants (SVs). The variant allele fractions (VAFs) of somatic variants were remarkably similar between
amplified and non-amplified cell line samples as technical replicates. In clinical samples, a significant
fraction of somatic variants had low VAFs in CTCs compared to metastases. The most frequently
recurrent gene mutations in clinical samples were associated with an elevated C > T mutational
signature. We found complex rearrangement patterns including intra- and inter-chromosomal
rearrangements, singleton, and recurrent gene fusions, and tandem duplications. We observed
high molecular discordance for somatic alterations between paired samples consistent with marked
heterogeneity of the somatic landscape. The most prevalent copy number calls were focal deletion
events in CTCs and metastases. Our results demonstrate the feasibility of an integrated workflow
for the identification of a complete repertoire of somatic alterations and highlight the intrapatient
genomic differences that occur between CTCs and metastases.

Keywords: breast cancer; circulating tumor cells; metastasis; whole exome sequencing; clinically
actionable; whole genome amplification

1. Introduction

The emerging field of cancer precision medicine infers that comprehensive molecular profiling of
a patient’s tumor is required to detect actionable alterations for the selection of targeted therapy. Recent
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advances in next-generation sequencing (NGS)-based diagnostic technologies and bioinformatics
capabilities have enabled physicians to provide patients with more personalized care. Although
precision medicine has had some successes, the open-label randomized controlled SHIVA trial found
that the use of molecularly targeted agents outside of their indications did not improve survival [1,2].
This can be due to intra-tumoral heterogeneity, spaciotemporal heterogeneity, or the fact that a tissue
biopsy from the primary or single-site metastatic tumor biopsy are unlikely to contain the entire
spectrum of mutations. This could also lead to sampling bias which may influence therapeutic
decision-making [3]. To date, comprehensive molecular profiling has been performed on fresh/frozen
and formalin-fixed paraffin-embedded (FFPE) samples from both primary and metastatic tumors [4].
However, the quality, quantity, and frequent unavailability of tumor specimens has become a significant
barrier in the implementation of precision medicine into clinical practice. The use of liquid biopsies
(e.g., circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA)) represents an appealing
alternative sample type due to being obtainable from a minimally invasive blood draw and amenable to
serial repetition over time while also addressing some of the technical challenges [5–7]. The molecular
analysis of CTCs also provides an effective means of monitoring disease progression during tumor
evolution and to detect genomic aberrations present in tumor subclones at distinct metastatic lesions [8].
Moreover, CTCs have a higher level of heterogeneity that might assist in unveiling oncogenic drivers
and explaining therapeutic drug resistance [9].

Many studies have shown that CTCs enumeration before and after treatment independently
predicts for progression-free survival (PFS) and overall survival (OS) in metastatic breast cancer
(MBC) patients [10,11]. Beyond enumeration, recent advances in NGS technologies have enabled the
comprehensive analysis of bulk and single CTCs that provides critical insights into profiling breast
cancer metastasis [2,12]. However, such analysis is challenging due to their extreme scarcity and
low purity with most CTC enrichment methods. Since CTCs are extremely rare (a few CTCs/mL) in
comparison to normal blood cells [13–17], extensive enrichment is necessary to construct sequencing
libraries that may introduce amplification bias by polymerase errors. Single cell-studies have helped,
to some extent, to identify methods that result in high genomic coverage and to distinguish real single
nucleotide variants (SNVs) from artifacts [18,19]. The accurate detection of somatic variants in CTCs is
very challenging as white blood cells (WBCs) or other background cell populations confound variant
identification. Indeed, recent studies in MBC and other cancers have detailed the mutational landscape
of CTCs isolated from the platforms that do not fix CTCs. However, most of the CTC DNA profiling
methods used low-coverage (or low-pass) whole genome sequencing (WGS), targeted, or Sanger
sequencing to identify genomic alterations in a panel of genes of interest [20–23].

The objective of our study was to evaluate the feasibility of combining whole genome amplification
(WGA) with hybridization capture-based whole exome sequencing (WES) workflow, with maximal
coverage for the regions of ~4600 medically relevant genes, in a breast cancer cell line spike-in
experiment. This gene set includes the genes present in ClinVar and GeneTests consensus coding
sequencing (CCDS) databases and assembled by the consortium of Emory Genetics lab, Harvard
Laboratory of Molecular Medicine, and Children’s Hospital of Philadelphia (CHOP). After establishing
feasibility in technical replicates using cell lines, we validated this workflow on MBC samples by
sequencing both low-quantity (CTCs) and low-quality (FFPE) samples for the identification of clinically
relevant alterations and to also determine the concordance of somatic alterations between CTCs and
matched metastatic FFPE samples.

2. Results

2.1. Optimization of WES in Spiked and Unspiked Breast Cancer Cells

We first evaluated the technical feasibility of combining WGA with hybridization capture-based
WES in identifying genomic variants in experimental samples. To mimic clinical CTC samples and to
test the compatibility of the exome capture enrichment method with a low number of cells, the whole
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workflow was first optimized on spike-in samples as CTC mimics. Triple negative MDA-MB-231
breast cancer cells (n = 50) were spiked into a healthy donor blood sample in a Streck tube. WGA was
performed with a multiple displacement amplification (MDA) based Repli-g single cell amplification kit
in spike-in samples (Parsortix harvested), WBCs (healthy donor), and bulk cancer cells (MDA-MB-231
cells). Since WGA results in artifactual variants, we also included non-amplified gDNA (no Repli-g
WGA) from MDA-MB-231 bulk cancer cells to determine the concordance of the variant detection in
amplified vs. non-amplified samples. For bulk cancer cells, 10,000 MDA-MB-231 cells were used for
DNA isolation. Given that a single cell contains approximately ~7pg of DNA, we estimated that we
used 5 cells from bulk cancer cells and >1 cell from spike-in samples for sequencing. To assess the
variant detection performance of WES Medexome assay and the reproducibility of the method, we
performed the experiment in duplicates (WGA = spike-in samples (S1 and S2), WBCs (WL1 and WL2),
and MDA-MB-231 bulk cancer cells (P1 and P2); non-WGA sample = MDA-MB-231 bulk cancer cells
(MDA1 and MDA2)).

To assess the performance of the capture process and enrichment efficiency, we examined the
percentage of target bases covered at 1x and 20x coverage thresholds. The amplified and non-amplified
samples showed similar concordance for the on-target reads in both replicates, indicating high
enrichment efficiency in experimental samples. Table 1 shows a summary of sequencing and alignment
statistics for experimental samples. We observed no apparent differences for the percentage of on-target
reads between low quantity samples and bulk cancer cells (P1 (80.7%) vs. S1 (77.6%) and P2 (79.6%) vs.
S2 (78.5%)). The average overall sequence quality score was above 30 indicating a substantial number
of high-quality bases in experimental samples. We next compared the variant allele fractions (VAFs)
within the two technical replicates (P1 vs. MDA1 and P2 vs. MDA2). A significant correlation was
observed for 133 shared variants in P1 vs. MDA1 (Pearson’s r2 = 0.98, p < 0.0001, two-tailed) and
163 variants in P2 vs. MDA2 (Pearson’s r2 = 0.95, p < 0.0001, two-tailed) (Figure 1a). The technical
replicates of MDA-MB-231 cells showed r2 of 0.9, comparing with Repli-g versus without Repli-g,
suggesting that the Repli-g WGA does not distort the relative proportion of various mutation types
detected. Importantly, amplified MDA-MB-231 bulk cancer cells also revealed the presence of 4/5
variants reported by the American Type Culture Collection (ATCC) (BRAF (p.G464V), KRAS (p.G13D),
NF2 (p.E231*), and TP53 (p.R280K)) [24]. Additionally, the variant overlap between MDA-MB-231
amplified and non-amplified bulk cancer cells included many oncogenes and tumor suppressors such
as FAM83B, KRAS, APC, TP53, NF1, NF2, and MLH1 as well as other genes present in the Cancer
Gene Census such as BARD1 and FBLN2 [25–27]. The variant allele fractions were also 100% for
heterozygous mutations in genes such as TP53 (p.R241K; p.R148K; p.R269K; p.R280K; p.R121K), NF1
(p.T467fs*3), AR (p.T661T; p.T129T; p.T471T), and BRAF (p.G504V; p.G464V). We also found nearly
similar concordance in the frequencies of protein-coding variants in amplified and non-amplified
bulk cancer cells, with some of them being reported in the Catalogue of Somatic Mutations in Cancer
(COSMIC) (Figure 1b). MDA-MB-231 cells are known to harbor more copy number losses than
gains [28,29]. We also observed numerous copy number losses involving 89 cytobands (~37% overlap,
<−1 threshold) in amplified and non-amplified samples (P1 vs. MDA1: Pearson’s r2 = 0.54, p < 0.0001,
two-tailed; P2 vs. MDA2: Pearson’s r2 = 0.56, p < 0.0001, two-tailed) (Figure 1c).
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Table 1. Summary of sequencing and alignment statistics across all experimental samples.

Sample ID Total Reads
Alignment (%) On-Target Reads (%) On-Target Bases that are

Covered at Least 1x (%)
On-Target Bases that are
Covered at Least 20x (%) Coverage Quality Score GC (%)

MDA1 (Non-amplified gDNA)
Replicate 1 99.9 74.1 99.6 98.9 105 33.4 47.9

MDA1 (Non-amplified gDNA)
Replicate 2 99.9 71.2 99.6 98.8 102 33.6 47.6

P1 (Positive control- Amplified
gDNA) Replicate 1 99.9 80.7 98.3 78.5 80 36.3 43.2

P2 (Positive control- Amplified
gDNA) Replicate 2 99.9 79.6 98.5 84.9 132 36.1 43.1

S1 (Spike-in sample) Replicate 1 99.9 77.6 92.9 60.3 57 36.4 40.8

S2 (Spike-in sample) Replicate 2 99.9 78.5 94.1 63.2 61 36.4 41.1

WL1 (WBCs-Healthy
control)-Replicate 1 99.9 75.0 93.2 70.3 70 36.3 40.2

WL2 (WBCs-Healthy
control)-Replicate 2 99.9 76.4 88.7 54.7 55 36.6 40.2
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Figure 1. Overview of whole exome sequencing (WES) analysis in spike-in and unspiked breast cancer
cells (a) Scatter plot of variant allele fractions (VAFs) detected using WES for replicate 1 and 2 of
amplified and non-amplified bulk cancer MDA-MB-231 cells. For replicate 1, data points are for 133
shared variants between P1 and MDA1 (Pearson’s r2 = 0.9) and 163 shared variants for P2 and MDA2
(Pearson’s r2 = 0.9). (b) Bar graph depicting the percentage of coding variants in experimental samples
(Bulk cells = MDA1 and MDA2 without Repli-g; Bulk cells = P1 and P2 with Repli-g; and, spike-in
cells= S1 and S2 with Repli-g). The Mann–Whitney test was used to evaluate the differences between
coding variants within technical replicates. (c) Copy number alteration (CNA) profile heatmap for
amplified (P1, P2, S1, and S2) and non-amplified samples (MDA1 and MDA2) with gain (red), loss
(blue), and neutral (white). Both Repli-g amplified DNA and non-amplified DNA showed a similar
pattern of copy number profiles. The Pearson r test was used for correlation analysis between amplified
and non-amplified samples. (d) Oncoplot showing the 40 most frequently mutated genes color-coded
by type of mutations in experimental samples. The percentage to the right of the oncoplot shows the
percent of samples with variants for the corresponding gene. Right, barplot shows the mutation rate in
each of 40 mutated genes; Top, barplot shows the mutation rate for each patient for 40 most frequently
mutated genes. By default, samples are ordered by the most frequently mutated genes. (e) Distribution
of base substitutions in experimental samples revealed a signature characterized predominantly by
C > T transition substitutions. The percent mutations are shown on the x-axis and substitution mutation
types are on the y-axis. (f) The number of overlapping somatic single nucleotide variants (SNVs) and
genes in Repli-g amplified bulk MDA-MB-231 (P1 + P2) and spike-in samples (S1 + S2). (g) The number
of overlapping chromosomes cytobands (cytogenic bands) with copy number gains and losses in
Repli-g amplified bulk MDA-MB-231 (P1 + P2) and spike-in samples (S1 + S2).
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Next, we assessed the ability of this approach in identifying somatic SNVs, copy number alterations
(CNAs) and structural variants (SVs) in WGA samples from Parsortix harvested spike-in cells (S1
and S2) in comparison to bulk cancer cells (P1 and P2). The frequencies of coding variants in
spike-in samples were similar to those of amplified and non-amplified bulk cancer cells. We found no
significant differences in the frequencies of SNVs (p-0.7), indels (p-0.9), and substitutions (p-0.9) within
technical replicates (Figure 1b). Among frequently mutated 40 genes, 8/40 showed overlap in in WGA
(spike-in samples and bulk cancer cells) and non-WGA samples (Figure 1d). The mutational signature
analysis revealed a similar substitution characterized by C > T transition as reported in COSMIC
for MDA-MB-231 cells (Figure 1e). However, we observed very little concordance between the total
number of coding variants (~8%) and genes (~11%) between amplified spike-in samples and bulk
cancer cells (Figure 1f). Furthermore, these samples showed very little overlap for copy number gains
(~5%) and losses (~7%) (Figure 1g). For SVs, no overlap of somatic SVs and genes were found between
amplified bulk cancer and spike-in samples. One of the possible explanations for the discrepancy
in the overlap of somatic alterations may be due to cellular heterogeneity within the same type of
cancer cells [30,31]. Despite the importance of cellular heterogeneity, another reason may be due to the
high variability of cell size. For spike-in samples, the genomic alterations were identified from a small
subset of cancer cell populations with a large diameter (10 µm). However, bulk cancer cells have a
broad distribution of size, including some cells that are smaller than WBCs and some that are larger
than 10 µm in size.

We have also evaluated the Parsortix efficiency for priming and cell capture rate by spike-in
MDA-MB-231 cells (n = 100) in a healthy donor blood sample and processed with four different size
cassettes—4.5 µm, 6.5 µm, 8.5 µm, and 10 µm. The Parsortix cell capture efficiency for 10 µm cassette
is 68%. (Supplementary Figure S1a). In addition, the 10 µm cassette showed better priming efficiency
than 4.5 µm, 6.5 µm, and 8 µm with no air bubbles (Supplementary Figure S1b). This shows that
spike-in samples can be purified from blood; however, there is a variation of cell capture rate in the
different sizes of cassettes. Studies have found that CTCs are significantly larger than other cells
contained in peripheral blood [32]. It is also known that CTC size can be even smaller than or similar
to leukocyte size [33,34]. We used a 10 µm cassette in this study in order to minimize the background
leukocytes. However, we believe that size overlap between CTCs and leukocytes could be also one of
the reasons, to some extent, for the observed discordance between spike-in samples and pure cancer
cells in addition to heterogeneity.

These cell line spike-in experimental results demonstrated that our integrated approach
yielded sequencing libraries of high fidelity from bulk and Parsortix isolated cancer cells for WES.
The combination of the Medexome target enrichment approach with NGS technology performed well
on low-quantity samples by providing consistency and better uniformity of coverage. With technical
replicates, the results of the workflow were reproducible and showed the margin of error based on
the high throughput approach. This workflow was also effective both in terms of performance and
accuracy of the results for WGA samples. These experimental results revealed that this methodology
helped identify known mutational hotspots as reported for MDA-MB-231 within COSMIC, the Cancer
Cell Line project, enabling an accurate variant calling using WES. In addition, this methodology helped
identify novel mutation hotspots, copy number events, and structural variants and establishes the
analytical features of specificity and accuracy in low-quantity and bulk cancer cells. Overall, these cell
line spike-in experimental results provide methodologic validation and form the basis for in-depth
genomic analysis of patient CTC samples.

2.2. The Landscape of Somatic SNVs in CTCs and Metastases

We have previously identified the variants from whole transcriptome sequencing in Parsortix
isolated CTCs and fresh tissue from MBC patients [35]. In the current report, we evaluated the ability
of the WES Medexome assay to detect variants in Parsortix isolated CTCs and matched FFPE tissue
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samples. FFPE tumor tissue was available from 4/5 MBC patients’ metastatic biopsies. WBCs from the
same patients were profiled to eliminate germline contaminants.

The Medexome capture assay allowed us to identify variants in 5/5 (100%) CTCs and 4/4 (100%)
FFPE tumor samples. After excluding noncoding variants, 12,311 variants were identified in FFPE
samples, spanning 5644 genes, including 11,527 SNVs, 579 indels, and 205 substitutions. Among CTCs
samples, a total of 1166 somatic coding variants were identified in 972 genes, including 783 SNVs,
352 indels and, 31 substitutions. The percentage of reads on target was higher in CTCs samples than
FFPE samples. These findings indicate that target capture efficiency is affected by low quality DNA.
We observed a low percentage of on-target reads in WBC samples, however, these samples achieved
≥15x–18x coverage over targeted coding regions. In addition, the average Phred-based quality scores
for variants in CTC, FFPE, and WBC samples were above threshold ≥30 (Table 2). Of note, we found
that the overall VAF distribution of somatic SNVs in CTCs was lower than the FFPE tumor, which
reached statistical significance for three of the samples (patient #2 and #3: p < 0.0001; patient #4:
p < 0.0024) (Figure 2a), suggesting low tumor purity in CTCs, as is expected given a background
of abundant leukocytes. Identification of low VAFs may also become particularly challenging in
low-quality and low-quantity samples, such as CTCs and FFPE, with a limited amount of DNA
that may not contain enough molecules contributed by the tumor genome. Lower VAFs have been
detected in liquid biopsies compared to tumor biopsies and deep sequencing is often required to
detect low abundance variants accurately [36–38]. Here, we used the hybridization-based target
enrichment method that provides more uniform coverage and higher sensitivity in detecting low and
high VAF [39–41]. For the identification of known and novel variants that are present at low frequencies
in CTCs, we first screened them against dbSNP and COSMIC databases. We then applied two in
silico prediction methods SIFT [42] and Polyphen [43] for predicting the functional consequence of the
low-frequency variants [44]. Interestingly, CTC samples harbored alterations in 27 FoundationOne and
33 MSK-IMPACT actionable genes. In these five evaluable CTC samples, we found that 3/5 (patients # 1,
2 and 3) samples harbored shared mutations in potentially actionable genes (ARID1A, CHD2, NCOA3,
and CSF3R). We also identified 87 actionable genes that showed overlap with FoundationOne and 109
genes with MSK-IMPACT in FFPE samples. Only 24 actionable genes were found to be in common in
CTCs and matched FFPE metastatic tissue biopsies in 2/4 patients analyzed (Table 3). The OncoKB
database was also used to evaluate the level of clinical evidence of detected mutations. We identified
only two actionable hotspots in metastases (C420R in patient #1 and E542K in patient #3) in the PIK3CA
gene that has supported clinical evidence (level 1 and 3). Interestingly, the FoundationOne results for
patient #1 also showed the presence of the PIK3CA C420R hotspot mutation in metastatic tissue.
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Table 2. Summary of sequencing and alignment statistics across all clinical samples.

Patient Total Reads
Alignment (%) On-Target Reads (%) On-Target Bases that are

Covered at Least 1x (%)
On-Target Bases that are
Covered at Least 20x (%) Coverage Quality Score GC (%)

Patient 1_CTC 99.9 73.1 99.1 79.3 142 38.2 42.0
Patient 1_Met 99.9 59.0 71.5 50.2 86 33.6 40.0

Patient 1_WBC 99.5 14.5 79.8 21.7 17 38.2 38.2
Patient 2_CTC 99.8 76.4 98.1 72.0 95 38.3 43.7
Patient 2_Met 99.9 64.0 43.8 13.4 72 32.0 45.0

Patient 2_WBC 99.9 13.0 73.4 18.5 15 38.4 38.3
Patient 3_CTC 98.3 71.5 97.0 72.8 82 38.0 43.8
Patient 3_Met 99.9 62.4 71.1 32.9 59 32.8 43.1

Patient 3_WBC 99.3 14.0 80.7 18.1 14 38.2 40.0
Patient 4_CTC 99.8 74.2 98.9 75.8 81 38.2 44.2
Patient 4_Met 99.9 60.9 57.5 23.2 75 33.1 43.8

Patient 4_WBC 99.7 14.1 82.4 22.1 17 38.3 38.4
Patient 5_CTC 99.8 73.4 98.4 70.8 68 38.1 43.5
Patient 5_WBC 98.8 15.7 87.2 21.7 17 38.1 40.0
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Figure 2. Overview of somatic mutations in circulating tumor cells (CTCs) and matched metastatic
tissues (a) Violin plot showing the distribution of VAFs across four CTC samples with matched
formalin-fixed paraffin-embedded (FFPE) tissue (two-tailed paired t-test, p < 0.05). The black dots
indicate the median and quartile of VAFs and violins extended to represent the entire data range.
(b) Oncoplot showing the 40 most frequently mutated genes color-coded by type of mutations in CTCs
and matched metastatic tissues. The percentage to the right of the oncoplot shows the percent of
samples with variants for the corresponding gene. Right, barplot shows the mutation rate in each of
the 40 mutated genes; Top, barplot shows the mutation rate for each patient for 40 most frequently
mutated genes. By default, samples are ordered by the most frequently mutated genes. (c) Overlap of
the most frequently mutated genes identified by Maftools and IVA to identify shared cancer drivers
in CTCs and metastases. (d) Distribution of base substitutions in CTCs and metastases revealing a
signature characterized predominantly by C > T followed by C > A substitutions. The percentage of
mutations are shown on the x-axis and substitution mutation types are on the y-axis. (e) Bar chart
showing the enriched canonical pathways in CTCs vs. white blood cells (WBCs), Metastases vs. WBCs,
and CTCs + Metastases vs. WBCs. The y-axis on the left shows the percentage of genes overlapping in
each pathway having pathogenic (pink) and likely-pathogenic (blue) variants. The y-axis on the right
shows the significance level. The number on the top of each stacked bar indicates the total number of
genes present in each pathway. The orange line represents the threshold value (0.05) for the significance
level for -log(p-value)). The graph is displaying only those entities that have a -log(p-value) greater
than 1.3. (f) The number of overlapping somatic SNVs and genes in CTCs and metastases.
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Table 3. Common actionable genes found in CTCs and FFPE metastatic tissues.

CTCs Metastases

Patient Gene Mutation Type Protein Sequence Change VAF (%) Mutation Type Protein Sequence Change VAF (%)

Patient 1

SLIT2 Frameshift p.S1686fs*2 0.12 Missense p.I94T; p.I8T 0.07

FAT1
Missense p.H2768R; p.H2770R 0.44 Missense p.H2768R; p.H2770R 0.75

Missense p.D4070N; p.D4072N 0.20

Missense p.P1349S 0.03

PTCH1 Frameshift p.S1203fs*17; p.S1052fs*17; p.S1137fs*17;
p.S1202fs*17; p.S1151fs*17 0.05 Synonymous p.E200E; p.E134E; p.E199E; p.E49E 0.29

CHD2
Frameshift p.A253fs*8 0.08 Synonymous p.E23E 0.04

Missense p.G685S 0.06

Patient 3

SPTA1
Stop gain p.Q340* 0.09 Missense p.H2293N 0.30

Missense p.M121I 0.50

CDC73 Missense p.T334I; p.T253I 0.03 Missense p.R171G 0.06

LRP1B

Frameshift p.H4368fs*6 0.14 Synonymous p.C4299C 0.55

Synonymous p.F2419F 0.18

Missense p.F2419I 0.18

Missense p.D1807E 0.11

Missense p.T1147S 0.42

Missense p.V652L 0.12

STAT4 Synonymous p.N59N 0.07 Missense p.A117T 0.62

NSD1

Missense p.D1466N; p.D1197N 0.09 Synonymous p.L207L; p.L476L 0.19

Missense p.A1645T; p.A1376T 0.05 Stop gain p.S478*; p.S209* 0.19

Missense p.R890Q; p.R1159Q 0.19

Missense p.R1608C; p.R1877C 0.09

Missense p.V1699D; p.V1968D 0.09

ROS1
Missense p.664R 0.07 Missense p.P1133Q; p.P1138Q 0.14

Missense p.E1062K; p.E1057K 0.05

GRM3
Missense p.H94Y 0.04 Missense p.I578N 0.33

Missense p.A609V 0.21

MET
Synonymous p.Q165Q 0.06 Missense p.Y369H 0.14

Missense p.M33I; p.M463I 0.43

Missense p.C770Y 0.21

FANCF Missense p.P76S 0.05 Synonymous p.L321L 0.43

CHD2 Missense p.897T 0.08 Missense p.P208T; p.P195T; p.P159T 0.12
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Table 3. Cont.

CTCs Metastases

Patient Gene Mutation Type Protein Sequence Change VAF (%) Mutation Type Protein Sequence Change VAF (%)

GNAS Frameshift
p.V118fs*23; p.V102fs*23; p.V746fs*23;
p.V103fs*23; p.V117fs*23; p.V760fs*23;

p.V58fs*23
0.10 Missense p.R150H; p.R106H; p.R166H; p.R808H;

p.R151H; p.R794H; p.R165H 0.12

KDM6A
Stop gain p.Q753*; p.Q457*; p.Q760*; p.Q781*; p.Q708*;

p.Q805*; p.Q736*; p.Q684*; p.Q702*; p.Q674* 0.02 Missense p.R649L; p.R628L; p.R604L; p.R570L; p.R542L;
p.R576L; p.R673L; p.R552L; p.R325L; p.R621L 0.25

Stop gain p.E1062*; p.E993*; p.E941*; p.E931*; p.E965*;
p.E1038*; p.E1017*; p.E714*; p.E959*; p.E1010* 0.15

ATRX

Missense p.K1294E; p.K1332E 0.03 Synonymous p.Q1603Q; p.Q1565Q 0.50

Stop gain p.E1231*; p.E1193* 0.06

Missense p.N1176K; p.N1214K 0.34

Synonymous p.D705D; p.D667D 0.10

Missense p.L582M; p.L620M 0.11

CSF3R Frameshift p.S469fs*5 0.10 Missense p.G487A 0.75

REL Missense p.P580S; p.P548S 0.03 Missense p.G347R; p.G379R 0.12

DROSHA
Frameshift p.C96fs*33 0.03 Missense p.L804V; p.L767V 0.07

Missense p.W486C; p.W523C 0.33

MSH3
Missense p.G485D 0.06 Synonymous p.L601L 0.07

Missense p.Q750H 0.45

NCOR1

Synonymous p.G1553G; p.G1569G; p.G1458G 0.05 Missense p.S2341G; p.S2335G; p.S2438G 0.33

Missense p.S787N; p.S771N; p.S678N 0.07 Missense p.P1317R; p.P1426R; p.P1410R 0.42

Stop gain p.R305*; p.R414* 0.77

Missense p.S103P 0.06

Missense p.D100N 0.08

PIK3C3 Frameshift p.T790fs*4; p.T727fs*4 0.04 Missense p.Q860E; p.Q797E 0.13

NCOA3

Missense p.P261S 0.11 Missense p.R198P 0.27

Missense p.Q496K; p.Q506K 0.43

Missense p.A511E; p.A501E 0.28

Synonymous p.L761L; p.L751L 0.43

Missense p.S794Y; p.S804Y 0.27

Missense p.Q1123E; p.Q1118E 0.03

Missense p.P1405R; p.P1409R; p.P1400R; p.P1408R 0.62
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We next applied the Oncodrive function of Maftools to identify driver genes in which a mutation
occurs more frequently in CTCs and metastatic tissues than expected by chance, taking into consideration
the gene mutation rate and sample mutation burden. The analysis identified 39 statistically significant
genes with an FDR cutoff of 0.05. The p-values and FDR for the 39 genes are listed in Supplementary
Table S1. Indeed, 2/5 CTC samples (patients 2 and 3) showed at least one mutation in 6/40 of the
most frequently mutated genes and were also identified as tissue specific. Patient #3 also harbors four
multi-hit genes (ANKRD36, CCDC168, MUC16, and TTN) that were mutated more than once in both
CTCs and metastases (Figure 2b). Oncodrive is limited by a bias favoring the detection of oncogenes
and is less efficient in identifying randomly distributed mutations in tumor suppressor genes [45].
We also used Ingenuity Variant Analysis (IVA) to identify driver genes that are mutated in at least 4/9
cases (>40%) in both CTCs and metastases. Both of these approaches identified driver gene mutations
in breast cancer-associated genes, such as MUC16, NF1, and BRCA2, suggesting that using different
predictive computational tools improves the sensitivity and specificity in identifying cancer somatic
mutations (Figure 2c). We next performed mutational signature analysis using Maftools. Across all
6 substitution types, a higher prevalence of the three most frequent substitutions (C > T, C > A and
C > G) was identified in CTCs and metastases (Figure 2d). These signatures are also thought to be
responsible for most of the mutations in 21 primary breast cancer genomes [46] and are also identified
as a dominant mutation type in ER-positive breast cancer patients [47]. Nonetheless, the total number
of coding variants and gene overlap was found to be very low in CTCs and metastases (Figure 2f)
highlighting the intra-patient heterogeneity of CTCs versus paired metastasis.

We identified biological pathways that were altered by coding mutations and indels in CTCs
and metastases. The canonical pathway module of IPA identified 21 signaling pathways in CTCs,
324 in metastases and 410 in CTCs and metastases taken together (CTCs + metastases) that have a
-log(p-value) greater than 1.3. We defined CTCs + metastases as a group in which we analyzed all
clinical samples (5 CTCs and 4 metastases) as one group. Of note, we found 16 overlapping pathways
in CTCs and metastases primarily involved in the role of BRCA1 in DNA damage response, hereditary
breast cancer signaling, ATM signaling, and several others (Figure 2e). The Fisher’s exact test was
used to identify the most common significant pathways (p < 0.05).

These results demonstrate the potential of size-based Parsortix technology in variant analysis to
provide insights into CTCs genomic instability. The average quality score of CTC, metastases, and WBC
samples was almost similar, and thus made it possible to analyze somatic variants, CNAs, and SVs in
these specimens. The discordance in somatic alterations was found in all patients between CTCs and
tissue metastases, revealing inter- and intra-patient heterogeneity in MBC. These results showed the
feasibility of the Medexome assay in capturing cellular heterogeneity. Overall, these results showed
that WES of low-quantity and low-quality samples could capture the landscape of somatic alterations
as well as identify signaling pathways and provide a comprehensive profile of tumor heterogeneity
in MBC.

2.3. The Landscape of Somatic SVs in CTCs and Metastases

An increase in genomic instability has been linked to a concomitant increase in the frequency of
structural rearrangements or fusions [48,49]. Among SVs, the chromosome rearrangements are more
frequent in breast cancer. However, the frequency of these variations is currently unknown as these
alterations are not easily detected in low quantity and low-quality samples with standard techniques
such as array comparative genomic hybridization (CGH) or fluorescence in-situ hybridization (FISH).
Here, we examined the distribution of SV signatures (larger mutations, 50 bp or larger) in breast cancer
CTC and FFPE specimens. A total of 30 somatic coding SVs in CTCs and 8117 SVs in metastases were
detected using the Manta algorithm. The number of SVs and the relative distribution between SV
classes varied considerably in CTCs and metastases (Figure 3a). The majority of somatic SVs were
intrachromosomal although a few affected different chromosomes.
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Figure 3. Overview of somatic structural variants (SVs) in CTCs and matched metastatic tissues.
(a) Distribution of somatic SVs in CTCs and metastatic tissue depicting a high proportion of translocation
breakends and tandem duplications. (b) Screenshot from IGV showing the coverage and read alignments
(gray) in CTCs, metastases, and WBCs of patient #1 and inversions in colored bars (teal and blue) in the
GOLGA5 gene. There is no inversion in the matched WBC sample. (c) Screenshot from IGV showing
the coverage and read alignments (gray) in CTCs, metastases, and WBCs of patient #4 and duplications
(green) in the TPR gene. There is no duplication in the matched WBC sample. (d) Split-screen view
from IGV showing the translocation breakpoint in the FGF14 gene on chromosome 13 in patient #4
metastases. There is no translocation breakpoint in CTC and WBC samples.
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Across CTCs and metastases, the breakpoints of 16 rearrangements in CTCs and 5771 in metastases
were identified. It is important to note that rearrangements not only create novel driver oncogenes but
can also disable tumor suppressors. It has been shown that ~16% of the osteosarcomas, which lacked
commonly hotspot TP53 mutations, were instead reported to have recurrent rearrangements in intron
1 of TP53 [50]. We also identified SV rearrangements in known oncogenes (GOLGA5, MET, MYB,
NCOA4, PIK3CA, PTPN11, SS18, TFG, and TPR) tumor suppressors (APC, ARGEF12, ATM, BRCA1,
BRCA2, CDH11, FBXW7, JAK2, MAP2K4, MLH1, MSH2, FGF14, CDC73, and NF1) in CTCs and
metastatic samples. Figure 3b–d shows the three examples of structural variations in patients #1 and #4.

Gene fusions represent a unique form of genetic alterations and have been used as a diagnostic
marker for many cancers. Our analysis revealed a total of 4 gene fusions in CTCs and 207 in metastases
in patients #1 and #4. We also queried for gene fusions that occurred in a single case (singleton fusions)
or more than one case (recurrent fusions) in CTCs and metastases. For some of the singleton fusions,
one of the involved genes was among five clinically actionable genes NOTCH2, NF1, ATM, CDC73,
and KMT2C (Supplementary Table S2).

Tandem duplications and deletions were also the commonly observed rearrangements in breast
cancer. Interestingly, we found the majority of larger duplications (>1 Kb) in CTCs and smaller
duplications (~1 Kb) in metastases. Small size deletions (~1 Kb) were detected in exonic regions in both
CTCs and metastases. Notably, we could not find any overlap of specific chromosomal rearrangements
between CTCs and metastases when comparing the pairwise genomic coordinates for both ends of the
structural variation.

2.4. The Landscape of Somatic CNAs in CTCs and Metastases

Since specific cytogenetic abnormalities are dominant features in breast cancer, we further
evaluated somatic CNAs in paired samples at the sub-cytoband level. We identified a total of 7910
CNAs (3994 amplifications and 3916 losses) in CTCs and 41,154 (11,970 amplifications and 29,184
losses) in metastases. The re-segmentation approach was applied using CNApp [51] that adjusts for
technical variability due to sample noise and corrects for the estimate of tumor purity. Re-segmented
data was used to calculate the broad (BCS), focal (FCS), and global (GCS) CNA scores. Across the
entire genome in CTCs and metastases, the most prevalent CNAs were focal events (affecting less than
50% of the chromosome arms) that occurred at a higher frequency than broad aberrations (affecting
more than 50% or whole chromosome arms) (Figure 4a). At the sub-cytoband level, we found an
excess of deletions rather than amplifications in all four paired samples (Figure 4b). Interestingly,
the overlap rate of CN events (gain and loss) in CTCs and metastases was higher than SNVs and
SVs. CTCs and metastases harbored an overlap of 22.5% gain and 30.6% loss at sub-cytoband levels
(Figure 4c). We next compared the CNAs in CTCs and metastases in our identified potentially clinically
actionable breast cancer targets [52]. Copy number alterations showed that CTC samples contained
the most frequently altered sub-cytobands including gains in proliferation markers (CCND1, CCND2,
CCND3, RPTOR, and CCNE1) and stem cell signaling targets (TGFB1, TBXA2R, and WNT1). The loss
in copy number includes immunological markers (IL12A, IL15, and IL6) and DNA repair targets (ATM
and BRCA2) in CTCs. Of note, deletions at 13q (BRCA2 and RB1) commonly identified in breast
cancer were discovered in 3/5 (60%) CTC samples (Figure 4d). We found significant reproducibility
of the copy number gain and loss patterns between CTCs and metastasis for 41/49 actionable genes.
The percentages, p- and q-values are shown in Supplementary Table S3. We also found significant
variability in CTCs and metastases in the frequencies of CNA calls for some actionable genes, for
instance, TP53 deletion in metastases and amplification in CTCs. We also observed the reproducibility
of copy number patterns at a global level in CTCs and metastatic tissues but to a lesser extent.
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Figure 4. Overview of copy number alterations (CNAs) in CTCs and matched metastatic tissues (a)
Overall copy number landscape showing the high prevalence of focal alterations in all CTCs and
metastases. The y-axis shows the frequencies of the occurrence of somatic gains (red) and losses (blue)
in sub-cytoband regions. (b) Heatmap showing the segmented copy number profiles at chromosomal
arm level in each of the samples in CTCs and metastases (gain = red, loss = blue, and neutral =

white). (c) The number of overlapping cytobands depicting copy number gain and loss in CTCs and
metastases. (d) The heatmap showing the gains and losses in 49 potentially actionable genes in CTCs
and metastases.
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The results of CNA analysis showed that focal regions, including well-known oncogenes or tumor
suppressor genes, are frequently amplified and deleted in CTCs and metastases. These results also
demonstrate the ability of the Medexome assay to identify potentially actionable copy number events
from clinical samples. CNA patterns at certain chromosomal loci were consistent between CTCs and
metastases. We also observed substantial discordant CNAs between CTCs and corresponding tissues,
suggesting diverse clonality and tumor heterogeneity between patients. Taken together, this analysis
suggests that a single-site biopsy contains only a minority of genomic alterations present in MBC.

3. Discussion

This study demonstrates that it is possible to generate WES data from low-quantity and low-quality
samples. We combined the WGA method with a hybridization capture target enrichment approach
for exome sequencing of CTCs isolated via the microfluidic device and matched FFPE samples from
MBC patients. We used the microfluidic ANGLE Parsortix technology that captures CTCs based on
the physical differences of cell size and deformability with an efficiency of 50–60% while depleting
leukocytes 106 -fold down to 200–800 WBCs per mL of blood [53,54]. The low amplification bias
MDA technology that generates long DNA fragments (>10 kb) was used to amplify DNA from
experimental and clinical samples. This methodology achieved exome coverage greater than 55%
across all experimental, CTC, and metastases samples and thus made it possible to do a comprehensive
analysis of the coding regions having SNVs, CNAs, and SVs.

Comparing the concordance of somatic SNVs across CTCs and metastases, we identified an
overlap of only 55 exonic variants and 614 genes using the WES approach in MBC patients. A stringent
selection criterion was applied for SNV identification. Matched WBCs were also assessed in parallel
for each of the patients for the identification of germline single nucleotide polymorphisms (SNPs)
and to control for clonal hematopoiesis. We found many somatic variants in metastases such as
PIK3CA p.C420R in patient #1 and NF1 in patient #2 that were not present in matched CTCs. Likewise,
CTC samples also harbored many somatic alterations that were not present in metastases. Many
studies based on single cells and clusters have shown that CTCs have a high level of heterogeneity
in terms of their mutational and transcriptional landscape [2,55–61]. Importantly, we identified 51
actionable genes in CTCs and metastases that also showed overlap with FoundationOne, OncoKB, and
MSK-IMPACT gene panels (Supplementary Figure S2). Additional findings that are noteworthy are
that we identified the 39 most frequently mutated genes in CTCs and metastases, and some of them
such as MUC16, ANKRD36, and DNAH5 are known to be biologically important in breast cancer. We
cannot exclude the possibility that some of these mutations were CTCs-only or metastases-only or
could be due to heterogeneity. However, these alterations could help us understand the mechanisms
that underlie metastatic spread. In metastatic prostate cancer, Lohr et al. (2014) reported an overlap
of 51% of the somatic SNVs between CTCs and metastases using WES [62]. Paoletti et al. (2018)
observed 85% concordance between somatic alterations in single and pooled CTCs subjected to a
targeted sequencing approach for a panel of 130 genes and corresponding tissue metastases profiled
by WES in breast cancer [63]. Notably, both of these studies evaluated the concordance of somatic
alterations in individual CTCs vs. metastatic biopsy, suggesting that single CTCs exhibit high genomic
concordance to metastatic tissue. However, in our study using WES with maximal coverage of
4600 medically relevant genes, we identified only a minor proportion of shared somatic SNVs (0.4%)
and genes (11%) between CTCs and metastases. The Medexome panel with enhanced coverage of
4600 genes has inherently richer data than targeted sequencing but we observed a lower percentage
of variants than a list of genes selected a priori relevant to a specific disease. These limitations could
be contributed by the heterogeneous nature of WES in terms of uneven coverage along the length
of exons, which affects variant calling analysis. For instance, a study report of Wang et al. (2017)
revealed that some exonic regions are captured poorly even at a high average read depth of >75x,
which may result in missed variant calls [64]. In many cancer studies, WES has been used as an initial
discovery tool for identifying significantly mutated genes. These genes are further validated via a
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targeted sequencing approach at a much higher sequencing depth than WES, as done by Paoletti and
colleagues [63]. Although, targeted sequencing enables the identification of rare variants at a higher
depth than WES. However, it is less efficient for the identification of structural variants and copy
number events. For example, in our recent study, we observed that SNP array platforms identify copy
number changes to a reasonable degree of accuracy than targeted sequencing [52]. For discordant
genomic alterations between CTCs and metastastis, there are at least three other possible explanations
of this discrepancy. First, a single-site metastatic lesion was unable to capture the global repertoire
of the somatic mutational landscape [65]. Second, these CTCs are derived from different clones of
heterogeneous distant metastases. Third, leukocyte contamination in CTCs and tumor stroma in
metastatic lesion tumors may also confound variant identification. In addition, discordant somatic
alterations and gene expression profiles in CTCs and metastasis may reflect the clonal evolution caused
by therapy pressure [61,63,66,67]. Whole-genome analysis of multiple biopsies in metastatic triple
negative breast cancer (TNBC) patients also revealed extensive spatial and temporal heterogeneity in
SNVs, CNAs, SVs, and polymorphisms, suggesting the in-depth genomic analysis of multiple biopsies
for each patient [68]. Moreover, intra-tumor heterogeneity has also been observed by whole-exome
multi-region spatial sequencing between primary/metastatic tumors, with 63% to 69% of somatic
mutations not detected in all tumor specimens when performing WES of multiple different regions of
the same tumor [65].

Multiple somatic SVs are often found in breast cancer genomes. Tandem duplications, the most
important SV class, are known to produce oncogenic fusion genes in cancers. We found 23%
duplications in CTCs and 17% in metastatic tissues. The interpretation of tandem duplications has
not been specifically addressed in the current American College of Medical Genetics and Genomics
(ACMG)/Association for Molecular Pathology (AMP) guidelines. However, Richardson et al. [69]
suggest that their high prevalence is associated with the presence of defects in DNA repair. Interestingly,
we also identified many DNA repair genes such as BRCA1, MSH3, MLH1, and ERCC3 having tandem
duplications in only metastases. For SNV analysis, we identified 16 overlapping pathways in CTCs
and metastases involved in the role of BRCA1 in DNA damage response, hereditary breast cancer
signaling, and ATM signaling. These results suggest that CTCs could survive a potentially lethal dose
of chemotherapy and make the cancer cells resistant to DNA-damaging therapies. Our data shows
that intra-chromosomal rearrangements are most prevalent in CTCs and metastases. Gene fusions are
the result of chromosomal rearrangements and translocations. We identified gene fusions in CTCs
in patient #1 and in metastases in patients #1 and #4. Two of the intrachromosomal gene fusions in
ASPM1 and TRPS1 genes were also found to be recurrent. Moreover, for singleton fusions identified,
one of the involved genes from two genes’ combination is potentially breast cancer related actionable
genes (Supplementary Table S1). We observed no overlap of SSVs in CTCs and metastases which
revealed substantial inter- and intrapatient molecular heterogeneity.

The CNAs profile generated from CTCs and metastases showed a higher prevalence of alterations
in focal rather than broad chromosomal arms. Interestingly, we observed extensive copy number loss
rather than gains in CTCs and tumor tissues. Our approach facilitates the identification of deletions of
chr13 and 16q, in all CTCs and metastases, commonly found aberrations in breast cancer. We also found
low-level gains in chr6p21, 23, and 25 cytobands in CTCs. Interestingly, the gain in chr6p elevated HLA
expression profiles and suppressed natural killer (NK) cell activation [70]. When comparing the copy
number profiles of CTCs to metastases, approximately a quarter (22.5% gain and 30.6% loss) in CTCs
and metastases of sub-cytobands genomic regions showed similarity for CNAs. These findings provide
a strong rationale for exploring copy number changes for potential clinically actionable genes that
are linked to food and drug administration (FDA)-approved or investigational therapeutics. Of note,
we found high similarity in copy number profiles of many potentially clinically actionable genes in
CTCs and metastases.

Many studies have shown that WGS is more comprehensive and powerful than WES in detecting
exome variants [71–73]. The major challenge in WES is the target coverage uniformity with regard
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to capturing a reasonable number of reads mapped to the target regions. The estimates provided by
the previous studies for the depth of sequencing coverage for WES are variable. Meynert et al. (2014)
recommended the mean on-target read depth of 17x–37x for exome sequencing, 13x local read depth
for alleles and heterozygous SNVs, and 3x for homozygous SNV identification [74]. Clark et al. (2011)
estimated that the common threshold of 10x is required to detect >90% of the targeted bases. The
authors also show a strong inclination for a target enrichment approach in comparison to WGS because
higher base coverage after enrichment identifies variants that are missed by WGS [75]. We performed
WES at 100x coverage and assessed the percentage of targeted bases covered at depths of at least 1x
and 20x. We found high coverage in experimental samples and clinical samples. Nonetheless, in WBC
samples, the percentage of target bases was less but the data analysis was restricted to target reads with
a Phred-based quality score >30. Since our results are not fully consistent with the previous studies, we
also did a side by comparison of sequencing results and quality statistics with a pilot study on NGS of
paired CTCs, FFPE tumors, and peripheral blood mononuclear cell (PBMC) samples in hepatocellular
carcinoma [76]. Although, both of the studies have variation in terms of NGS platforms and variant
pipelines. However, the comparison between both of the studies showed that NGS libraries generated
from CTCs and FFPE samples are somewhat similar in the quality of statistics of the sequencing data
(Supplementary Table S4).

We present a systemic workflow by combining a microfluidic-based CTC capture approach with
WES to identify the complete repertoire of genomic alterations in MBC. The major limitation of our
study is that a sample size of five breast cancer samples with single-site biopsies from only four
patients is an insufficient cohort to generalize to all breast cancer patients and subtypes. However,
this study was performed as a pilot study and the central aim was to assess the technical feasibility of
integrating WGA with WES in low-quantity and low-quality samples. Each patient served as their
own control, which is appropriate given that breast cancer is a heterogenous disease. Given that there
are five major intrinsic subtypes of breast cancer, we were careful to avoid generalizing our findings in
the context of any subset analysis for intrinsic subtyping. Many studies based on the sequencing of
CTCs have enrolled a few samples and analyzed single CTCs [21,77,78]. Lohr et al. (2014), in their
study, have enrolled 34 metastatic prostate cancer patients [62]. However, the WES was performed
only on two patients because only two subjects yielded a sufficient number of CTCs. In comparison
to these studies, our study has performed WES on a larger number of samples and is not based on
single CTCs. Moreover, the Medexome assay we used is based on WES with enhanced coverage
of 4600 genes that has inherently richer data than the sequencing assays used in previous studies.
In addition, this workflow was tested on different samples from each patient, assaying CTCs, tumor
tissues, and WBCs. Nonetheless, the approach performed well, with experimental and clinical samples
collected in Streck tubes, and demonstrated the technical feasibility of WES of CTCs. The workflow
showed compatibility when combining the WGA of CTCs and FFPE tissues with hybridization capture
technology. Although the sample size was small, it represents an example of the optimization of
the WES procedure in experimental samples and validation in clinical samples. Indeed, our results
highlight the substantial intra-tumor heterogeneity suggesting that N-of-One designs are essential
to implement personalized medicine since each tumor has unique biology and each patient served
as their own control in an omics based analysis that evaluated many biomarkers in a small patient
cohort [79]. Of note, our data represent a proof-of-principal demonstrating the possibility for our
integrated experimental design for low input DNA and opens the door to applying the WES approach
in rare CTCs and FFPE samples. Moreover, we have used bioinformatics tools with stringent statistical
filters to identify true somatic variants. We have identified variants in all five CTCs and four FFPE
samples. The presence of somatic variants was also verified with COSMIC, Human Gene Mutation
Database (HGMD) and ClinVar. The identification of variants in all of the five patients demonstrates
that the strategy is viable and WES fulfills the analytical features of specificity and accuracy required
for low-quantity and low-quality samples. The VAFs in FFPE samples were higher than in CTCs,
suggesting a higher tumor content in tissues uncovers a larger number of SNVs, SVs, and CNAs than
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CTCs. We identified many known and unknown variants; however, high discordance in somatic
alterations was found between CTCs and matched FFPE samples. It is unlikely that discordance was
due to WGA and sequencing as MDA technology has an extremely low error rate of 10−5 [18,80].
Interestingly, Razavi and colleagues identified only 24.4% of somatic mutations in plasma DNA in
matched tumors, suggesting the contribution of clonal hematopoiesis to molecular discordance [81].
The authors also revealed that >50% of somatic mutations in cell-free DNA (cfDNA) in cancer patients
originated from WBCs and were attributable to clonal hematopoiesis.

Our study has several strengths. We utilized healthy donor blood samples and spike-in
MDA-MB-231 breast cancer cells to more closely mimic the CTCs from patient samples. We included
matched WBC gDNA and performed sequencing at the same coverage (100x) used for CTCs and FFPE
samples to control for the contribution of WBC somatic mutations, avoiding the detection of clonal
hematopoiesis. We used Parsortix technology capable of capturing heterogeneous CTC subpopulations
expressing epithelial, mesenchymal, and stemness markers. Many studies have also shown that CTCs
have a high degree of heterogeneity [53,61,63]. Such an analysis of heterogeneity is often difficult
and presents a serious challenge to variant calling and is critical for precision medicine. This would
imply that more CTC samples and multiple biopsies would be needed to understand the full extent of
genomic diversity in metastatic cancers. Recently, a joint review from the American Society of Clinical
Oncology (ASCO) and the College of American Pathologists (CAP) provided an assessment on clinical
ctDNA assays and a framework to guide future research [82]. However, clinical implementation of
WES in liquid or solid biopsies has been much slower due to a lack of robustness of preanalytical and
post analytical experiments and clinical validation studies.

Our results highlight the substantial differences in somatic alterations between CTCs and their
corresponding tissue metastasis, suggesting that a single metastatic biopsy’s results may be markedly
different from that of the CTCs. Thus, more caution should be exercised in selecting genes and variants
that allow for the complete genomic analysis of CTCs to provide insights into the biology of MBC.
As such, an understanding of tumor heterogeneity is important, as most of the mutations might be
found in one cell and not another, and that could be the main cause of therapeutic failure.

In conclusion, our discovery approach facilitates a deeper understanding of CTC biology and
supports the feasibility of whole-exome sequencing of low-input CTCs and low-quality FFPE material
in MBC patients. The molecular discordance between CTCs and metastatic tissue identified in our MBC
study may have potential clinical significance as this data reveals many actionable alterations only
present either in CTCs or tissue metastasis. These results suggest that the identification of potential
actionable therapeutic targets may be missed when relying on a single-site biopsy of metastatic lesions.
The results presented provide an insight into the potential clinical utility of the WES workflow in MBC
and also emphasize the need for validating this assay in other disease settings. The multiple metastatic
lesions may improve outcomes by providing accurate interpretation and the full spectrum of somatic
mutations, thus facilitating more effective treatment strategies for individual patients.

4. Materials and Methods

4.1. Cell Culture and Spike-in Experiment

The human breast cancer cell line MDA-MB-231 cell line was purchased from ATCC and cells
were maintained in 5% CO2 at 37 ◦C incubation in complete Dulbecco’s Modified Eagle Medium
(DMEM) medium (Life Technologies, Carlsbad, CA, USA). Cells were washed twice with 1xPBS (Life
Technologies, Carlsbad CA, USA). At 75–80% confluency cells were detached using trypsin-EDTA
(0.05%) (Life Technologies, CA, Carlsbad, USA). For the spike-in experiment, MDA-MB-231 cells
(n = 50) were spiked into 7.5 mL healthy donor whole blood in a Cell-Free DNA BCT tube (Streck,
La Vista, NE, USA). MDA-MB-231 bulk cancer cells were used as a positive control. We used WBCs
isolated from peripheral blood not processed on the Parsortix as a negative control (no spiked cells).
The spike-in experiment was done in duplicate.
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4.2. Patient Population

Blood samples (7.5 mL for CTCs and 2 mL for WBCs isolation) were collected into Streck tubes
(Streck, La Vista, NE, USA) from five eligible patients with MBC treated at the University of Southern
California (USC) and Los Angeles County (LAC) medical center. The study protocol HS-15-00741
(Date of approval: 17 December 2019) was approved by the USC Institutional Review Board (IRB)
Committee. The samples were collected after obtaining written consent in the HS-11-00208 protocol
(Date of approval: 30 July 2019) approved by the USC IRB Committee. The metastatic FFPE-matched
tumor samples were available only from four patients of the five eligible patients (prior to receipt
of systemic treatment). For FFPE samples, we did not utilize laser capture dissection. However,
the tumor cellularity was 30% for cut section curls from FFPE samples. The investigations were carried
out following the rules of the Declaration of Helsinki of 1975 (Available Online: https://www.wma.
net/what-we-do/medical-ethics/declaration-of-helsinki/), revised in 2013. The clinicopathological
information of the patients is shown in Table 4.

Table 4. Clinicopathological information of breast cancer patients.

Patient Sample ID Histology ER PR HER2 Metastatic Site Genomic or Genetic Testing Results Timeframe between FFPE
Biopsies and CTCs Collection

1 19065

Invasive
ductal

carcinoma
(IDC)

Y N N Liver

FoundationOne: Genomic alterations
with associated therapies having

potential clinical benefit:

(1) PIK3CA (C420R)-Everolimus,
Temsirolimus

(2) CGN-NTRK1 fusion-Crizotinib
(3) CHD4 loss exons 3–40
(4) CHEK2 M1T

5 days

2 78440 IDC Y Y N Pleural effusion Germline BRCA2 mutation carrier 39 months

3 79130 IDC Y Y N Breast None 29 months

4 80192 IDC Y N N Brain None 19 months

5 28412 IDC N N Y
Brain metastasis,
unavailable for

research
None -

Y-Yes, N-No.

4.3. CTC Capture and WBC Isolation

CTCs were enriched from whole blood using a Parsortix GEN3D10 Cell Separation Cassette
(ANGLE plc, Surrey, United Kingdom) after 24hrs of blood draw, according to manufacturer’s
instructions. After the CTC enrichment step and centrifugation, the cells were resuspended in 10 µL
of PBS sc 1x (Qiagen, Germantown, MD, USA) and stored at −80 ◦C until further use. WBCs were
isolated using the Ficoll-Paque density gradient centrifugation method. Briefly, 2 mL of blood of the
blood sample was diluted with an equal amount of 1X HBSS buffer (VWR Life Sciences, Denver, CO,
USA). Four mL of diluted blood was layered over 4mL of Histopaque (Sigma-Aldrich, Milwaukee, WI,
USA) and centrifuged at 700 g for 25 min at room temperature without the brake applied. The WBCs
interface was carefully removed by pipetting and stored at −20 ◦C until further use.

4.4. Isolation and WGA of Genomic DNA from the Cell Line, WBCs, and FFPE Tissues

Genomic DNA from WBCs was isolated using the QIAamp DNA Blood Mini kit (Qiagen,
Germantown, MD, USA). For bulk cancer cells, an AllPrep DNA/RNA/Protein kit (Qiagen, Germantown,
MD, USA) was used as per the manufacturer’s instructions. The DNA extractions from FFPE samples
were made from a 10 µm thick section using the GeneRead DNA FFPE kit (Qiagen, Germantown, MD,
USA), as per the recommended instructions. The WGA of spike-in and clinical samples was conducted
using the Repli-g Single cell kit (Qiagen, Germantown, MD, USA), according to the manufacturer’s
protocol. For FFPE samples, the Repli-g FFPE kit (Qiagen Germantown, MD, USA) was used for WGA.
All the DNA samples were quantified using a NanoDrop-2000 (ThermoFisher Scientific, Carlsbad, CA,
USA) and Qubit 2.0 Fluorometer (ThermoFisher Scientific Inc., Waltham, MA, USA). WGA quality
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control was performed by Ampli1 QC kit (Menarini Silicon Biosystems, Huntingdon Valley, PA, USA)
to check DNA integrity by conducting multiplex PCR of 4 targets at chromosome 12p, 5p, 17p, and 6p.

4.5. Pre-Capture Sample Processing

Library preparation was performed on a total of 22 samples (20 WGA samples (experimental
samples: spike-in MDA-MB-231 samples (n = 2), positive control bulk MDA-MB-231 cells (n = 2)
and negative control WBCs (n = 2); clinical samples: CTCs (n = 5), metastases (n = 4) and WBCs
(n = 5)) and 2 non-amplified MDA-MB-231 samples (n = 2)). For each DNA sample, the barcoded
library was prepared from 500ng of WGA material using the KAPA HyperPlus kit (KAPA Biosystems,
Wilmington, MA, USA) as per the manufacturer’s guidelines. After enzymatic fragmentation, size
distribution was checked using the Agilent2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA). The workflow contains basic steps for DNA library preparation including the end-repair of
fragmented DNA, A-tailing, ligation of sequencing adapters, and amplification. The number of
amplification cycles was also optimized to generate 1ug of amplified DNA. Library amplification was
performed with 4 cycles. Barcoded libraries were purified using KAPA pure beads (KAPA Biosystems,
Wilmington, MA, USA).

4.6. Hybridization Capture and Exome Enrichment

Exome capture was conducted with SeqCap EZ MedExome Target Enrichment Kit (Roche
Diagnostics, Indianapolis, IN, USA) by pooling 4–6 libraries in equimolar concentrations. Pools were
concentrated using KAPA pure beads (KAPA Biosystems, Wilmington, MA, USA). One thousand
nanograms of purified library pool was then hybridized to the capture probes and the removal of
non-hybridized molecules was carried out according to the manufacturer’s guidelines. Final libraries
were quantified using the Qubit 2.0 Fluorometer (Thermo Fisher Scientific Inc., Waltham, MA, USA),
and the fragment size distribution was determined with an Agilent Bioanalyzer 2100 (Agilent, Santa
Clara, CA, USA). The libraries were then pooled equimolarly, and quantified via qPCR using the
NEBNext Library Quant Kit for Illumina (New England BioLabs, Ipswich, MA, USA), according to the
manufacturer’s instructions. Sequencing was done in 2x150 cycles format using Illumina HiSeq 2500
(in Rapid mode) and NextSeq 550 instruments. Library quality control and sequencing was performed
at the USC Genome Core (University of Southern California, Los Angeles, CA, USA).

4.7. Somatic Variant Calling and Interpretation

Raw sequencing reads (in the form of FASTQ files) were trimmed to remove
potential adaptor sequencing using Trimmomatic [83]. The filtered reads were then
processed following the Broad Institute’s best practices recommendation for variant calling
(Available Online: https://gatk.broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-processing-
for-variant-discovery). In short, the reads were aligned to the human genome (hg38) using
BWA-MEM [84] with default settings, and further processed using Gene Analysis Tool Kit (GATK) 4 to
assign read groups, marking duplicates and base recalibration. The resulting processed BAM files were
used to call short somatic variants (SNPs and Indels) using Mutect2 as explained in the Broad Institute’s
Somatic Short Variant Discovery best practices workflow (Available Online: https://gatk.broadinstitute.
org/hc/en-us/articles/360035894731-Somatic-short-variant-discovery-SNVs-Indels-), and the identified
somatic variants were annotated using Annovar [85]. Annotated VCF files were also uploaded to IVA
software (Qiagen, https://www.qiagen-bioinformatics.com/products/ingenuity-variant-analysis) to
identify cancer-related mutations. The somatic variants were further analyzed by applying several
filters. Our filtering cascade includes confident, common variant, predicted deleterious, genetic
analysis, and cancer driver filters. In the confident filter we keep the variants with a read depth of at
least 10. For common variant filter criteria, we exclude variants detected in 1000 Genomes project,
Genome Aggregation Database (gnomAD), Exome Aggregation Consortium (ExAC), and NHLBI ESP
exomes with an allele frequency of at least 3%. For the predicted deleterious filter, we keep only those
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variants that are pathogenic or disease-associated, according to HGMD and ClinVar. With the genetic
analysis filter those variants are included that are associated with gain of function. We then applied
cancer driver variant filters to keep variants that are associated with cellular processes and cancer
related events/pathways, cancer therapeutic targets or published cancer studies, and found in COSMIC
or The Cancer Genome Atlas (TCGA) databases at a frequency of 0.01%. Variants were also filtered if
they occurred exclusively in intronic, intergenic, 3′UTR, or 5′UTR regions.

The R package Maftools [86] was used to summarize the mutational spectrum and the variant
classification distribution across samples, to identify the most frequently mutated genes and the
frequency of each type of mutation, and to perform a cancer driver gene analysis using the Oncodrive
tool [45] within Maftools. WES data are available at Sequencing Read Archive (SRA) under accession
SUB7212646 (Bioproject: PRJNA644020).

4.8. Copy Number Alteration Calling and Interpretation

To estimate somatic CNAs, we used the GATK4 CNV workflow that detects copy number variants
as well as allelic segments by normalizing the raw proportional coverage profile against a panel of
normal (PoN) samples sequenced with the same capture technology. CNA was characterized by a
measured copy number (expressed as log2 ratio), and by the extent of change in the genome. The CNA
thresholds were determined according to the set of discrete copy number calls provided by GATK
guidelines: amplification (+), deletion (-), and neutral (0). We used a re-segmentation approach using
the CNApp tool to measure the burden of global, broad and focal CNAs in experimental and clinical
samples [51]. The Fisher’s exact test was used to determine the concordance and discordance in the
frequencies of actionable CNAs between CTCs and metastases.

4.9. Structural Variant Calling and Interpretation

SV calls were called from mapped data using Manta algorithm with default parameters in the
Dragen Enrichment app in the Illumina basespace sequence hub. Manta detects deletions, inversions,
tandem duplications, insertions, inter- and intra-chromosomal translocations, and gene fusions.
Variants that passed all the set filters were further uploaded in IVA for functional interpretation with
the same filtering cascade used for SNV analysis. The SVs were visualized and manually checked in
Integrative Genomics Viewer (IGV).

4.10. Ingenuity Pathway Analysis

Ingenuity Pathways Analysis (IPA) was used to identify key molecules and signaling pathways
affected by genomic alterations in breast tumors. A list of genes having SNVs was subjected to IPA
application (Qiagen, https://www.qiagen-bioinformatics.com/products/ingenuity-pathway-analysis).
The variants that fit the American College of Medical Genetics (ACMG) criteria for classification as
pathogenic or likely pathogenic were used to visualize the gene interactions [87].

4.11. Statistical Analysis

Statistical analysis for comparing the mutations and CNAs in amplified vs. non-amplified bulk
cancer cells, amplified bulk cancer cells vs. spike-in samples, and CTCs vs. metastases was performed
using GraphPad Prism 8.3.1 (GraphPad Software, San Diego, CA, USA). Correlation analysis of
VAFs in cell lines between amplified and non-amplified samples was done using the Pearson r test.
The Mann–Whitney test was used to evaluate the differences between the frequencies of coding variants.
The two-tailed paired t-test was used to calculate the variability in VAFs for CTCs and metastases.
The Fisher’s exact test was used to calculate the variability for the frequencies of CNAs. The two-stage
linear step-up procedure of Benjamini, Kreiger, and Yekutieli by setting a false discovery rate (FDR) (Q)
to 5% was used to correct p-values for multiple testing.
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