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Body fat compartment 
determination by encoder–decoder 
convolutional neural network: 
application to amyotrophic lateral 
sclerosis
Ina Vernikouskaya1,5, Hans‑Peter Müller2,5, Dominik Felbel1, Francesco Roselli2,3, 
Albert C. Ludolph2,3, Jan Kassubek2,3,6 & Volker Rasche1,4,6*

The objective of this study was to automate the discrimination and quantification of human 
abdominal body fat compartments into subcutaneous adipose tissue (SAT) and visceral adipose tissue 
(VAT) from T1‑weighted MRI using encoder‑decoder convolutional neural networks (CNN) and to apply 
the algorithm to a diseased patient sample, i.e., patients with amyotrophic lateral sclerosis (ALS). 
One‑hundred‑and‑fifty‑five participants (74 patients with ALS and 81 healthy controls) were split 
in training (50%), validation (6%), and test (44%) data. SAT and VAT volumes were determined by a 
novel automated CNN‑based algorithm of U‑Net like architecture in comparison with an established 
protocol with semi‑automatic assessment as the reference. The dice coefficients between the CNN 
predicted masks and the reference segmentation were 0.87 ± 0.04 for SAT and 0.64 ± 0.17 for VAT in 
the control group and 0.87 ± 0.08 for SAT and 0.68 ± 0.15 for VAT in the ALS group. The significantly 
increased VAT/SAT ratio in the ALS group in comparison to controls confirmed the previous results. 
In summary, the CNN approach using CNN of U‑Net architecture for automated segmentation of 
abdominal adipose tissue substantially facilitates data processing and offers the opportunity to 
automatically discriminate abdominal SAT and VAT compartments. Within the research field of 
neurodegenerative disorders with body composition alterations like ALS, the unbiased analysis of 
body fat components might pave the way for these parameters as a potential biological marker or a 
secondary read‑out for clinical trials.

Accurate segmentation of human body fat compartments from MRI is a challenging task when performed 
manually, due to the limited reproducibility of manual or semi-manual delineations. Moreover, MRI scans are 
often not free of magnetic field inhomogeneities and chemical shift artifacts, requiring highly trained experts 
for segmentation. Semi-automatic segmentations using thresholding and histogram-based region growing have 
been successfully used to segment the fat compartments with high-contrast  images1,2, but these methods are 
limited by high computation costs and long performance times.

Multiple automated and semi-automated segmentation algorithms have been introduced over the past two 
 decades3–6. More recently, learning-based methodologies outperforming traditional methods have been pro-
posed to automate the segmentation  tasks7–10. Concerning organ segmentation, artificial intelligence (AI) and 
especially convolutional neural networks (CNNs) have proven to be able to model all variations found on a 
training dataset and to rapidly perform an automatic segmentation without high computational  requirement11. 
CNN are biologically inspired machine learning concepts which are used in machine processing of image  data12. 
The nomenclature is deducted from neural networks in the human (or animal) brain, illustrating a self-learning 
concept to identify e.g. structural characteristics in images. Methods based on fully convolutional networks 
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of encoder-decoder architectures are promising approaches to automated segmentation of adipose tissue on 
abdominal water-fat Dixon  MRI13,14.

Amyotrophic lateral sclerosis (ALS) is the most frequent adult onset neurodegenerative motor neuron dis-
ease with a prevalence of 2.6–3.0 cases per 100,000 people in European populations and is characterized by the 
progressive degeneration of both upper motor neurons and lower motor neurons, leading to death through 
respiratory insufficiency in most patients within about three years after disease  onset15. In ALS, riluzole pro-
longs lifespan for a few months and individual treatment options have to be considered for improving survival, 
symptom control, and social participation—however, ALS is not  curable16. Epidemiological data suggest that 
ALS patients suffer from  catabolism17 and begin to lose weight more than 10 years before the onset of motor 
 symptoms18. Catabolism may result from the combination of dysphagia and intrinsic hypermetabolism, as shown 
in ALS patients as well as a mouse model of  ALS19. In the disease course of ALS, weight loss and metabolic status 
are strong predictors of  survival17.

The search for reliable biomarkers is a high priority in ALS research. In a previous study, it could be dem-
onstrated that metabolic status indirectly assessed by body fat distribution is a predictor of survival in  ALS20. 
Given that a recent clinical trial demonstrated a survival benefit by high-caloric fatty diet for fast-progressing 
ALS  patients19, a non-invasive biomarker assessment of the body composition in ALS gains additional clinical 
relevance. As a marker, ALS patients have been shown to display an expanded ratio between visceral (VAT) and 
subcutaneous adipose tissue (SAT), indicating that adipose tissue is also affected in its topography and potentially 
its function in  ALS20. Most remarkably, a similar although less pronounced pattern was observed in pilot studies 
in other neurodegenerative diseases with existent but much less obvious weight loss in their advanced disease 
stages like Parkinson´s  disease21 and, as a trend, Alzheimer´s  disease22.

In the current study, a novel approach is presented that uses a fully convolutional network of traditional U-Net 
architecture for automated segmentation and separation of SAT and VAT on T1-weighted MR images with a 
wide range of anatomical variations across subjects and was, as a proof of concept, applied to a cohort of whole 
body MRI data sets from ALS patients and controls.

Results
Performance of neural network classification. For both validation and test data, the average perfor-
mance metrics are summarized in Table 1. The neural network was able to generate the segmentations at an 
average pixel error of 2% for SAT and 4% for VAT, respectively, in the ALS group of the validation set, while 
an average error below 1% for both fat compartments was achieved in the control group of the validation set. 
Similar performance was achieved on the test data with an average error below 3.5% in both groups. Dice simi-
larity coefficients in the test data achieved 0.87 for SAT and 0.68 for the VAT compartment. Figure 1 shows the 
comparison of the segmentation performed on a single plane MR image from a control test dataset (Fig. 1a) by 
the reference method (Fig. 1b) and CNN (Fig. 1c), in addition visualized as a difference image (Fig. 1d); differ-
ences appear in bones and at the edges of structures suggesting that in comparison to the reference technique 
the neural networks tend to a smoothed segmentation without pixelated edges. The overlay of predicted SAT and 
VAT compartments on the original MR image is shown in Fig. 1e.

The predicted segmentation of single slices for two test datasets from a control (Fig. 2a) and from an ALS 
patient (Fig. 2b) exemplarily demonstrates the difference in distribution of the VAT and SAT compartments. The 
3D models rendered from multi-slice predictions of control and ALS patient are shown in Fig. 3.

Correlation of CNN classification results and reference classification results. Figure  4 shows 
the correlation between the SAT and VAT volumes calculated from the reference segmentation and predicted 
segmentation on the test data from control and ALS groups. A significant linear correlation with Pearson coef-
ficients r = 0.992 in controls and r = 0.977 in ALS patients was observed for SAT, while lower Pearson coefficients 
r = 0.653 in controls and r = 0.814 in ALS patients were obtained for VAT. The most commonly observed errors 
in segmentation with the U-Net were erroneous interpretation of the hip bones as VAT and errors in discrimina-
tion between VAT and SAT in ambiguous areas (Fig. 2).

Table 1.  Average network performance in validation and test data sets. VAT—visceral adipose tissue; SAT—
subcutaneous adipose tissue.

Fat compartment Metric Validation Test

ALS patients

VAT
Dice 0.56 ± 0.09 0.68 ± 0.15

Pixel error (%) 4.11 ± 1.31 3.11 ± 1.29

SAT
Dice 0.87 ± 0.06 0.87 ± 0.08

Pixel error (%) 2.07 ± 0.80 1.55 ± 0.63

Controls

VAT
Dice 0.60 ± 0.10 0.64 ± 0.17

Pixel error (%) 0.79 ± 0.48 2.41 ± 1.67

SAT
Dice 0.87 ± 0.03 0.87 ± 0.04

Pixel error (%) 0.69 ± 0.08 2.11 ± 1.37
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Application of body fat compartment ratio assessment to ALS. The analysis at the group level 
revealed a significant difference for the body fat compartment ratio when comparing ALS patients versus con-
trols. For the test data sample (34 ALS patients, 34 controls), VAT/SAT ratio was significantly increased in the 
ALS patient group (p = 0.002) (Fig. 5). No significant correlations of VAT/SAT ratio with disease duration, ALS 
Functional rating scale-revised (ALS-FRS-R) score, or ALS-FRS-R slope, respectively, could be detected. Also, 
no correlation between VAT and SAT volumes for both groups could be found.

Discussion
In this study, a deep learning pipeline was established, validated, and implemented to differentiate and quantify 
the components of abdominal adipose tissue. It was possible to automatically generate robust VAT and SAT label 
maps using fully convolutional network of U-Net architecture on the given T1-weighted whole-body MRI data 
with a wide range of anatomical variation, i.e. body fat composition, across control and patient groups. Pairwise 
comparison of the predicted label maps with the reference segmentation yielded the major disagreement in the 
segmentation of VAT around the spine and hip bones and hyperintense regions in SAT.

There are previously published advanced data processing pipelines to segment and quantify adipose tis-
sue based on deep learning methods. One of these methods, i.e., FatSegNet with two 2-D competitive dense 
fully convolutional networks, was successfully applied to the abdominal Dixon MR images acquired in a large 
population‐based cohort of healthy subjects in the Rhineland study with high  reliability14, but, to the best of our 
knowledge, has not been applied to patient data yet.

Limitations. The potential for further optimization is dependent on the quality of the reference segmenta-
tion, which on its turn is limited by factors like level set-based nature of the method, image contrast, and (breath-
ing-related) motion artifacts. Especially when patients with a high disease burden (like ALS patients) undergo 
MRI, the data quality is sometimes limited due to motion or further influencing factors. Given that these data 

Figure 1.  Prediction results from a test dataset from a control. (a) Original transversal MRI single plane 
image. (b) Reference segmentation mask. (c) Predicted label map. (d) Difference image between reference 
and predicted segmentation with arrows indicating major differences in prediction of VAT in hip bones. (e) 
Predicted segmented mask overlaid on original MR image.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5513  | https://doi.org/10.1038/s41598-022-09518-w

www.nature.com/scientificreports/

are much more prone to contain limited data quality than data from healthy volunteers, the current application 
of the technical solution to whole body MRI acquired in severely affected patients constitutes a strength of the 
approach over those techniques which have been applied solely to healthy subjects.

Summary. The current results in the T1w MRI data in the ALS patient cohort could reproduce the results 
of a previous study with a semi-automatic  technique20. It seems safe to conclude that the CNN technique could 
act as a valuable and robust operator-independent tool for future studies that investigate body fat compart-
ments by structural whole body MRI in a cross-sectional and potentially in a longitudinal design. The unbiased 
approach on the one hand and the proof of concept in the ALS patients´ data on the other hand suggest its use 
in natural history  registries23 or clinical  trials24 which address changes in the body composition and associated 
potential benefit in clinical parameters or prognosis in neurodegenerative disorders like motor neuron diseases. 
CNN-based quantification of VAT/SAT might serve as a potential biological marker or a secondary read-out to 

Figure 2.  Prediction results on randomly selected test cases. Multi-slice prediction on a dataset from a control 
(a) and from an ALS patient (b).

Figure 3.  3D rendering of multi-slice predictions from a control (a) and ALS patient (b).
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monitor specific body composition changes which are more specific than the clinical parameter BMI in order to 
improve our understanding of the metabolic pathology.

Subjects and methods
Subjects. One-hundred-and-fifty-five participants underwent T1-weighted examination on a 1.5  T MRI 
scanner; 81 healthy subjects composed the control group, whereas 74 ALS patients composed the ALS group. 
Seventy-four ALS patients were recruited in the outpatient and inpatient settings of the Department of Neurol-
ogy, University of Ulm, Germany. The age- and gender-matched control group consisted of 81 healthy sub-
jects who had been recruited through a volunteer panel (University for the Aged, volunteer work exhibition) or 
spouses of patients. Exclusion criteria for controls were any neurological/psychiatric disease or other medical 
condition or general contraindications to acquire MRI. Exclusion criteria for ALS patients were also general 
contraindications for MRI acquisition, in addition reduced respiratory function (FVC < 40%).

All patients were diagnosed with definite or (clinically or laboratory-supported) probable ALS using the 
revised version of the El Escorial World Federation of Neurology  criteria25 and had a disease duration of 
25 ± 19 months (with disease onset defined as date of first muscle weakness, excluding fasciculation and cramps), 
an average ALS-FRS-R score of 37 ± 8, and an ALS-FRS-R slope of − 10 ± 10 per year. All patients received 
neurophysiological studies during the clinical diagnostic process. Fifty ALS patients had a spinal onset and 14 

Figure 4.  Correlations between volumes of subcutaneous adipose tissue (SAT) and visceral adipose tissue 
(VAT) calculated based on the reference segmentation vs. predicted by U-Net in the control group (upper 
panels) and in the ALS group (lower panels).
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had a bulbar onset; 3 ALS patients had a documented frontal involvement, and forced vital capacity (FVC) was 
available in 10 patients with an average value of 65% ± 14%. The patients underwent a neurological interview to 
investigate the age, disease duration and the presence of bulbar symptoms. The information on diabetes mellitus 
and dyslipidemia were based on patient history, no laboratory data for these conditions were acquired in the 
study. Height and weight were measured in order to calculate the BMI. The controls did not take any medica-
tion; 63 (85%) of the ALS patients took riluzole. Details are summarized in Table 2. The study was performed in 
accordance with the ethical standards of the latest revision of the Declaration of Helsinki and was approved by 
the ethical review committee of Ulm University (reference 179/2008). A written informed consent was obtained 
from all participants.

MRI protocol. MRI data were acquired on a 1.5 T scanner (Symphony, Siemens Medical, Erlangen, Ger-
many). The whole body MRI scans were recorded by acquisition of 6 to 8 3-D volumes with a standard T1 
weighted spin-echo sequence, each consisting of 36 2-D slices with a slice thickness of 6 mm and an in-plane 
resolution of 1.25 mm × 1.25 mm. Repetition time was 476 ms and time to echo was 12 ms. The total acquisition 
time for one volume was 4:30 min. Slices were recorded with no gap. To confirm that no gap is left in between 
the consecutive volumes, an overlap of about 6 to 18 mm was chosen between the volumes so that a total area of 
about 120 cm was  scanned26.

Figure 5.  Ratio of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) for 34 ALS patients vs. 
34 controls (test sample data). Error bars are the standard error of the mean; *p < 0.01.

Table 2.  Clinical characterization of subject groups. FVC—forced vital capacity.

ALS patients controls p

m/f 50/24 42/39 0.05

Age/years
60 ± 13
median 62
range (22–81)

60 ± 13 median 58
range (26–88) 0.19

BMI/kg/m2
26 ± 4
median 24
range (15–32)

24 ± 4
median 25
range (19–40)

0.01

ALS-FRS-R 37 ± 8 – –

Slope (ALS-FRS-R)/year − 10 ± 10 – –

Disease duration/years 2.1 ± 1.6 – –

Onset (spinal/bulbar) 50/14 – –

FVC/% 65 ± 14 – –

Age at onset/years 58 ± 12 – –
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Data preprocessing. Data preprocessing was performed by the pipeline already performed and docu-
mented in a previous  study18 and was performed by the in-house developed software package ATLAS (Automatic 
Tissue Labelling Analysis Software)26. The preprocessing consisted of several steps, detailed in the following.

Each of the single recorded 3-D volumes covered a body section of about 22 cm. In between two consecutively 
recorded 3-D-volumes, an overlap of between 6 and 18 mm, i.e. 1 to 3 slices, allowed for the application of a con-
jugated simplex fitting method with 3 degrees of freedom (x, y, z—translational shift). That way, one contiguous 
body volume was merged. Prior to subsequent analysis, the data were supersampled to isotropic voxels with size 
1.2 × 1.2 × 1.2  mm3. In cases that magnetic field or gradient inhomogeneities or distortions might cause image 
inhomogeneities over the large scanning area, an interactive repair functionality was used in order to correct the 
distortions and prepare the data set for further data operations. As the arms where often only partially recorded 
and were not of interest for further analysis, the arms were manually deleted from the data sets. Finally, in order 
to homogenize intensity in the data sets, median filtering was applied.

Reference method. Subcutaneous fat determination was performed using the ARTIS algorithm (Adapted 
Rendering for Tissue Intensity Segmentation) which has already proven to reveal high stability in the results; 
abdominal visceral fat tissue was identified by selecting all connected voxels with respect to their intensity within 
the from ARTIS predefined  range26.

CNN‑based method. All available data were split in training (50%), validation (6%), and test (44%) data, 
based on age and BMI strata to ensure a balanced population distribution. In total 22,269 slice images (11,485 
from the control group and 10,784 from the ALS group) of 384 × 384 pixels resolution were used for the training 
process, in which the learnable parameters of the network were adjusted. In total, 2483 images (1651 from the 
control group and 832 from the ALS group) were used for validation phase, in which a chosen network configu-
ration together with its learned parameters was evaluated. Successful network configuration was then tested on 
9765 images from the control group and 10,036 images from the ALS group. For each single transversal slice in 
the MRI examination, an image sample consisting of a lossless grayscale image (Fig. 1a) and corresponding mask 
(Fig. 1b) segmented using reference method was created. The segmented mask contains three classes of pixels 
including the SAT (pixel values of 255), the VAT (pixel values of 127), and the background (pixel values of 0).

The proposed method is based on an encoder-decoder U-net architecture, consisting of a convolutional part 
downsampled with the maxpool layer and strided transposed convolutional upsampling part in combination 
with drop out regularization. The architecture of the proposed network visualized with Net2Vis  tool27 is shown 
in Fig. 6. In contrast to original architecture, three down-sampling steps were used and the number of feature 
channels in the contracting path was reduced to 16, 32, and 64, respectively. The model was implemented in 
Keras and trained on the introduced training dataset on a GeForce GTX 1060 6 GB GPU for 15 epochs with the 
batch size of 16 samples per pass with the adaptive moment estimation algorithm. Categorical cross-entropy was 
used as a loss function for multi-class semantic segmentation.

Figure 6.  Architecture of proposed encoder-decoder convolutional neural network. It takes an image of 
384 × 384 pixels resolution and process it in several convolutional, pooling, transposed convolutional and 
concatenation layers, before the final pixelwise semantic segmentation is performed with the “softmax” 
activation in the last classification layer.
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Performance evaluation and fat quantification. The segmentation performance of the network was 
evaluated in terms of average dice similarity coefficients calculated through all slices in all examinations in both 
validation and test datasets as spatial overlap between the predicted (P) and reference (R) segmentation for a 
given class. The dice score index is defined as:

where |R| and |P| represent the number of elements in each label map and |RP| the number of intersecting 
elements.

Further average pixel error in percentage was calculated through all slices for all examinations as number of 
pixels which are not intersecting in predicted and reference label maps in relation to image size in pixels:

where E denotes the error, W and H denote the image width and height.
Pixelwise computation of segmented SAT and VAT through all slices of a single test object was performed 

for volumetric quantification of the corresponding fat compartments with both methods.

Statistical analysis. Statistical analysis was performed using  Microsoft®  Excel® 2019 MSO and Python library 
SciPy version 1.6.1 including statistical analysis module. Continuous data were presented as mean ± standard 
deviation (SD) or median (range) and categorical numbers with percentages. Comparisons between two groups 
were conducted using a two-tailed Student’s t-test. A two-tailed p-value of less than 0.05 was considered statisti-
cally significant. Associations to clinical parameters disease duration, ALSFRS-R score, and disease onset were 
calculated by Pearson correlation.

Ethical approval. All human studies have been approved by the appropriate ethics committee and have 
therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Hel-
sinki and its later amendments. The ethical review committee of the University of Ulm approved this study (# 
179/2008).

Informed consent. Informed consent was obtained from all individual participants included in the study.

Data availability
The original contributions presented in the study are included in the article, further inquiries can be directed 
to the corresponding author/s.
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