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Motor tract reorganization after acute central nervous 
system injury: a translational perspective 

Hajime Takase1, 2, *, #, Robert W. Regenhardt3, #

Abstract  
Acute central nervous system injuries are among the most common causes of disability 
worldwide, with widespread social and economic implications. Motor tract injury accounts 
for the majority of this disability; therefore, there is impetus to understand mechanisms 
underlying the pathophysiology of injury and subsequent reorganization of the motor tract 
that may lead to recovery. After acute central nervous system injury, there are changes 
in the microenvironment and structure of the motor tract. For example, ischemic stroke 
involves decreased local blood flow and tissue death from lack of oxygen and nutrients. 
Traumatic injury, in contrast, causes stretching and shearing injury to microstructures, 
including myelinated axons and their surrounding vessels. Both involve blood-brain barrier 
dysfunction, which is an important initial event. After acute central nervous system injury, 
motor tract reorganization occurs in the form of cortical remapping in the gray matter 
and axonal regeneration and rewiring in the white matter. Cortical remapping involves 
one cortical region taking on the role of another. cAMP-response-element binding protein 
is a key transcription factor that can enhance plasticity in the peri-infarct cortex. Axonal 
regeneration and rewiring depend on complex cell-cell interactions between axons, 
oligodendrocytes, and other cells. The RhoA/Rho-associated coiled-coil containing kinase 
signaling pathway plays a central role in axon growth/regeneration through interactions 
with myelin-derived axonal growth inhibitors and regulation of actin cytoskeletal dynamics. 
Oligodendrocytes and their precursors play a role in myelination, and neurons are involved 
through their voltage-gated calcium channels. Understanding the pathophysiology of injury 
and the biology of motor tract reorganization may allow the development of therapies 
to enhance recovery after acute central nervous system injury. These include targeted 
rehabilitation, novel pharmacotherapies, such as growth factors and axonal growth 
inhibitor blockade, and the implementation of neurotechnologies, such as central nervous 
system stimulators and robotics. The translation of these advances depends on careful 
alignment of preclinical studies and human clinical trials. As experimental data mount, the 
future is one of optimism.
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Introduction 
Acute central nervous system (CNS) injury, including stroke 
and traumatic brain/spinal cord injury, is among the most 
important health concerns worldwide (Chauhan, 2014; 
Regenhardt et al., 2020; Rupp, 2020). Acute CNS injury 
represents a common medico-social and economic problem 
that affects all ages, leading to chronic functional disability 
with long-term social support implications (Christensen et 
al., 2009; Farhad et al., 2013; Feigin et al., 2014). Among the 
various neurofunctional disturbances caused by acute CNS 
injury, motor impairment may represent the largest burden 
to patients (Bolay and Dalkara, 1998). While the CNS may 
have some tolerability or reserve against insult, restorative 
capacities in the adult are limited. Moreover, motor neurons 

and long tracts are vulnerable, especially to mechanical 
(traumatic), hypoxic (ischemic) or oxidative stress. Directly or 
indirectly, CNS insult results in damage to cells, fibers and/
or surrounding vasculatures via many mechanisms, including 
stretching, oxidation, and alternation of cell membranes. 
Furthermore, the corticospinal tract (CST) may represent 
a particularly high risk structure anatomically, given it is 
extremely dense with prototypical long axons extending from 
the cerebral cortex to the spinal cord. A primary hurdle in 
translating advances in the science of stroke and traumatic 
CNS injury is to understand the spatiotemporally complex 
and dynamic pathophysiology involved. Furthermore, 
spontaneous repair processes, which may represent targets 
for future therapies, may be different depending on injury 
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severity, brain regions involved, or cause of injury (Regenhardt 
et al., 2020). Understanding processes following acute CNS 
injury of the motor tract and its surroundings is crucial 
to enhance reorganization/recovery and improve clinical 
outcomes. 

In this review, we summarize critical events and molecular 
mechanisms underlying acute CNS injury in both clinical and 
experimental studies. We address blood-brain barrier (BBB) 
dysregulation as an important initial event after acute CNS 
injury. Then, we focus on the molecular mechanisms related 
to CST reconstruction, including cortical remapping in gray 
matter and motor tract reorganization in white matter. Within 
the white matter microenvironment, we describe molecular 
mechanisms of myelin-axon cell-cell interactions that play 
a central role in the inhibition of axonal regeneration. 
Interactions among other cell types, such as astrocytes, 
microglia and endothelial cells, during the reorganization 
of the motor pathway, have been reviewed in greater detail 
elsewhere (Toy and Namgung, 2013). Lastly, we discuss 
potential strategies and therapeutic interventions to promote 
motor tract reorganization and improve functional recovery 
after acute CNS injury.  

Search Strategy and Selection Criteria
The articles reviewed in this manuscript were retrieved by 
electric search in PubMed (https://www.ncbi.nlm.nih.gov/
pubmed/) for literatures focused on motor tract reorganization 
after ischemic or traumatic brain injury. Keywords for 
searching were motor tract, axonal regeneration, rewiring, 
reorganization, repair, white matter, spinal cord, ischemia, 
stroke, traumatic brain injury, spinal cord injury, rehabilitation, 
cortical mapping, microenvironment. Date of searching was 
2019.

Changes in Microenvironment and Structure of 
the Motor Tract after Acute CNS Injury
The principal system for fine and skilled motor control in 
primates, including humans, is the CST. Therefore, damage 
to the CST caused by acute brain or spinal cord injury results 
in decreased quality of life through motor impairment. 
The two major forms of acute CNS injury are stroke and 
traumatic brain/spinal cord injury. While they are initiated 
by different processes, they share a key pathologic feature 
of BBB or blood-spinal cord barrier dysfunction (Prakash 
and Carmichael, 2015). Once this barrier is disrupted, there 
is significant progression of tissue damage (Liebner et al., 
2018). Therefore, it is important to understand the early 
molecular, cellular and tissue events that affect the BBB after 
acute CNS injury. Developing therapies to stabilize the BBB 
acutely (e.g., by blocking hypoxia inducible factor-1α (HIF-
1α) initiated processes or protecting endothelial cells) may 
prevent a malignant cycle of deleterious events across injury 
mechanisms. Indeed, recent preclinical studies have shown 
HIF-1α blockade exerts protective effects by regulating several 
downstream processes (Shen et al., 2018; Wang et al., 2019). 
However, later events after BBB disruption, while the CNS is 
transitioning from injury to recovery, are also crucial for the 
development of potential clinical interventions. Interestingly, 
despite the different initial causes of injury from stroke and 
traumatic brain injury (TBI), a similar biphasic pattern of early 
and late BBB impairment is seen (Prakash and Carmichael, 
2015). 

Ischemic stroke, which comprises 80–90% of all human 
strokes, is characterized by a sudden reduction in local 
cerebral blood flow (Prakash and Carmichael, 2015). 
Although the pathophysiology of ischemic stroke is extremely 
heterogeneous and may differ between experimental models, 
vessel pathologies, and infarct sizes/locations, a biphasic 
time course of BBB dysregulation is believed to be a common 

underlying mechanism consisting of early hyperpermeability 
(4–6 hours after ischemic onset) and delayed BBB opening 
(2–3 days) (Kuroiwa et al., 1985; Rosenberg et al., 1998). In 
the early phase, cerebral blood flow is decreased by arterial 
narrowing or occlusion. The hypoxic condition and adenosine 
triphosphate (ATP) loss at the cellular and tissue level induce 
hypoxia inducible factor-1α (HIF-1α), leading to increased 
activated matrix metalloproteinase-2. This causes transient 
and reversible BBB opening and vasogenic edema in the 
first hours (Belayev et al., 1996; Asahi et al., 2000, 2001; 
Candelario-Jalil et al., 2009; Yang and Rosenberg, 2011). 
After this initial BBB opening, ischemia-reperfusion-related 
metabolites, such as free radicals and reactive oxygen species, 
also damage endothelial cells leading to further BBB injury. 
Subsequently, inflammatory cytokines, such as tumor necrosis 
factor-α and interleukin-1β, secreted from activated microglia 
in the ischemic core or the peri-infarct area induce activated 
matrix metalloproteinase-9 leading to secondary BBB damage 
(Asahi et al., 2000; Seo et al., 2012; Maki et al., 2013). This 
secondary damage after stroke is often more severe than the 
initial injury and is believed to be irreversible (Shi et al., 2016). 

In contrast to stroke, the acute phase of TBI involves a 
traumatic force applied to microstructures, including 
myelinated axons and their surrounding vessels. As structures 
are stretched, there is shearing injury, disruption of 
endothelial junctions, and enlarging of intercellular spaces. 
These mechanical injuries lead to further damage of the 
brain microenvironment, often resulting in micro- or macro-
bleeding which can further compress the microvasculature 
and decrease focal cerebral blood flow (Shlosberg et al., 
2010). These vascular changes last only several hours in the 
acute phase; however, they can occur in vessels of various 
sizes and result in further variable BBB dysregulation. 
Secondary injuries involving inflammation, edema, and cellular 
hyper-excitability occur several days after TBI. These changes 
in the perineuronal (periaxonal) or microvascular environment 
result in the dysregulation of normal neurovascular coupling 
and neuronal function (Shlosberg et al., 2010). 

Oxygen and nutrient deprivation, especially after stroke, 
causes inhibition of ATP production and inactivation of ATP 
dependent ion transport. BBB disruption-derived molecular 
processes primarily and secondarily induce other various 
pathological processes, such as edema, immune responses, 
and genetic changes (Lo et al., 2005; Simard et al., 2007). 
There is an increase of intracellular calcium concentration, 
resulting in cellular over-excitation, cytotoxic edema, and 
apoptotic cell death. Activation of these pathways within 
primary motor cortex adversely affects motor performance 
in preclinical models and humans (Bolay and Dalkara, 1998; 
Cirstea et al., 2011). Neurons exist in a variety of sizes and 
express a large spectrum of properties. These differences 
likely imply unique energy demands. Large pyramidal cells 
in the primary motor cortex, which must maintain energy-
consuming processes such as ion pumping across membranes 
and axonal transport along significant distances, have 
considerably larger energy requirements than local inter 
neurons. Thus, motor neurons are especially sensitive to 
decreases in ATP supply (Squire et al., 2002). Efficient ATP 
supply or metabolic modification in the motor tract during the 
acute phase of injury may be helpful to protect the tract and 
may have implications for its reorganization.

It is important to note there are several differences and 
similarities between the brain and spinal cord regarding the 
damage and recovery of motor axons. Epidemiologically, 
stroke and trauma affect both the brain and spinal cord, but 
stroke is less common in the spinal cord due to its extensive 
vascular collateral system (Weidauer et al., 2015; Romi and 
Naess, 2016). At the molecular level, several types of voltage-
gated calcium channels (VGCCs) are involved in motor neuron 
injury and axonal regeneration both in the brain and spinal 
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cord (Mahar and Cavalli, 2018). However, recent studies 
indicate a particular subunit of VGCCs may play a key role in 
motor neuron plasticity within the spinal cord (Tedeschi et al., 
2016; Marcantoni et al., 2020; Sun et al., 2020). The brain and 
spinal cord also share other inhibitory mechanisms, such as 
mitogen-activated protein kinase- or myelin-derived axonal-
growth inhibitor (MAI)-related pathways. 

Types of Motor Tract Reorganization after Acute 
CNS Injury
Very severe motor disturbances following large cortical 
strokes may not show meaningful recovery (Biernaskie et 
al., 2005). However, clinical and experimental studies have 
shown that most motor disturbances do show spontaneous 
recovery within days to weeks. One mechanism of recovery is 
remapping primary motor cortex if the cortical lesion is limited 
(Liepert et al., 2000; Starkey et al., 2012). Interestingly, even if 
cortical damage is relatively large, gene expression is altered 
to promote axonal regeneration and prevent degeneration, 
which may enhance motor recovery via compensational 
axon sprouting from the non-denervated side in the white 
matter or spinal cord (Takase et al., 2017). Thus, there are two 
primary processes important for plasticity in motor function: 
(a) cortical remapping in the gray matter, and (b) axonal 
regeneration and rewiring of motor pathway in the white 
matter and spinal cord.

Cortical remapping
Cortical remapping, also referred to as cortical reorganization, 
was originally described in the 1970s within the sensory 
system. This compensatory process involves a change in the 
functional map of the cortex whereby cortical function can be 
relocated to a different cortical region after damage (Paul et 
al., 1972). Subsequently, cortical remapping of somatosensory 
inputs was investigated in other studies, including phantom 
limb pain and tinnitus investigations (Liepert et al., 2000). 
In turn, cortical remapping for outputs (motor function) 
was examined (Liepert et al., 2000). Motor pathway cortical 
remapping is less understood given its more complicated 
interpretation. Cortical upper motor neurons do not directly 
activate muscles but synapse on lower motor neurons in 
the brain stem and spinal cord. Changes in these regions are 
challenging to assess in vivo (Wittenberg, 2010). Furthermore, 
there is evidence to suggest remapping of the primary motor 
cortex may be restricted in adults compared to the sensory 
cortex. This may be related to primary motor cortex neurons’ 
dependence on single long axons to the cord, while sensory 
neurons have several potential pathways for remapping before 
signals reach the sensory cortex in the opposite direction 
(Wittenberg, 2010). 

Cortical remapping may be related to changes in excitability. 
After injury,  excitabi l i ty  within the motor cortex is 
reduced. Studies suggest this reduction is associated with 
disadvantageous reorganization and impaired motor function 
(Liepert et al., 2000). Among the limited mechanistic findings 
associated with motor cortical remapping to date, cAMP-
response-element binding protein (CREB) appears to be a 
key transcription factor involved with changes in excitability. 
Increasing CREB by utilizing lentiviral transfection to rodent 
motor neurons in the peri-infarct has been shown to enhance 
cortical circuit plasticity and motor recovery after small 
cortical stroke (Caracciolo et al., 2018). Other rodent studies 
have demonstrated that distant areas, such as premotor (Frost 
et al., 2003) and contralateral primary motor cortex (Biernaskie 
et al., 2005), may play a role in plasticity after large cortical 
strokes. One study showed that cortical remapping may occur 
even after spinal cord injury (SCI) via Wnt-Ryk signaling (Hollis 
et al., 2016). Within the peri-infarct and other regions of 
plasticity, other proteins have been reported to be related to 
axonal growth and synaptogenesis, such as growth associated 

protein 43, thrombospondins 1 and 2 and additional growth 
factors (Stroemer et al., 1995; Liauw et al., 2008). 

Despite limited evidence of cortical remapping in humans, 
several propose that rehabilitation may be efficacious 
through the induction of a use-dependent reorganization that 
counteracts adverse brain function changes (Weiller et al., 
1993; Duncan, 1997; Traversa et al., 1997; Liepert et al., 2000). 
Future studies must consider how preclinical models relate 
to the human condition as there are differences in functional 
anatomy between species. Importantly, fine motor control is 
less direct with more opportunities for remapping in rodents 
or even non-human primates compared to humans. Distal 
limb movements in humans rely less on the supplementary 
motor area and the premotor cortex (Wittenberg, 2010). 

White matter reorganization: axonal regeneration and 
rewiring
During development, axon generation, changes in synaptic 
connections, and axonal “wiring” are normal phenomena. 
However, in the adult CNS plasticity is restricted by several 
inhibiting signals, such as acute cellular actions related to 
calcium influx or slower injury signaling mediated by mitogen-
activated protein kinase (as introduced above) (Mahar and 
Cavalli, 2018). Among them, perhaps the most promising 
examples in translation are MAIs, such as Nogo-A, myelin-
associated glycoprotein, and oligodendrocyte-myelin 
glycoprotein (Kempf and Schwab, 2013). These are secreted 
from mature oligodendrocytes after acute CNS injury and 
negatively affect axonal regeneration and reorganization of the 
motor pathway via RhoA/Rho-associated coiled-coil containing 
kinase (ROCK) signaling. This process is associated with 
inflammatory cytokines and degenerative factors from glial 
scar that forms after acute ischemic/traumatic injury. Animal 
studies have demonstrated that immunotherapy or gene 
modification targeting these myelin-derived inhibitors (or their 
neuronal receptor complexes: NgR1, p75, TROY and LINGO1) 
can lead to motor tract reorganization after CNS injury by 
enhancing axonal projection from the contra-lesional motor 
tract to ipsi-lesional nuclei in the brainstem or from the non-
denervated side to the denervated side of the spinal cord (Tsai 
et al., 2011; Takase et al., 2017; Ueno et al., 2020). This injury-
inducible compensatory motor recovery is robustly observed 
in rodents and to a greater extent with larger stroke and more 
severe TBI (Gonzalez et al., 2004; Zhang et al., 2010; Takase 
et al., 2017). The MAIs/RhoA/ROCK signaling pathway may be 
involved in plasticity within other brain structures, such as the 
hippocampus (Kempf and Schwab, 2013; Jitsuki et al., 2016). A 
phase 1 clinical trial examining a recombinant human antibody 
against Nogo-A has shown the antibody therapy to be safe and 
well tolerated (Zorner and Schwab, 2010; Kucher et al., 2018). 
A phase 2 trial is ongoing for patients with acute cervical SCI 
(https://clinicaltrials.gov/ct2/show/NCT03935321). 

RhoA/ROCK signaling also plays a critical role regulating actin 
cytoskeletal dynamics by phosphorylating diverse downstream 
targets and affecting many intracellular processes (Sladojevic 
et al., 2017). ROCKs, normally inactive in the cytoplasm, can 
be activated by stresses-induced Rho and arachidonic acid. 
Activated ROCKs regulate phosphorylation of myosin light 
chain. Phosphorylated myosin light chain accelerates the 
actin-myosin interaction to induce stress fiber formation, 
which results in growth cone collapse, neurite retraction and 
even smooth muscle contraction. While direct evidence of 
motor tract reorganization by RhoA/ROCK inhibition after CNS 
injury has not been sufficiently demonstrated, there are data 
demonstrating improved motor outcomes (Mulherkar et al., 
2017). 

Overactivation of ROCKs during the acute phase of injury also 
stimulates the inflammatory response and reduces endothelial 
nitric oxide (NO) synthase (eNOS) (Rikitake et al., 2005). 
Phosphorylated (functional) eNOS has protective functions 
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by producing NO, which regulates the vascular tone and has 
antithrombotic effects (Sawada and Liao, 2009). In stroke 
and SCI, ROCK activation stimulates neutrophil/leukocyte 
infiltration through reactive oxygen species production. 
Moreover, ROCK activation in microglia stimulates cytokine 
production. Importantly, these neuroinflammatory reactions 
also negatively affect BBB regulation, leading to vascular 
contraction and increased permeability or hemorrhagic 
transformation after stroke(Ishiguro et al., 2012). Although 
some ROCKs may have dual roles in cell survival and apoptosis 
(Julian and Olson, 2014), therapy with ROCK inhibitors, such 
as Fasudil, has been shown to reduce infarct volume and 
improve neurological outcome after SCI in experimental 
animals (Fournier et al., 2003). Furthermore, early clinical 
trials suggest improved neurological function in humans 
(Shibuya et al., 2005). In addition to phase 2/3 trials for the 
treatment of SCI, drug repurposing studies using statins to 
inhibit the RhoA/ROCK pathway are also ongoing (Fehlings et 
al., 2018). 

In addition, oligodendrogenesis and remyelination are crucial 
for motor tract reorganization in white matter, as axonal 
regeneration alone is insufficient for recovery after acute 
CNS injury. Among many functions, oligodendrocytes support 
and regulate axons by producing myelin for increased action 
potential conduction, providing metabolic support, and 
stabilizing the axon cytoskeleton (Greer et al., 2011; Meyer et 
al., 2018). Conversely, axons also regulate oligodendrocytes 
and their precursor cells via the AMPA-receptor subunit 
GluA2 (Chen et al., 2018). An in vitro study demonstrated 
that oligodendrocytes preferentially myelinate electrically 
active axons (Wake et al., 2015). This axon-oligodendrocyte 
crosstalk modulates the signal conduction speed in an 
activity-dependent manner and highlights the role of 
oligodendrocytes as plasticity enhancers. While injury to white 
matter can be devastating given these complex interactions, 
there are potent self-repairing processes after CNS injury. 
With acute traumatic injury in a rodent model, there is active 
proliferation of oligodendrocyte precursor cells (OPCs) located 
in the white matter and derived from neural stem cells in the 
subventricular zone (Takase et al., 2018). In humans, increased 
OPCs at sites of ischemic brain pathology have been observed 
postmortem. However, only a fraction of proliferating OPCs 
become mature functional oligodendrocytes and contribute to 
remyelination (rewiring). Furthermore, there is an age-related 
decline in normal oligodendrogenesis. Interestingly, a recent 
study demonstrated the possibility of exercise to increase 
OPCs in white matter as a potent therapy for neural circuit 
remodeling (Ohtomo et al., 2019). More recent advances 
have been made understanding the role of VGCCs on neurons. 
VGCCs are widely expressed in excitable cells and involved in 
an array of various cellular processes. The α2δ subunit type 
of VGCCs is specifically expressed in neurons. One of the four 
α2δ subunits, α2δ2, has been shown in adult mouse neurons 
to suppress axonal growth and regeneration in a novel and 
robust study of large-scale transcriptome sequencing (Tedeschi 
et al., 2016). Furthermore, administration of α2δ ligands, 
such as clinically used pregabalin and gabapentin, can block 
this channel and promote regeneration of not only ascending 
sensory axons but also descending CST projections after SCI 
(Sun et al., 2020). Since the role of VGCC α2δ subunits has not 
been well studied in other CNS injuries, such as stroke or TBI, 
future studies are warranted.

Rehabilitation and Other Factors Enhancing 
Motor Tract Reorganization
Previous studies have shown motor tract reorganization and 
recovery after acute CNS injury with various therapies, such 
as blocking axonal-growth inhibitors, administration of growth 
factors for axonal regeneration, electrical CNS stimulation, 
transplantation of stem cells, and post-injury rehabilitation 

(Regenhardt et al., 2020). Among them, rehabilitation may 
be more important than ever. Several studies examining 
rehabilitative training after ischemic or traumatic injury 
suggest there is significant benefit and describe potential 
mechanisms that may contribute to CST remodeling. 
Importantly, unlike pharmacotherapies there are few side 
effects and minimal risk with rehabilitation. Moreover, 
rehabilitation therapies are often tailor-made for each 
patient (Fukuda et al., 2016). The molecular underpinnings 
of its effects are gradually becoming elucidated. Okabe et al. 
(2017) suggested a possible mechanism may include therapy-
induced increases in neural activity that increases production 
of trophic factors, such as brain-derived neurotrophic factor 
or ciliary neurotrophic factor. These factors may render the 
microenvironment more suitable for axonal remodeling (Okabe 
et al., 2017). A rodent model of intracerebral hemorrhage 
showed constraint induced movement therapy (CIMT), a 
routinely used clinical therapy originally developed in non-
human primates (Taub et al., 1999), demonstrated motor-
related reorganization from the ipsi-lesional hemisphere 
(Ishida et al., 2016). A more recent study utilizing a rat model 
of ischemic stroke revealed that CIMT in the subacute phase 
leads to MRI changes in the internal capsule consistent with 
augmentation of white matter remodeling and accelerated 
motor recovery of the phenotype (Hu et al., 2019). Regarding 
molecular mechanism, another rodent study of cerebral 
ischemia demonstrated significant decreases in p-ERK by 
CIMT (Zhang et al., 2015). While interpretation is challenging 
since p-ERK has both beneficial and detrimental effects, 
this example illustrates the complex interplay between 
rehabilitation, structural CNS remodeling, and molecular 
changes. 

Translational Perspective and Conclusion
In conclusion, stroke and traumatic brain/spinal cord injury 
are among the most common causes of disability worldwide, 
having an extensive impact on quality of life for affected 
patients, social support systems, and the economics of 
healthcare (Christensen et al., 2009; Farhad et al., 2013; Feigin 
et al., 2014). Most of this disability is related to motor tract 
injury. Therefore, understanding the acute changes in the 
motor tract and its reorganization after injury is paramount to 
develop therapies to enhance motor tract reorganization and 
promote recovery (Figure 1).

The microenvironment and structure of the motor tract are 
altered depending on injury mechanism. After ischemic stroke 
tissue injury occurs secondary to decreased blood flow and 
oxygen/nutrient deprivation. After traumatic injury tissue is 
injured stretching and shearing of microstructures, including 
myelinated axons and their surrounding vessels. While 
different, there are similarities in injury pathophysiology, 
and these similarities may serve as ideal targets for novel 
therapeutics. One such similarity is BBB dysregulation. This 
is a key step in the pathophysiology of both stroke and 
traumatic injury. Developing therapies to stabilize the BBB, 
especially acutely, may prevent a chain reaction of deleterious 
events across injury mechanisms. As described above, HIF-
1α blockade exerts protective effects by regulating several 
downstream processes and is currently under investigation for 
translation (Shen et al., 2018; Wang et al., 2019).  

Treatments with the potential for pleiotropic effects should be 
prioritized for future studies, such as agents to modulate both 
cortical remapping in the gray matter and axonal rewiring in 
the white matter. CREB enhances cortical excitability (Dong 
et al., 2006; Han et al., 2006), cortical re-mapping, and 
recovery (Caracciolo et al., 2018), but it also regulates axonal 
outgrowth (Xu et al., 2011; Clarkson et al., 2015). Moreover, 
RhoA/ROCK signaling is involved in inhibitory pathways of 
axonal regeneration, but also has a critical role in cytoskeletal 
dynamics, inflammation, and BBB regulation (Ishiguro et al., 
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2012). Agents with multiple target effects (e.g., NgR1 blocking 
decoy for multiple inhibitory ligands of axonal regeneration) 
may be more likely to translate into highly efficacious 
therapies for patients. 

In addition to pharmacotherapies, improved understanding 
of these biological processes can also aid in the development 
of improved rehabilitation strategies. Translation of new 
therapies developed in preclinical models has precedent with 
CIMT. To improve understanding of mechanisms underlying 
rehabilitation, reverse translation approaches to model 
rehabilitation in the lab are under study. Using a rodent model 
of stroke, extensive reach training therapy has been shown to 
promote recovery when started early but not when started 
late. However, if a second stroke is induced this appears 
to re-open a time limited window of heightened plasticity 
(Zeiler et al., 2016). Furthermore, the translation of other 
novel neurotechnology to augment recovery is under study 
(Regenhardt et al., 2020). The utility of transcranial magnetic 
stimulation and other CNS stimulators is being explored with 
mixed data (Hsu et al., 2012; Hao et al., 2013). 

While there are many promising avenues of ongoing study, 
there are important hurdles to overcome for the successful 
translation of therapies into clinical practice. Timing is 
key; agents may have strong beneficial effects but can be 
deleterious if administered too early or ineffective if too late. 
Furthermore, a thorough understanding of each disease 
model’s biology must be carefully compared to the human 
condition for effective translation. Anatomy, physiology, 
lesion size/location, inflammatory/immunological responses, 
gene expression profiles, and transcription factors vary 
across species and disease models (Courtine et al., 2007). 
Among them, less developed white matter in rodents is a 
key consideration for CNS reorganization. There are many 
experimental design considerations to enhance alignment 
between preclinical studies and human trials (Corbett et al., 
2017). With diligent reflections on past lessons and mounting 
preclinical data, this new decade holds much optimism for the 
translation of novel therapies.  
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