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Abstract: The brain–computer interface (BCI) spellers based on steady-state visual evoked potentials
(SSVEPs) have recently been widely investigated for their high information transfer rates (ITRs).
This paper aims to improve the practicability of the SSVEP-BCIs for high-speed spelling. The system
acquired the electroencephalogram (EEG) data from a self-developed dedicated EEG device and
the stimulation was arranged as a keyboard. The task-related component analysis (TRCA) spatial
filter was modified (mTRCA) for target classification and showed significantly higher performance
compared with the original TRCA in the offline analysis. In the online system, the dynamic stopping
(DS) strategy based on Bayesian posterior probability was utilized to realize alterable stimulating
time. In addition, the temporal filtering process and the programs were optimized to facilitate the
online DS operation. Notably, the online ITR reached 330.4 ± 45.4 bits/min on average, which is
significantly higher than that of fixed stopping (FS) strategy, and the peak value of 420.2 bits/min is
the highest online spelling ITR with a SSVEP-BCI up to now. The proposed system with portable
EEG acquisition, friendly interaction, and alterable time of command output provides more flexibility
for SSVEP-based BCIs and is promising for practical high-speed spelling.

Keywords: brain–computer interface (BCI); steady-state visual evoked potential (SSVEP); practical;
dynamic stopping (DS); modified task-related component analysis (mTRCA)

1. Introduction

Brain–computer interfaces (BCIs) allow users to communicate with the external devices by
converting brain signals into commands [1,2]. BCIs can help people with neuromuscular diseases to
improve the life quality [3] or help special appliance operators like astronauts whose movements were
restricted by the environment to work more efficiently [4,5]. As a kind of brain signal that owns high
temporal resolution and convenience of acquisition, electroencephalogram (EEG) is welcomed by BCI
researchers. Event-related potentials (ERPs) [6,7], steady-state visual evoked potentials (SSVEPs) [8,9],
and event-related desynchronization/synchronization (ERD/ERS) [10,11] are typical EEG features used
in BCI researches.

Of these features SSVEPs that were induced by repetitive stimuli are widely employed in cognitive
research and high-speed BCI systems for their high stability and signal-to-noise ratio (SNR) [12,13].
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Researchers payed great efforts on the performance improvement of SSVEP-based BCIs in recent years,
which mainly focused on the number of targets and target recognition algorithms. In order to increase
the number of targets, a variety of novel coding methods were proposed, e.g., frequency shift keying
(FSK) method that encodes commands into binary digits with two frequencies [14], intermodulation
frequencies method that uses additional modulation frequencies [15], and hybrid coding methods that
combine other EEG features such as P300 [16,17], etc. In particular, joint frequency-phase modulation
(JFPM) method has been proved to improve the separability between targets and achieve high-speed
SSVEP-BCI systems [18]. With regard to algorithms, various kinds of identification algorithms were
applied in the SSVEPs-based BCIs [19], e.g., canonical correlation analysis (CCA) [20] and its various
optimizations [21,22], multivariate synchronization index (MSI) [23], maximal-phase-locking value and
minimal-distance (MP and MD, respectively) [24], and task-related component analysis (TRCA) [25],
etc. Thanks to the endeavor in the encoding and decoding methods, the SSVEP-based BCIs have
achieved the highest information transfer rate (ITR) among the noninvasive BCI paradigms.

Although many high-speed systems based on SSVEPs have been established in previous studies,
it is meaningful to enhance the practicability of the systems for spelling in real life. For example, most of
these studies used EEG devices designed for research in the laboratory [9,21,22,25], such as Neuroscan
Synamps2 system. The research-grade devices possess excellent signal amplification performance and
diverse functions, whereas most of the functions are superfluous for a practical BCI system and push
up the cost. In addition, the 5 × 8 matrix layout was popular in previous SSVEP-based spellers and
the users needed to remember the location of each command before the experiment, which increases
the workload and slows down the spelling. Furthermore, these systems used fixed stimulating time,
i.e., the fixed stopping (FS) strategy. As is known in the P300-based BCIs, the dynamic stopping
(DS) strategy enables the self-check of recognition confidence for a BCI system so as to quicken the
output when it is confident about the result, whereas keep acquiring data when the correctness of
the decision is not sure [26,27]. A few studies have tested the performance of DS strategy in an
SSVEP-based BCI [28–30], but it was evaluated by offline analyzing the offline collected EEG data
like an online experiment. The feasibility of real-time DS strategy in a practical online system needs
further verification.

The goal of this study was to design a high-speed SSVEP-based BCI system for practical use.
Figure 1 is the block diagram of our system. The novelty of our system was reflected from several
aspects. Firstly, we simplified the acquisition by developing a dedicated low-cost EEG amplifier with
self-designed circuit and optimized the stimulation by arranging the instructions like a keyboard that
would be familiar to users. Secondly, in order to extract the SSVEPs more effectively for a high-speed
system, the standard forward filtering was applied instead of the frequently-used zero-phase filtering
for reliable online noise reduction and the TRCA spatial filter was modified (named mTRCA) to
enhance the target recognition. Last, but not the least, the DS strategy based on Bayesian posterior
probability was incorporated into the system to obtain flexible stimulating time and improve the ITRs.

As the trial duration of a SSVEP-BCI is much shorter than that of a P300-BCI due to the different
coding schemes, three issues were concerned for real-time DS in an online SSVEP-BCI. The first concern
is the unfixed stimulating time caused by the immediate stopping of stimulus after satisfying the
output condition in DS strategy. As most users have been used to fixed stimulating time in normal FS
BCIs, the sudden stopping of stimulating might distract the attention of users and delay the shifting to
the next target; thus, leading to the performance decline. Therefore, this study used unfixed stimulating
time in the offline calibration experiment to imitate the DS in online operation so that the subjects
could adjust to the unfixed timing, and the variation of EEGs could also be covered by the calibration
data. The second concern focused on the output condition of DS due to the fact that the probability
distribution might change with the stimulus frequency and data length. We raised an adaptive
threshold generating method that was easy to implement so as to fit the variation of probability
distribution. Another concern is that the real-time DS requires the system to perform the recognition
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algorithm in very short time. To this end, the programs of some key processes for recognition were
ported to C Mex from MATLAB for accelerating execution to ensure the real-time performance.Sensors 2020, 20, x FOR PEER REVIEW 3 of 17 
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Figure 1. Overview of the system framework. The stimulation was controlled by a computer, and the
electroencephalogram (EEGs) were acquired by a self-developed EEG amplifier. The stimulus onset
triggers and the EEG data were sent and received with user datagram protocol (UDP) and transmission
control protocol/internet protocol (TCP/IP), respectively. The EEG data were decoded by the computer
and the results were presented on the screen. The lower right is the circuit board of the EEG amplifier,
and the upper right shows the innovation of the EEG decoding.

2. Materials and Methods

2.1. Experimental Protocol

2.1.1. Stimulus Design for Practical Spelling

Figure 2a illustrates the design of the stimulation. The participants were seated at a distance of
60 cm from a liquid-crystal display (LCD) monitor with the refresh rate of 60 Hz. In order to make the
system friendly and practical for users, forty targets were rearranged as the pattern of a keyboard with
each target subtended 2◦ of visual angle. In particular, the keys of Backspace and Space were set longer
than on general keyboards. An output box was placed above the targets. The frequencies ranged from
8.0 to 15.8 Hz with an interval of 0.2 Hz and the phase interval between two neighboring frequencies was
0.35 π, which were in accordance with the JFPM method in previous studies. In addition, the frequency
approximation approach proposed by Wang et al. [31] was used to modulate frequencies and phases in
the monitor. The stimulation was developed on the MATLAB platform using the Psychtoolbox 3 [32],
and the stimulating onset triggers were sent to the EEG amplifier via user datagram protocol (UDP).
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Figure 2. The stimulus design of the 40-target steady-state visual evoked potential (SSVEP)-based
brain–computer interface (BCI) system. (a) Schematic of the stimulation, in which the 40 targets were
distributed according to the layout of a keyboard and the frequency and phase of each target were
marked out at upper left corner. The cue was presented to subjects as a yellow rectangle around the
target. (b) Trial timing diagram of the experiment. (c) Three kinds of EEG epochs corresponding to
different data lengths were obtained after offline experiment.

2.1.2. Experimental Procedure

Twelve healthy subjects (five males and seven females) aged 20 to 26 years old with normal
or corrected normal sight participated in this study. The study was conducted in accordance with
the Declaration of Helsinki and the experimental procedures were approved by the Institutional
Review Board at Tianjin University. The participants provided written consent after the details of the
experiment were explained. All the subjects participated in both the offline and online experiments.

Figure 2b shows the trial timing of the experiments. Each trial started with a rest period for 0.5 s,
followed by a flash stage. A yellow box would appear around the target as a cue. The subjects were
asked to shift their gaze to the target as soon as possible within the rest stage and focus on the dot
displayed at the center of the target within the flash stage. In order to acquire a model that were fit
with the unfixed stimulating time in DS situation, three kinds of stimulating time (0.32 s, 0.6 s, and 1 s)
were randomly used in offline stimulation. The offline calibration experiment consisted of six rounds,
with three kinds of stimulating time used for each of the 40 targets per round. Hence, the total trials were
40 × 3 × 6 = 720 and the total experimental time was 0.5 × 720 + (0.32 + 0.6 + 1) × 40 × 6 = 13.68 min.
The 720 trials were divided into 12 blocks with 60 trials in each block. After offline blocks, we could
obtain 18 EEG epochs between 0.2 s to 0.32 s, 12 epochs between 0.32 s to 0.6 s, and 6 epochs between
0.6 s to 1 s for each target, as shown in Figure 2c.
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The online experiment contained two sub-experiments. Firstly, a cue-guided experiment including
5 blocks was conducted and the subjects were asked to complete 40 trials corresponding to all 40 targets
in each block. When a stopping trigger was received from the algorithm (introduced in 2.4) during the
flash stage, the stimulation program would stop flashing and prompt the next target with the result
displayed in the output box at the same time. If the stimulating time reached 1 s without a stopping
trigger (trial 3 in Figure 2b), the program would treat the target as incorrect and prompt the next
one. A free spelling experiment was conducted following the cue-guided experiment. The subjects
were asked to input “TIANJIN UNIVERSITY 1895” two times without visual cues. The result of each
trial would be displayed in the output box and reported by voice as feedback. When an incorrect
input happened, the subjects should stare at the key of Backspace to remove the wrong character.
The gaze shifting time was determined according to the self-feeling of subjects after a tentative block
was completed.

2.2. EEG Recording and Preprocessing

2.2.1. EEG Acquisition System

The lower right of Figure 1 shows the circuit of the amplifier developed in this study. The device
was designed based on the analog front-end ADS1299 (Texas Instruments, Dallas, TX, USA), which owns
fine resolution delta-sigma ADC (24-bit), high common-mode rejection ratio (CMRR = −110 dB),
and low input-referred noise (1 µV). The chip has the function of electrode impedance measurement
that is important for EEG acquisition. Each ADS1299 supports up to 8 channels and two chips were
used in a daisy-chain configuration for 16-channel data collection in our research. The ADS1299 was
controlled by a STM32F407VET6 processor through serial peripheral interface (SPI). A W5500 ethernet
module was utilized to connect the processor with the computer via the local area network (LAN).
The system was powered by a Li-polymer Battery (Zhenfa ZF-103450, 2000 mAh). A metal shell was
used to package the device.

We designed a 16-channel EEG cap with Ag/AgCl electrodes placed at standard positions of
international 10–20 system. All channels were referenced to the vertex and grounded to prefrontal
lobe between FPz and Fz during acquisition. The EEG data from eleven channels around the occipital
area (P5, Pz, P6, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2) were used for analyses and online tests.
The EEG signals were sampled at 250 Hz and transmitted to the computer through transmission control
protocol/internet protocol (TCP/IP) for storing and analyzing.

2.2.2. EEG Preprocessing

In pre-processing, the data were notch filtered at 50 Hz and band-pass filtered between (m× 9− 2) Hz
and 90 Hz according to the filter bank strategy (m = 1,2,...,8 in this study). The filter parameters were
generated with Chebyshev Type I infinite impulse response (IIR) filter design method. The EEG epochs
were extracted in [0.14 s, 0.14 + t s] according to the onset triggers sent by the stimulation program,
with the latency delay in the visual system defined as 0.14 s.

2.3. Target Recognition Algorithm

2.3.1. Modified TRCA-Based Spatial Filter

For an EEG epoch X = (x1, x2, · · · , xNc)
T
∈ RNc×Nt , the spatial filtering process is to get a linear

sum of all channels:

y = wTX =

Nc∑
k = 1

wkxk
T
∈ R1×Nt (1)

Here, Nc indicates the number of channels, Nt is the number of sampling points and
w = (w1, w2, · · · , wNc)

T is the spatial filter vector. The spatial filter generated by TRCA has
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shown excellent performance in recent SSVEP-based BCI systems [25,30,33]. For frequency i, the TRCA
aims to maximize the reproducibility from trial to trial:

Ci = 1
Ni(Ni−1)

Ni∑
h1 = 1

Ni∑
h2 = 1

h1,h2

cov
(
y(h1)

i , y(h2)
i

)
= 1

Ni(Ni−1)

Ni∑
h1 = 1

Ni∑
h2 = 1

h1,h2

y(h1)
i y(h2)

i
T

= 1
Ni(Ni−1)

Ni∑
h1 = 1

Ni∑
h2 = 1

h1,h2

[
wi

TX(h1)
i

][
wi

TX(h2)
i

]T
= 1

Ni(Ni−1)

Ni∑
h1 = 1

Ni∑
h2 = 1

h1,h2

wi
TX(h1)

i X(h2)
i

Twi

= wi
T


1

Ni(Ni−1)

Ni∑
h1 = 1

Ni∑
h2 = 1

h1,h2

X(h1)
i X(h2)

i
T


wi = wi

TSiwi → max

(2)

where h indicates the index of training trials, and Ni is the number of training trials. The Si could be
written as follows:

Si = 1
Ni(Ni−1)

Ni∑
h1 = 1

Ni∑
h2 = 1

h1,h2

X(h1)
i X(h2)

i
T = 1

Ni(Ni−1)


Ni∑

h1 = 1

Ni∑
h2 = 1

X(h1)
i X(h2)

i
T
−

Ni∑
h1 = 1

Ni∑
h2 = 1

h1 = h2

X(h1)
i X(h2)

i
T


= 1

Ni−1

 1
Ni

Ni∑
h1 = 1

X(h1)
i

Ni∑
h2 = 1

X(h2)
i

T
−

1
Ni

Ni∑
h = 1

X(h)
i X(h)

i
T

 = 1
Ni−1

[
Ni ·XiXi

T
−Qi

]
(3)

in which Xi = 1
Ni

Ni∑
h = 1

X(h)
i represents the average across trials, and Qi = 1

Ni

Ni∑
h = 1

X(h)
i X(h)

i
T is then

used to constrain the variance that satisfies Var(y) = wi
TQiwi = 1.The TRCA can be formulated as

an eigenvalue problem,

ŵi = argmax
wi

wi
TSiwi

wiTQiwi
(4)

The aim of TRCA is to the maximize of intra-class correlation of each frequency. If the spatial filter
could also minimize the inter-class correlation between the current frequency and other frequencies,
the risk of misclassifying this frequency to the another one would be reduced. Hence, a modification
was conducted by employing the covariance Ci j between frequency i and j( j , i) in this study,

Ci j = 1
NiN j

Ni∑
h1 = 1

N j∑
h2 = 1

cov
(
y(h1)

i , y(h2)
j

)
= 1

NiN j

Ni∑
h1 = 1

N j∑
h2 = 1

wi
T
[
X(h1)

i X(h2)
j

T + X(h2)
j X(h1)

i
T
]
wi

= wi
T

 Ni∑
h1 = 1

N j∑
h2 = 1

1
NiN j

(
X(h1)

i X(h2)
j

T + X(h2)
j X(h1)

i
T
)wi = wi

TSi jwi → min

(5)

where Si j is defined as

Si j =

Ni∑
h1 = 1

N j∑
h2 = 1

1
NiN j

(
X(h1)

i X(h2)
j

T + X(h2)
j X(h1)

i
T
)
= XiX j

T + X jXi
T (6)
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Then the covariance matrix Si is modified as

S′i = 2Si −
1

N f − 1

N f∑
j = 1, j,i

Si j (7)

and the matrix Qi could be modified accordingly as

Q′i =
1
2

Qi +
1

N f − 1

N f∑
j = 1, j,i

Q j

 (8)

In this way, the mTRCA spatial filter ŵi could be derived from Equation (9) as the eigenvectors of
Q′i
−1S′i by solving the eigenvalue decomposition problem,

ŵi = argmax
wi

wi
TS′i wi

wiTQ′i wi
(9)

2.3.2. The mTRCA-Based Decoder

The spatial filter w(m)
i (i = 1, 2, . . . , N f ) were constructed for m-th sub-band based on the above

methods, followed by the ensemble of all spatial filters [25] as

W(m) =
[
w(m)

1 , w(m)
2 , . . . , w(m)

N f

]
∈ RNc×N f (10)

Then the average training data across trials of the i-th frequency χ(m)
i would be multiplied by

W(m) as the template. When a testing EEG epoch X(Test) was acquired, it would be temporally filtered
and spatially filtered, followed by the Pearson correlation coefficients with the templates calculated as
r(m)

i . The final coefficients ri were calculated by a weighted mean of the coefficients corresponding to
all sub-bands, as shown in Figure 3.
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2.4. DS Strategy

2.4.1. Probabilistic Model for DS Strategy

The Bayesian-based methods are commonly used in previous DS studies [29,30,34]. This study
followed this idea and proposed optimized procedures to construct a probabilistic model. For the
training data of frequency j, the correlation coefficients r ji could be calculated from Decoder [i,t] when
the data length was t. The coefficients were then normalized with the z-score method,

r̃i j =
ri j −mean(ri j)

std(ri j)
(11)

where

mean(ri j) =
1

N f

∑N f

i = 1
ri j, std(ri j) =

√√√∑N f

i = 1

[
ri j −mean(ri j)

]2

N f − 1
(12)

represents the average and standard deviation of the coefficients. In this way, we could obtain N f ×N f
kinds of coefficients as shown in Figure 4a. Suppose the correct prediction is written as H1, while the
incorrect prediction is written as H0. For Decoder [i,t], the likelihood probability density functions
(pdfs) of H0 and H1 could be estimated through Gaussian kernel density method as Pi(r|H0, t) and
Pi(r|H1, t), respectively.
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Figure 4. Key process of constructing a model for dynamic stopping: (a) the estimation of probability
density functions for each target, and (b) the method to calculate the adaptive thresholds.

In DS strategy, the command will be output if the probability reaches the threshold.
However, the proper threshold for each target might change with the stimulus frequency, leading to
unfitness of a fixed threshold in different cases. The grid-search method used in previous work [30]
might be time consuming. This study proposed an adaptive threshold generating method by utilizing
the pdfs of each decoder (Figure 4b). The correlation coefficients corresponding to the maximum of
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Pi(r|H0, t) and Pi(r|H1, t) were named as rH0
max and rH1

max, respectively. The left and right boundary value
were defined as the coefficients corresponding to a quarter of the maximum, and termed as rH0

L , rH0
R ,

rH1
L , and rH1

R , respectively. Then, the threshold of frequency i under data length of was defined as

p(th)i,t = 1−
dmax

d1 + d2
= 1−

rH1
max − rH0

max

(rH1
R − rH0

L ) + (rH0
L − rH1

R )
∈ (0, 1] (13)

The dashed line in Figure 4b marks the value of threshold. When the separability between the
two pdfs was low, as the upper right of Figure 4b shows, the threshold was set higher for the sake
of conservation. Conversely, if the two pdfs lived far from each other, it is easier to make the right
decision; hence, the threshold was set smaller as shown at the lower right of Figure 4b.

2.4.2. Procedure of Online Target Recognition with DS

Figure 5 is the process diagram of online recognition with DS strategy. The data length was set
as t = t0 (200 ms in this study) at the beginning. The new EEG data were fed into the filter bank
and Decoder [i,t] in turn to generate the correlation coefficients. After normalization, the r̃i were fed
into the corresponding pdfs and we could get the probabilities p(̃ri

∣∣∣H1, t) and p(̃ri
∣∣∣H0, t). The posterior

probabilities could be calculated via the Bayesian formula.

pi(H0
∣∣∣̃r, t) =

p(H1)p(̃ri
∣∣∣H1, t)

p(H1)p(̃ri
∣∣∣H1, t) + p(H0)p(̃ri

∣∣∣H0, t)
(14)

The prior probabilities p(H1) and p(H0) were set as 0.5 in this study. If the maximum of the 40
posterior probabilities reached the threshold generated in Section 2.4, the character corresponding to
the index of the maximum would be output and start the next spelling. Otherwise, the data length t
would become t + ∆t and then repeated the procedure above when the length of new data reached
t + ∆t. The step of data length ∆t was set as 20 ms. If no posterior probability reached the threshold
after t = 1 s, no character would be output and the subject would begin the next spelling.
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2.5. System Optimization for High-Speed Online Operation

2.5.1. Program Optimization for Real-Time DS

As shown in Section 2.4, the online DS requires the recognition algorithm to be executed over and
over again to compare the probabilities and the thresholds. Considering the code execution efficiency
of C++ is higher than that of MATLAB, three key procedures of online recognition were reprogrammed
with C++ and compiled into MATLAB executable (.mexw64) files [35] with C Matrix Library API and
C MEX Library API of MATLAB in order to ensure the real-time performance:

1. (Filter): including the 50 Hz notch filtering and the 8 bandpass filtering processes.
2. (Corr.): including the spatially filtering and the calculation of 40 (frequencies) × 8 (bands) =

320 coefficients.
3. (Prob.): including the normalization of correlation coefficients and the calculation of 40

posterior probabilities.

After the experiment, the elapsed time of these procedures with MATLAB and C Mex was
evaluated through simulated online DS process of the online data. The simulated online program was
entirely consistent with the real online program. The simulation was run on a universal laptop (Model:
Lenovo Xiaoxin Chao 7000-13; CPU: Intel Core i7-8550U, 2.90 GHz; RAM: 16 GB).

2.5.2. Filtering Strategy Optimization and Comparison

In most of the SSVEP-based BCI researches, the forward and reverse filtering is commonly used to
achieve zero-phase filtering, which can be implemented using the filtfilt() function in MATLAB [8,25,30].
Whether this filtering process could satisfy the DS recognition of SSVEPs in a real-time BCI system has
not been fully investigated. The standard filtering forward process according to the rational transfer
function is the most direct method to realize the real-time filtering [36]. This study took the standard
method as the filtering strategy in online experiments and compared three kinds of filtering strategies
(Figure 6) through simulated online analysis of the online data after the experiment:

1. (Filter): the standard forward filtering method using rational transfer function that could rolling
update the filtered signal when a new sample point comes. The data length needed for filtering
process prior to time t was equal to the order of filter N.

2. (Filtfilt(−)): the forward and reverse filtering method combined with initial condition and signal
extending, which was the same as the filtfilt() function. The data of T(−) length prior to time t
were used for filtering.

3. (Filtfilt(−)(+)): the data of T(−) length prior to time t and the data of T(+) length posterior to time t
were used for forward and reverse filtering.

Here, T(−) = 3 s, T(+) = 0.2 s. The three strategies were also reprogrammed with C Mex.
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3. Results

3.1. Comparison of Performance with TRCA and mTRCA

Figure 7a,b display the averaged offline recognition accuracies and putative ITRs across all subjects
with different data lengths using TRCA and mTRCA spatial filters. The accuracy and the ITR were
estimated by a leave-one-out cross-validation. We used the Wilcoxon signed-rank test instead of paired
t-test to compare the performance of the two methods. As a non-parametric statistical hypothesis
test, this method could be an alternative to the paired t-test when the difference between two samples’
means does not satisfy normal distribution [37]. The mTRCA-based method achieved significantly
higher accuracies than that of TRCA-based method, especially for data length ≤ 0.5 s. Note that
the accuracies presented a small dip after data length exceeded 0.6 s, as only there were only six
samples possessing data length of 0.6–1 s for each target (see Section 2.2 for details), which might
pose an impact on the classification performance. The significance was consistent to that of the
ITR. The highest ITR for mTRCA-based method was 293.5 ± 27.2 bits/min, which was significantly
higher than 288.7 ± 26.8 bits/min for TRCA-based method (t = 0.4 s, W(12) = 75, p = 0.0024). We also
verified the algorithm on the benchmark dataset proposed by Want et al. [38], as shown in Figure 7c,d.
The mTRCA also outperformed TRCA on the accuracies and ITRs, though the improvement was not
as significant as that of our experimental data. The possible reason for this difference is that each target
had only six trials in the benchmark dataset, which was fewer than those in our offline data and led to
insufficient training.
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Figure 7. The recognition accuracies (a,c) and information transfer rates (ITRs) (b,d) using data from
the offline experiments (a,b) and the benchmark dataset (c,d), respectively. The lines with deep color
represent the averages while the shadings with light color represent standard deviation. The grey
shading shows the significance of difference between accuracies of two spatial filters (Wilcoxon
signed-rank test).

3.2. Online Performance with DS Strategy

Table 1 lists the results of online cued-guided experiments with the mTRCA-based algorithm.
As the offline data were analyzed with fixed data length, the maximal offline ITRs were listed as the
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performance of FS strategy for comparison. Wilcoxon signed-rank tests indicated that the DS strategy
significantly reduced the data length used for recognition (W(12) = 0, p = 1.2 × 10−4). Although the
accuracies showed slightly decline without significance (W(12) = 31, p = 0.1937), the DS strategy
significantly improved the ITRs (W(12) = 78, p = 4.9 × 10−4). The minimal and maximal ITRs were
260.6 bits/min and 420.2 bits/min, respectively.

Table 1. Performance of cued-guided online experiments.

Subject

FS (Maximal Offline ITRs) DS (Online ITRs)

Length (s) Accuracy
(%)

ITR
(bits/min) Length (s) Accuracy

(%)
ITR

(bits/min)

S1 0.380 83.5 259.6 0.271 82.9 292.6
S2 0.440 94.8 303.3 0.255 84.0 305.3
S3 0.380 90.4 297.3 0.250 84.4 309.9
S4 0.440 87.5 262.8 0.291 83.0 285.7
S5 0.420 92.5 296.2 0.247 85.5 317.8
S6 0.280 90.3 334.5 0.223 93.0 380.6
S7 0.360 87.9 289.6 0.248 87.0 327.1
S8 0.260 92.9 361.5 0.225 98.0 420.2
S9 0.300 90.6 327.9 0.229 93.0 377.7
S10 0.440 86.5 257.5 0.316 80.0 260.6
S11 0.420 91.9 292.6 0.261 90.0 340.9
S12 0.280 88.9 325.5 0.236 89.0 345.9

Ave ± Std 0.367 ± 0.069 89.8 ± 3.1 300.7 ± 32.2 0.254 ± 0.028 87.5 ± 5.2 330.4 ± 45.4

Table 2 lists the results of online free spelling experiments. The spelling rate reached 38.2 ± 4.0
characters per minute (cpm) on average with a peak of 47.1 cpm. Although the ITRs were lower
than those of cued-guided experiment due to the prolonged gaze shifting time, it is much closer to
the practical situation, as the users have difficulty to shift their gaze in 0.5 s while considering the
next character. The results demonstrated the effectiveness of the real-time DS strategy in an online
SSVEP-based speller.

Table 2. Performance of online free spelling experiments.

Subject Trial Length (s) No. of Trials Spelling Rate ITR
(Gaze Shifting + Stimulating) (Correct/Incorrect) (cpm) (bits/min)

S1 1.279 (1.0 + 0.279) 57 (48/9) 39.5 180.9
S2 1.262 (1.0 + 0.262) 89 (66/23) 35.3 148.9
S3 1.276 (1.0 + 0.276) 85 (64/21) 35.4 150.9
S4 1.283 (1.0 + 0.283) 95 (73/22) 35.9 155.2
S5 1.455 (1.2 + 0.255) 93 (77/16) 34.1 154.7
S6 1.047 (0.8 + 0.247) 73 (60/13) 47.1 212.3
S7 1.264 (1.0 + 0.264) 120 (92/28) 36.4 156.9
S8 1.287 (1.0 + 0.287) 54 (51/3) 44 220
S9 1.315 (1.0 + 0.315) 81 (66/15) 37.2 166.6
S10 1.308 (1.0 + 0.308) 97 (73/24) 34.5 147.1
S11 1.290 (1.0 + 0.290) 61 (52/9) 39.6 183.2
S12 1.248 (1.0 + 0.248) 61 (50/11) 39.4 177.3

Ave ± Std - - 38.2 ± 4.0 171.2 ± 24.5

3.3. Comparison of Run Time between MATLAB and C Mex

The system executed hundreds of times of recognitions for the data of each subject. The elapsed
time records were firstly averaged for each subject and then averaged across all subjects. Figure 8
shows the averaged run time of the three key procedures after a simulation of online recognition with
MATLAB and C Mex, respectively. All the key procedures consumed significantly less time using
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C Mex than those of MATLAB (paired t-test, p < 0.001). Notably, the summation of the three procedures
was 4.76 ± 0.41 ms with C Mex, which was significantly shorter than the ∆t of 20 ms in this study
(t(11) = −127.67, p = 8.53 × 10−9), whereas it was 19.72 ± 0.87 ms with MATLAB, which was close to
the ∆t (t(11) = −1.09, p = 0.298).
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3.4. Comparison of Online Filtering Strategies

Figure 9 displays the performance with three filtering strategies. The Filtfilt(−) strategy showed
significant lower accuracy than that of the Filter strategy (81.6% ± 9.1% vs. 87.5% ± 5.3%, W(12) = 2,
p = 0.0015), which resulted in the decrease of ITR (295.3± 57.8 bits/min vs 330.4± 45.4 bits/min, W(12) = 1,
p = 9.7 × 10−4). The accuracy of the Filtfilt(−)(+) strategy was similar to that of the Filter strategy
(87.7% ± 6.9%, W(12) = 45, p = 0.3184), yet the ITR was also significantly lower (265.1 ± 41.2 bits/min,
W(12) = 0, p = 4.9 × 10−4) due to the increased data length (444.9 ± 21.8 ms vs. 254.2 ± 27.7 ms,
W(12) = 0, p = 4.9 × 10−4). Moreover, the elapsed time of both the Filtfilt(−) and Filtfilt(−)(+) strategies
were longer than that of the Filter strategy (W(12) = 0, p = 4.9 × 10−4).
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4. Discussion

The high-speed BCI systems based on SSVEPs attracted growing attention and stronger demand
of applying this paradigm in daily life in recent years. This study optimized a high-speed SSVEP-based
speller towards practical application. The speller was designed according to the layout of a keyboard
so that it is convenient for users to find the intended character. The EEG data was acquired using
a dedicated amplifier developed in our laboratory instead of the research-grade system in previous
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high-speed BCI studies. In order to provide flexible stimulating time, we incorporated the DS strategy
based on Bayesian posterior probability into the online SSVEP-BCI. The introducing of above measures
brought new problems to the BCI system, which need optimization from several perspectives.

The filtering process is our first concern for a high-speed BCI system. Previous studies have
barely discussed the details of online filtering in a SSVEP-based system. As is known, the standard
digital filtering is a convolution of the input signal with the impulse response of a digital filter. The IIR
filters are the digital form of analog filters and welcomed in real-time applications for their low
time delay. However, they cannot realize exact linear phase like finite impulse response (FIR) filters;
thus, distorting the EEG signal and degrading the BCI performance. The forward and reverse filtering
is a commonly used method to achieve the zero-phase filtering [39]. However, it is a noncausal filtering
process that we need the signal prior and posterior to the current time for filtering and take out the
useful signal afterwards. This will cause the problem that no signal exists posterior to the current
time in a real-time system, leading to the distortion of the signals near the current time owing to
the transient response at the beginning of filtering. In the filtfilt() function of MATLAB, the initial
condition of the filter and the signal extending method were employed to mitigate the distortion [40,41].
Nevertheless, the comparison in Section 3.4 indicates that these methods could not compensate the
loss of accuracy caused by the transient response (the Filtfilt(−) in Figure 9). If we use the posterior
signal as the Filtfilt(−)(+) in Figure 9, the accuracy would be higher whereas the longer data length
declined the ITR. Hence, the classical forward filtering method (Filter in Figure 9) is more suitable for
the high-speed operation.

Another important part of work focused on the implementation of DS strategy. Although it has
been applied in the P300-based BCI systems and significantly reduced the number of stimulating rounds
for the output [34,42,43], the implementation of DS faces new challenges in an online SSVEP-based
system. First, as illustrated in the introduction, the unfixed stimulating time in the DS situation
results in different feelings for users compared with those in FS situation. Therefore, the offline
experiment of this study was designed using three kinds of alternant trial length to emulate the unfixed
stimulating time in DS situation. This strategy also increased the training samples corresponding
to short data length so that guaranteed the accuracies. Second, the online DS requires the system to
process the data as quickly as possible. In other words, the system needs higher “temporal resolution”
to provide the real-time performance. The resolution ∆t in this study was set at 20 ms, which meant
the data transmission and recognition process should be completed in 20 ms. The self-developed
amplifier could send the data packet every 4 ms, i.e., the sample point could be obtained by the
online program immediately after being collected, while the Neuroscan system sends the data packet
every 40 ms according to our previous testing. Hence, the dedicated amplifier provided flexible
temporal resolution to enhance the real-time performance. As for the data processing, it is of great
importance to assess the execution time of the program before experiment. It is known that the
MATLAB used in many BCI applications is a kind of interpreted language. The code execution
efficiency is limited to some degree compared with the compiled language, especially for the looping
structure. The recognition of SSVEP-based BCIs contains lots of loops, e.g., the calculation of correlation
coefficients contains 40 (frequencies) × 8 (bands) = 320 loops in this study. The three key procedures
of recognition consumed nearly 20 ms in total using the MATLAB program (Figure 8). If considering
the other procedures, the run time would exceed ∆t when executed in MATLAB, and the accumulation
of the delay might collapse the system. This study reprogrammed the key procedures with C++ and
compiled them into MATLAB executable files. The run time was reduced to 4.76 ms on average,
which was far less than the MATLAB program. In future works, the calculation could be further
accelerated with multiple threads or dedicated processors such as field programmable gate arrays
(FPGAs); thus, improving the temporal resolution for higher real-time performance.

Considering that the lab-assembled EEG device and the non-zero-phase filtering might put an
impact on the classification accuracy, we modified the TRCA spatial filter by subtracting covariance
of other frequencies from the current frequency, which could reduce the interference of irrelevant
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information. This modification obtained significantly higher ITRs than those of TRCA and S8 achieved
a highest ITR of 420.2 bits/min, which is the highest online ITR for SSVEP-based BCI to our knowledge.

Despite the various measures towards a practical SSVEP-BCI conducted in this study, it should be
noted that more aspects need to be considered in future work. One of the most important issues is
about analyzing the experience of the users from the perspective of psychology. For example, could a
patient with physical impairments accept such a system [44,45]? Could the users adapt to this system
as it works at a very high speed? If the system output several incorrect results, could the users avoid
negative emotion and continue focusing on the intended command [46]? If not, there might be more
and more wrong outputs and the human–computer system would collapse. As the AI has caused
some ethical problems [47,48], the BCI might face similar situation someday. Such problems have not
got enough attention to our knowledge. In future developments, it might be better to design some
psychological programs for users such as a questionnaire or an interview about their feeling about the
system, and to personalized optimize the system configuration so as to make the users work with the
BCIs comfortably and efficiently.

5. Conclusions

This paper presents a series of improvement approaches for a more practical high-speed spelling
system based on SSVEPs. The stimulation was designed as a keyboard instead of the commonly
used matrix layout, and the EEG data were acquired from a self-developed EEG device instead of
research-grade devices. Particularly, this study incorporated the Bayesian-based DS strategy into
the online system; thus, realizing alterable stimulating time and higher ITRs. Considering the new
challenges brought by above measures, the system was optimized from the aspects of temporal filter,
spatial filter, calibration experiment, and programming. The proposed system achieved the highest
online ITR reported in BCI speller studies to date, which demonstrated the feasibility of the proposed
algorithm and system framework. This work provides methodological guidelines for designing
high-speed SSVEP-based systems towards spelling in real life and is promising to develop more
interesting and practical applications.
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