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The quaternary architecture of RARβ–RXRα
heterodimer facilitates domain–domain signal
transmission
Vikas Chandra1, Dalei Wu1,2, Sheng Li3, Nalini Potluri1, Youngchang Kim4 & Fraydoon Rastinejad1

Assessing the physical connections and allosteric communications in multi-domain nuclear

receptor (NR) polypeptides has remained challenging, with few crystal structures available to

show their overall structural organizations. Here we report the quaternary architecture of

multi-domain retinoic acid receptor β–retinoic X receptor α (RARβ–RXRα) heterodimer bound

to DNA, ligands and coactivator peptides, examined through crystallographic,

hydrogen–deuterium exchange mass spectrometry, mutagenesis and functional studies. The

RARβ ligand-binding domain (LBD) and DNA-binding domain (DBD) are physically connected

to foster allosteric signal transmission between them. Direct comparisons among all the

multi-domain NRs studied crystallographically to date show significant variations within their

quaternary architectures, rather than a common architecture adhering to strict rules. RXR

remains flexible and adaptive by maintaining loosely organized domains, while its hetero-

dimerization partners use a surface patch on their LBDs to form domain-domain interactions

with DBDs.
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Nuclear receptors (NRs) are a family of transcription fac-
tors that respond to lipophilic ligands and control a
variety of metazoan gene programs1, 2. Their polypeptides

consist of a variable N-terminal domain (NTD), a central DNA-
binding domain (DBD), and a 12-helical ligand-binding domain
(LBD) located at their C-terminus3. Physical connections and the
routes for allosteric communications between domains have
remained difficult to assess, given the relatively few examples of
crystal structures involving multi-domain NR complexes.
Employing full-length or multi-domain NR complexes bound to
DNA, crystal structures have been reported to date only for the
peroxisome proliferator-activated receptor γ–retinoic X receptor
α (PPARγ–RXRα) heterodimer (PDB codes: 3DZY, 3DZU, and
3E00)4, the hepatocyte nuclear factor 4α (HNF-4α) homodimer
(PDB code: 4IQR)5, and the liver X receptor β (LXRβ)–RXRα
heterodimer (PDB code: 4NQA)6. In some cases, multi-domain
NRs have been studied by alternate biophysical techniques and
those data were interpreted to suggest possible structural models.
For example, RXRα was studied heterodimerized with RARα,
PPARγ2 and vitamin D nuclear receptor (VDR) using small-
angel X-ray scattering, fluorescent studies and/or small-angle
neutron scattering7. These interpretations were further used to
suggest the existence of a common architecture of NR hetero-
dimers on DNA direct repeats7. However, the crystallographic
models have not been supportive of these structural models, and
have been showing instead that the quaternary structures of RXR
heterodimers consist of significant variations without a com-
monly adopted organization8–10. To understand larger NR
complexes with full-length coactivators, the quaternary structure
of an active complex of DNA-bound estrogen receptor α (ERα),
steroid receptor coactivator 3 (SRC-3/NCOA3), and a secondary
coactivator (p300/EP300) has been described based on cryoelec-
tron microscopy (cryo-EM)11.

Retinoids bind to a subclass of NRs in mammals consisting of
three retinoic acid receptors (RARα/β/γ) and three retinoid X
receptors (RXRα/β/γ). Through heterodimerization between an
RAR and an RXR, productive and functional transcription factors
are formed within this subclass of NRs. Ligand binding modulates
the transcriptional activities of these receptor heterodimers by
altering the protein surface conformations at each of their LBDs
and shaping preferences for coactivators and corepressors. Spe-
cifically, ligand-binding repositions helix-12 of the LBDs into an
active conformation that fosters the binding of LXXLL motifs of
coactivators, including those belonging to members of the steroid
receptor coactivator (SRC or p160) family. The repertoire of
retinoid actions through these NRs includes a variety of essential
biological processes such as embryogenesis, organogenesis, cell
growth, differentiation, and apoptosis12. The six mammalian NRs
for retinoids are encoded by distinct genes, but they share close
structural homology at the level of their LBDs and DBDs13.

The RAR and RXR proteins are among the most intensively
studied for their structural properties, but most structural char-
acterizations to date have focused on isolated LBD domains, and
have not been successful with their heterodimeric multi-domain
polypeptide complexes13, 14. The retinoic acid receptors exhibit
high-affinity binding to endogenous molecules that include all-
trans retinoic acid (REA, for RARs) and 9-cis retinoic acid (9CR,
for RXRs). Ligand binding to RARs leads to modulation of gene
programs that are particularly relevant in embryonic develop-
ment and pattern formation13, 15. In adult organisms, RAR
ligands can directly impact cellular differentiation, and synthetic
ligands that bind and regulate RXRs and RARs have been
developed as therapeutic agents for cancers (promyelocytic leu-
kemia, myelodysplastic syndrome, cutaneous T-cell lymphoma,
and squamous carcinoma of the skin) and inflammatory diseases
(severe acne and psoriasis)13, 16.

To directly visualize how different domains of RAR and RXR
polypeptides physically interact within and between their
polypeptides, we conducted crystallographic studies using
multi-domain recombinant RARβ and RXRα proteins. Both
receptors’ ligands, including REA for RARβ and 9CR for RXRα,
their idealized DNA response element (RARE) and coactivator
peptides were included to visualize how all these components
are configured and interact within the overall complex. We
further utilized hydrogen–deuterium exchange mass spectro-
metry (H/D-ex MS) to determine if signals at one domain can
register their effects across the heterodimer to distal domains,
and further relied on functional transcriptional studies and
mutagenesis to validate our understanding of domain–domain
junctions. Finally, we sought here to understand the quaternary
architecture of RARβ–RXRα heterodimer in the wider context
of other recently reported crystal structures of multi-domain
NR complexes, to assess their level of overall variations and to
pinpoint specific sites where domain–domain junctions are
formed in each case.

Results
Overall structure of RARβ–RXRα heterodimer. We set out to
obtain the quaternary architecture of multi-domain RARβ–RXRα
heterodimer including its domain–domain couplings, using X-ray
crystallography. To do this, we biochemically prepared the
human RARβ–RXRα protein complex (involving their DBD,
hinge, and LBD regions, as shown in Fig. 1a) by co-expression of
two proteins in Escherichia coli. Using extensive crystallization
screens that utilized various sized DBD–hinge–LBD segments of
each isotype of RXRs and RARs, and a variety of known RAR
ligands, we successfully obtained crystals of only the RARβ–RXRα
heterodimer on a DR1 DNA in the presence of REA and 9CR
retinoic acids, and with LXXLL synthetic peptides derived from
SRC-2′s second (middle) NR box. The crystal structure was
solved at 3.5 Å resolution by molecular replacement using known
RAR–RXR DBD and LBD dimeric structures (PDB codes:
1DSZ17 and 1XDK18) as the search models (Table 1), leading to a
readily interpretable electron density map that distinctly revealed
the overall quaternary architecture, and the locations of bound
DNA, ligands (REA was bound inside RARβ LBD and 9CR was
bound inside RXRα LBD) and coactivator peptides (Supple-
mentary Fig. 1).

Figure 1b shows the arrangement of two subunits and the
mode by which the RARβ–RXRα heterodimer binds to DR1
DNA, ligands, and coactivators. The DBD and LBD of RARβ are
physically connected; however, the corresponding two domains of
RXRα are spatially displaced from each other without any
physical contacts between them, and each of these domains
locates on the opposite side of the double-strand DNA (Fig. 1b).
Furthermore, we could not observe ordered electron density for
the hinge region connecting those two RXRα domains, suggesting
this region remains flexible and disordered. A series of inter-
subunit domain–domain interactions are clearly formed between
RARβ and RXRα, involving LBD–LBD and DBD–DBD interfaces
(Supplementary Fig. 2a), with the latter forming directly atop the
DR1 DNA, as we previously described17. Importantly, the
structures of individual LBD and DBD domains are essentially
identical to those previously reported17, 18 (the Cα rmsd values
are 0.4838 and 0.5143 for RAR LBD and DBD, 0.6515 and 0.4477
for RXR LBD and DBD, respectively; Supplementary Fig. 2b), as
are the modes of LBD’s specific interactions with retinoic acid
ligands, coactivator LXXLL peptides, and the DBDs’ interactions
with the DNA half-sites. These observations together indicate that
no domain requires major internal distortions in adopting the
quaternary state of the multi-domain heterodimer.
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Both RXRα and RARβ assume the active conformation at their
LBDs. This conformation is defined by both receptors having
their helix-12 appropriately positioned by ligands to facilitate the
recruitment of coactivator LXXLL motifs (Fig. 1b). Importantly,
two coactivator peptides are observed to be stably and
equivalently bound to the heterodimer, with one peptide bound
at each LBD, contradicting a previous study, based on artificially
formed RAR LBD homodimers, that suggested the binding of one
LXXLL peptide to an LBD would disfavor and prevent the
binding of another peptide to the second LBD of RAR–RXR
heterodimers through allosteric effects between LBDs19. We have
previously pointed out that proposed mechanism for allostery was
flawed for a number of reasons, including the reliance on RARβ
homodimers, a species not observed in cells or known to be
physiologically relevant8. Moreover, the previous structural
analyses of RAR–RXR LBD–LBD heterodimer clearly showed
simultaneous binding of a peptide to each receptor LBD18,
consistent with our current observations of two coactivator
peptides binding to the multi-domain RARβ–RXRα heterodimer.

The binding of LXXLL motifs equivalently to both subunits of the
RARβ–RXRα heterodimer has also been observed in other
heterodimers, including to multi-domain PPARγ–RXRα,
LXRβ–RXRα, and HNF-4α dimeric complexes4–6.

The DBD–LBD interface of RARβ allows allosteric transmis-
sion. The disordered hinge region and lack of domain–domain
interactions within RXRα polypeptide are consistent with its
required flexibility in adapting to its many dimerization partners
among the NR family4. But in the case of RARβ, a well-formed
interface is observed to physically connect the DBD and LBD
segments of the polypeptide (Fig. 1c). This interface is mainly
established via the DBD’s loop immediately following α1 helix,
and the LBD’s loop between its α9 and α10 helices (Supple-
mentary Fig. 3). In addition to two hydrogen bonds formed
between R359 and main-chain atoms of N112 and I114 (Fig. 1c),
hydrophobic contacts also contribute to the interactions at this
interface. The buried surface areas of DBD and LBD are 345 and
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Fig. 1 Overall structure of RARβ–RXRα–DNA complex and the DBD–LBD interface of RARβ. a Schematic representation shows the domain arrangements of
RARβ and RXRα, with the residue numbers labeled for the protein constructs used in crystallization. b Overall structure of the RARβ–RXRα heterodimer on
DNA in two views. The disordered hinge regions of RARβ (residues 153–173) and RXRα (residues 210–225) are shown in dashed lines. The colors used for
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312 Å2, respectively, as calculated by PISA20. Protein sequence
alignment of RARα, RARβ, and RARγ shows residues involved in
this DBD–LBD interface are highly conserved within all three
isoforms of RARs (Supplementary Fig. 4).

Using distinct classes of RARβ ligands, we asked if switching
from the agonist REA to an antagonist BMS-18945321 produced
effects outside the RARβ LBD (Fig. 2). H/D-ex MS studies were
used to readily and accurately address this question, given the
lack of success in crystallizing alternate complexes with different
ligands or DNA. The deuteration level (indicated with the
rainbow colors in Fig. 2a) of residues monitored by MS, correlates
well with the flexibility of local structures. This technique can also
identify conformational changes induced by different ligands or
DNA when used in a comparative manner (i.e., subtraction of the
deuteration levels of each residues in different conditions as
shown with the blue-white-red heat maps in Fig. 2a). H/D-ex MS
showed that helix-12, associated with the activation function-2,
whose conformational and dynamic state is known to be highly
responsive to ligand binding to RAR8, registered clear changes
(increased deuteration level) when ligands were switched from
agonist REA to antagonist BMS-189453 (Fig. 2a, b), indicating
less stable conformation of this region due to the switch.
Additionally, the DBD and hinge region of RARβ registered an
altered H/D-ex MS pattern (increased deuteration level) when the
DNA response element was switched from DR1 to DR5 (Fig. 2a),
indicating these regions undergo conformational changes upon
binding of DNAs with different spacers.

Given the observed sensitivity in the H/D-ex MS studies noted
above, we further applied this method to ask if the DBD–LBD
interactions within the RARβ protein could signal the change of
ligands inside the LBD allosterically to the DBD through their
physical domain–domain connection. Previously we had shown
evidence for allosteric transmission from the LBD to the DBD in the
HNF-4α homodimer by using mutations introduced within the
LBD5. But because the ligand bound to HNF-4α was not exchange-
able, we could not assess if switching ligands at LBD would be

registered distally at the DBD. The H/D-ex MS studies conducted
here on RARβ–RXRα, now point us to three sites on the RARβ DBD
(positioned directly before and after helix α1, and at the C-terminal
end of the DBD) that show altered H/D-ex MS patterns when we
switched ligands between REA and BMS-189453 (Fig. 2a, c).

To further assess how ligands may allosterically alter the
properties of the RARβ–RXRα heterodimer, we used a wider
group of agonists and antagonists and tested their effects on the
RARβ–RXRα affinity for DR1 DNA (Fig. 2d). Our biochemical
DNA-binding assay was based on detecting fluorescence
polarization of 5′-FAM labeled DNA in the presence of increasing
concentrations of the heterodimer protein to obtain a KD value
for DNA affinity. The results showed that distinct RAR ligands
lead to variations in DNA-binding affinities of the heterodimer
within a KD range of about 10–70 nM. The affinities for DNA
binding were lower with agonists (KD of 27–68 nM) as compared
to antagonists (KD of 12–16 nM) (Fig. 2d). A possible explanation
is suggested by the H/D-ex MS data, where the DNA-binding
region is somewhat more flexible and prone to H/D exchange
with an agonist (REA) than that with an antagonist (BMS-
189453) (Fig. 2a, c).

The functional importance of the DBD–LBD interface. Using
cell-based functional studies, we next tested the importance of the
RARβ DBD–LBD interface for the transcriptional activities of
RARβ–RXRα from different response elements. Reporter assays
were used that incorporated response elements derived from
ANGPTL4 (DR1) and CYP26A1 (DR5), both of which are target
genes of RARβ–RXRα (Fig. 3a). Transfection of wild-type RARβ
alone decreased DR1 reporter activity, and the level of repression
was enhanced further when REA was added. On DR5, tran-
scriptional activity was increased when transfecting in wild-type
RARβ, and that activity was further enhanced by REA. These
findings are consistent with previous reports indicating that DR1
and DR5 elements allow transcriptional repression and activation,
respectively, by RAR–RXR heterodimers22.

We then directly probed the importance of RARβ DBD–LBD
connectivity for functional activity, by introducing mutations at
this domain–domain junction and examining effects on transcrip-
tional regulation from response elements. Point mutations
introduced at RARβ DBD’s DNA-binding helix (E99A and
R106A) abolished the transcriptional repression seen with wild-
type RARβ on DR1, as expected (Fig. 3a). Then examining the
specific mutations positioned within the RARβ DBD–LBD
interface, we further found loss of repression when compared to
wild-type RARβ, suggesting that this interface is important for the
transcriptional repression of RARβ–RXRα from the DR1 element.

Interestingly, these same mutations positioned specifically at the
DBD–LBD interface of RARβ also compromised the transcriptional
activation from the DR5 reporter (Fig. 3a). This finding suggests
that the same RARβDBD–LBD interface may be similarly critical in
establishing the binding of the RARβ–RXRα heterodimer on DR5.
While the integrity of this particular intramolecular interface within
the RAR polypeptide appears simultaneously important for both
DR1 and DR5 complexes, the intermolecular interfaces between
RXR and RAR should prove substantially different, since the
binding polarity of the RXR and RAR subunits on DR1 vs. DR5
half-sites is known to be reversed22.

Finally, we directly tested the influence of these mutations
positioned at the intramolecular domain—domain interface of
RARβ on the heterodimer’s overall affinity for DNA. To do this, we
co-purified mutant RARβ proteins where residues at the DBD–LBD
interface were altered along with WT RXRα. We again used
fluorescence polarization studies to obtain the affinities of the
resulting heterodimers for both DR1 and DR5 DNAs, in the

Table 1 Data collection and refinement statistics

RARβ–RXRα–DNA complex

Data collection
Space group P 21
Cell dimensions
a, b, c (Å) 52.47, 77.40, 112.11
α, β, γ (°) 90.0, 90.37, 90.0
Resolution (Å) 50.0–3.50 (3.56–3.50)a

Rsym or Rmerge 11.0 (43.1)
I/σI 12.6 (1.8)
Completeness (%) 84.0 (52.2)
Redundancy 4.1 (2.5)

Refinement
Resolution (Å) 47.4–3.51 (3.63–3.51)
No. reflections 13,381 (348)
Rwork/Rfree 22.0/26.8 (30.8/35.2)
No. atoms
Protein/DNA 5512
Ligand/ion 48
Water 0
B-factors
Protein/DNA 61.71
Ligand/ion 51.94
Water –
R.m.s deviations
Bond lengths (Å) 0.003
Bond angles (°) 0.741

aHighest resolution shell is shown in parenthesis
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presence of RAR and RXR ligands REA and 9CR (Fig. 3b).
Moreover, we used a 27-mer DR5 DNA, which had the same
flanking bases as the 23-mer DR1. By using similar flanking
sequences outside their direct-repeat elements, we could more
clearly relate the binding affinities of DR1 vs. DR5 elements. The
results suggest a KD of 35 nM for DR1 binding and 24 nM for DR5
binding, when WT RARβ and RXRα proteins were used together.
As a reference point, we observed that single point mutation located
precisely at the RARβ’s DNA-binding helix (E99A) known to
contact the DNA major groove within a half-site reduced the
binding affinities for both DR1 (to 80 nM) and DR5 (to 143 nM).
When we measured the effects of mutations located at the
DBD–LBD interface (double and triple mutations), we also
observed losses in the heterodimer’s DNA affinities (three to
tenfold) (Fig. 3b), suggesting that the integrity of RARβ DBD–LBD
interface is important for maintaining the high-affinity binding
mode of the heterodimer for both DR1 and DR5 elements.

Structural differences among multi-domain NR complexes.
The RARβ–RXRα heterodimer described here represents the
fourth distinct multi-domain NR complex studied to date using
X-ray crystallography. To better understand the common features
within the quaternary architectures of all these NR complexes, we
directly compared the crystal structures of RARβ–RXRα,
PPARγ–RXRα, HNF-4α homodimer, all of which were on DR1
DNA, and that of LXRβ–RXRα on DR4 DNA (Fig. 4a–d). With
regard to RXR’s subunit partners, we find that a single patch
positioned on the LBDs of RARβ, PPARγ, and LXRβ (consisting
of their α9 and α10 helices) appears to participate in forming
domain–domain interfaces between LBDs and DBDs in these
complexes (Fig. 4e–g). A similarly positioned patch within the
LBD is also in the HNF-4α homodimer structure for forming
LBD–DBD interactions (Fig. 4h).

Strikingly, as a group, these four crystallographically analyzed
complexes do not conform closely to any of the rules for a
common quaternary architecture advocated previously7, 9.
Importantly, clear variations are observed in the relative locations
of DBDs and LBDs within each complex (Fig. 4a–d and
Supplementary Fig. 5), giving rise to a variety of distinct
quaternary structures rather than a common or shared overall
quaternary architecture. We also find that a previously suggested
model for the quaternary structure of RARα–RXRα on DR1
DNA, based on the interpretation of solution studies by Rochel
et al.7 is inconsistent with the crystallographic, H/D-ex MS, and
mutational studies presented here (Fig. 5). It is important to point
out that those previous solution studies did not include enough
experimental parameters to generate a reliable or detailed three-
dimensional structural model with the reliability of crystal-
lographic structures or H/D exchange studies that can render
more precise information about local domain–domain structures
and overall structural dynamics.

Discussion
Our structural analysis of multi-domain RARβ–RXRα hetero-
dimer has revealed an interdependent molecular architecture that
involves LBD–LBD and DBD–DBD interfaces between RAR and
RXR subunits, and an additional intramolecular DBD–LBD
interface within the RARβ polypeptide. Both subunits were
observed bound to their unique ligands, and were separately
bound to peptide segments of a p160 coactivator protein. The
observed polarity of the complex on DR1 is established with RAR
binding on the upstream AGGTCA DNA half-site and RXR
binding on the downstream half-site. The overall quaternary
structure that was visualized shows that each subunit maintains
access for binding to an LXXLL motif and a half-site within the
DNA response element, without posing any physical restrictions
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or barriers on the other subunit’s access or interactions. While
most previous structural studies showing the interactions of the
DBD with DNA or the interactions of two subunits’ LBDs are
clearly validated and reaffirmed in the structure of their multi-
domain complex presented here13, the correct locations of all the

domains within the quaternary structure, the RARβ protein’s
DBD-LBD contacts, and the physical path for allosteric trans-
mission through the RAR protein were not previously known or
accurately described.

The current structural findings, when examined together with
previously reported structures for multi-domain NR complexes,
point to several important concepts about the nature and extent
of domain—domain interactions within NR complexes. RXR is
found to display flexibility within its own polypeptide, and not
favoring a fixed physical connection involving its own DBD and
LBD domains (Supplementary Fig. 5). This polypeptide flexibility
naturally facilitates an adaptive function in forming heterodimers
with a variety of other NRs. The flexibility is also a key to the
facile adaptation of RXR heterodimers to a variety of distinctly
spaced DNA direct-repeats. Interestingly, the intramolecular
DBD–LBD interactions within the RARβ subunit appear to be
required for RARβ–RXRα functions through both DR1 and DR5
response elements, suggesting that RARβ’s internal domain—
domain interactions are predisposed based on a favorable inter-
action of its LBD patch and DBD surface.

Our studies also find that for RXR’s distinct subunit partners, a
single patch positioned on their LBDs consisting of their α9 and
α10 helices acts as a common surface for forming domain–domain
interactions with DBDs in these complexes (Fig. 4e–h). The amino
acids within this patch are variable and not conserved, yet the
physical location of the patch is conserved within all the RXR
partners seen within these crystal structures. Finally, the H/D-ex MS
and DNA-binding studies suggest that the DBD–LBD physical
couplings involving these patches can allow for effective allosterical
signal transmission from the LBD to the DBD. The LBD–DBD
junction allows information about the type of ligand bound within
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the LBD to be allosterically sent to the DBD and shape the overall
DNA affinity of the NR complex. This finding extends our previous
characterization of functional coupling between LBDs and DBDs
observed in the context of the HNF-4α homodimer where MODY1
mutations located within LBD were seen to project an allosterically
transmitted influence on the function of the DBDs and the DNA-
binding affinity of that complex5.

Understanding the precise molecular underpinnings of NR
function requires the direct high-resolution visualization of multi-
domain and functionally dimerized NRs bound to DNA and also
with the constellation of transcriptional coregulators that interact
upon a specific signal or stimulus. The ability to directly visualize
these types of complexes for crystallographic studies has been
largely hampered by abilities to generate the required full-length
proteins in pure and stable forms, and the further difficulties in
forming diffracting crystals when each of these proteins has large
disordered regions within their polypeptides. Due to these lim-
itations, the large majority of structural studies conducted over
the past three decades for the NR family involved only isolated
single domains; therefore, failing to reveal the complexities and
variations of their quaternary architectures and the physical
pathways for functional communications between domains. The
current structure and the three previous co-crystal structures of
NRs that used multi-domain proteins and dimeric complexes on
DNA show that the overall quaternary states in this family are
quite diverse and do not conform to a previous set of rules
suggested from an interpretation of solution-based studies7.
Moreover, the key interactions between LBDs and DBDs that are
consistently seen crystallographically in four structures to date,
were missing and incorrectly interpreted in a set of previously
suggested models7 (Fig. 5).

Moving forward, significant gaps still remain in our detailed
understandings of how pairs of protein coactivators and other
transcriptional components in their full-length forms assemble on
these receptors. Given the limitations in crystallographically
observing more elaborate and larger scale multi-protein NR
structures, cryo-EM studies may prove to be increasingly useful.
Cryo-EM studies recently conducted on the estrogen receptor11

has extended our understanding of coregulator binding in the
context of more complete and accessorized NR complexes. That
study also showed the mode of further involvement of ligand-
independent transactivation function 1 (AF-1) domains located at
the N-termini of these receptors, which have not been success-
fully visualized in any of the NR crystal structures to date. Future
co-crystal and cryo-EM studies focused on more complete
protein–protein and protein–DNA complexes will be needed to
fully understand the wider spectrum of molecular components
and interactions underlying NR functions.

Methods
Protein expression and purification. Human RARβ (GenBank accession:
AAH60794.1, residues 73–414) and RXRα (GenBank accession: BAH02296.1,
residues 98–462) were cloned into the vectors pET28a (N-His tagged) and pET20b
(No tag), respectively. PCR primer sequences used in this study are summarized in
Supplementary Table 1. Then the two recombinant plasmids were co-transformed
into BL21-CodonPlus (DE3)-RIL competent cells (Agilent Technologies). After
overnight culture at 16 °C with 0.5 mM IPTG, the cells were harvested and lysed by
sonication in buffer containing 20 mM Tris (pH 7.5), 500 mM NaCl, 20 mM
imidazole, 10 µM 9CR, and 10% (v/v) glycerol. After centrifugation, cell lysate
supernatant was loaded on a Ni-column packed with His-Bind resin (Novagen),
which was then washed with five bed volumes of lysis buffer and eluted with buffer
containing 20 mM Tris (pH 7.5), 500 mM NaCl, 300 mM imidazole, 5% (v/v)
glycerol. Eluted protein was diluted with 20 mM Tris (pH 7.5) to about 100 mM
NaCl concentration, and loaded on a S-column packed with SP Sepharose (GE
Healthcare). After washing with three bed volumes of the same diluted buffer,
proteins were eluted with buffer containing 20 mM Tris (pH 7.5), 400 mM NaCl,
5% (v/v) glycerol. The final purification step was conducted on the Superdex 200 pg
gel-filtration column (GE Healthcare) with running buffer containing 20 mM Tris
(pH 7.5), 150 mM NaCl, 5% (v/v) glycerol. Purified RARβ–RXRα protein complex

was combined with the synthetic double-strand DR1 DNA (forward: 5′-
CTAGGTCAAAGGTCAGC-3′ and reverse: 5′-GCTGACCTTTGACCTAG-3′) in
a 1:1.5 ratio. After a further gel-filtration step in buffer containing 20 mM Tris (pH
7.5), 150 mM NaCl and 5% (v/v) glycerol, the protein–DNA complex fractions
were supplemented with 10 mM DTT, as well as 3× molar ratio of REA (all-trans
retinoic acid), 9CR (9-cis retinoic acid) and the SRC-2 LXXLL peptide
(EKHKILHRLLQDSY).

Crystallization and X-ray data collection. Crystallization of the
RARβ–RXRα–DNA complex was carried out using the hanging drop vapor dif-
fusion method at 4 °C, by mixing equal volume of protein–DNA complex (4 mgml
−1) and reservoir solution containing 0.1 M MES (pH 6.5), 25% (v/v) PEG300.
Before flash frozen in liquid nitrogen, crystals were soaked in reservoir plus 30% (v/
v) glycerol as the cryoprotectant. Diffraction data were collected at the Argonne
National Laboratory SBC-CAT 19ID beamline at 100 K, and processed using the
HKL3000 program23.

Structure determination and refinement. The structure of RARβ–RXRα–DNA
complex was solved by molecular replacement with the program Phaser24, using
their DBD and LBD heterodimer structures (PDB: 1DSZ17 and 1XDK18) as the
search models. Further manual model building was facilitated using Coot25,
combined with the structure refinement using phenix.refine26. The diffraction data
and final statistics are summarized in Table 1. The Ramachandran statistics, as
calculated by MolProbity27, are 95%/0% (favored/outliers). All the structural fig-
ures were prepared using PyMOL (http://www.pymol.org).

Fluorescence polarization DNA-binding assay. The fluoresceinated double-
strand DNA was prepared by annealing 6-FAM 5′-labeled forward strands (5′-
AAACTAGGTCAAAGGTCAGAAAG-3′ for DR1, and 5′-AAACTAGGTCACC-
GAAAGGTCAGAAAG-3′ for DR5) with the unlabeled reverse strands (5′-
CTTTCTGACCTTTGACCTAGTTT-3′ for DR1, and 5′-
CTTTCTGACCTTTCGGTGACCTAGTTT-3′ for DR5) in the buffer consisting of
10 mM Tris (pH 7.5), 1 mM EDTA and 2 mM MgCl2. 2 nM DNA was incubated
with purified proteins for 30 min for the binding assay. Final protein concentra-
tions were varied by serial dilution in binding buffer (20 mM Tris pH 7.5, 200 mM
NaCl and 10 mM DTT). The fluorescence polarization signals were recorded using
black 96-well plates on FlexStation 3 (Molecular Devices)and converted to “fraction
bound”, before fitting the curves sigmoidally in GraphPad Prism 7 to get the KD

values28.

Luciferase reporter assay. Full-length human RARβ was cloned into the pCMV-
Tag4 vector, and the subsequent site-directed mutagenesis was confirmed by DNA
sequencing. For the experiments using ANGPTL4 (DR1) reporter, HEK293T cells
(ATCC CRL-3216, not authenticated nor tested for mycoplasma contamination)
were seeded in 24-well plates, and 1 day later transfected with 100 ng of human
RXRα, 100 ng of luciferase reporter, 1 ng of pRL (control Renilla luciferase) and
100 ng of pCMV-Tag4-RARβ (WT, mutants or empty plasmid) by using 0.6 μL
jetPRIME regent (Polyplus-transfection SA) for each well. For the experiments
using CYP26A1 (DR5) reporter, HEK293T cells were prepared similarly and
transfected with 100 ng of luciferase reporter, 1 ng of pRL (control Renilla luci-
ferase) and 200 ng of pCMV-Tag4-RARβ (WT, mutants or empty plasmid) by the
same regent. After 6 h transfection, medium was refreshed with 1 μM REA; and
another 24 h later, luciferase activity was measured using the Dual-Glo Luciferase
Assay System (Promega). Final data were normalized by the relative ratio of firefly
and Renilla luciferase activity. All experiments were repeated independently for at
least twice.

Hydrogen/deuterium exchange mass spectrometry experiments.
Hydrogen–deuterium exchange experiments were performed using our in-house
deuterium exchange system29, 30, in which enzymatic digestion, peptide separation
and MS analysis was fully automated. To initiate the HDX reaction, 6 μl of pre-
chilled protein stock solution at 5.4 µM (free RARβ–RXRα protein complex,
RARβ–RXRα protein complex combined with DNA and agonist or antagonist) was
diluted into 18 μl D2O buffer (8.3 mM Tris, 150 mM NaCl, in D2O, pDREAD 7.2),
and incubated at 0 °C for 30, 100, 300, 1000, 3000, and 10,000 s. At indicated times,
6 μl of ice cold acidic buffer (0.8 M GuHCl, 600 mM NaH2PO4, 50% (v/v) Glycerol,
pH 2.4) was added to quench the exchange reaction. Quenched samples were
frozen on dry ice and passed over an in-house made immobilized pepsin column
(16 μl bed volume) on ice in H2O contain 0.05% (v/v) trifluoroacetic acid at a flow
rate of 20 μl min−1 for pepsin digestion. The proteolytic products were collected on
a C18 trap column for desalting (Optimize Technologies, Magic C18 AQ, 0.2 × 2
mm) and eluted for separation on a Michrom Magic C18 (3 μm, 0.2 × 50 mm, 200
Å) with a 30 min linear acetonitrile gradient (6.4–38.4%). The effluent was subject
to an OrbiTrap Elite mass spectrometer (Thermo Fisher Scientific) for MS analysis.
The instrument settings were optimized for HDX analysis as previously reported31.
Peptide identification was performed using Proteome Discoverer (Thermo Fisher
Scientific) and deuteration level of each peptide was determined by using
HDEXaminer (Sierra Analytics Inc., Modesto, CA). In addition, HDX analysis was
also carried out on non-deuterated and fully deuterated samples to correct back-
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exchange32. A peptide coverage map for the RARβ protein used in the HDXMS
studies and individual uptake curves (including the regions highlighted in Fig. 2b,
c) are shown in Supplementary Fig. 6.

Sequence analysis. The protein sequence alignments were generated on the
Clustal Omega sever33, and were subsequently processed by the ESPrint 3.0 pro-
gram34 for figures.

Data availability. Coordinates and structure factors have been deposited in the
Protein Data Bank under accession code PDB 5UAN. Other data are available from
the corresponding author upon reasonable request.
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