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A B S T R A C T

Adolescence is a period characterised by increases in risk-taking. This behaviour has been associated with an
imbalance in the integration of the networks involved in cognitive control and motivational processes. We
examined whether the influence of emotional cues on cognitive control differs between adolescents who show
high or low levels of risk-taking behaviour. Participants who scored especially high or low on a risky decision
task were subsequently administered an emotional go/no-go fMRI task comprising angry, happy and calm faces.
Both groups showed decreased cognitive control when confronted with appetitive and aversive emotional cues.
Activation in the inferior frontal gyrus (IFG) increased in line with the cognitive control demands of the task.
Though the risk taking groups did not differ in their behavioural performance, functional connectivity analyses
revealed the dorsal striatum plays a more central role in the processing of cognitive control in high than low risk-
takers. Overall, these findings suggest that variance in fronto-striatal circuitry may underlie individual differ-
ences in risk-taking behaviour.

1. Introduction

Adolescence is a period characterised by increases in risk-taking and
reward seeking, behaviours which have been described as both adap-
tive and maladaptive (Galvan, 2013). Though these tendencies have
often been related to adverse outcomes, such as increases in instances of
unintentional injuries, road traffic accidents, unsafe sexual behaviour
and substance abuse (Eaton et al., 2012; Geier, 2013), recent work has
also suggested that higher levels of risk-taking may lead to increased
exploration-based learning (Humphreys et al., 2013; Silva et al., 2016).
Adolescents appear to respond differently to risks than adults, and both
the positive and negative consequences of the resulting risk-taking
behaviours suggest that an increased understanding of the mechanisms
underlying this behaviour could have important societal implications.

At a neural level, various models have been proposed to explain
adolescent risk-taking. A set of so-called dual systems or imbalance
models has suggested that this behaviour is associated with a disparity
in the integration of the networks involved in motivational processes
and inhibitory control (for recent overviews see Casey et al., 2016;

Crone and Dahl, 2012; Schulman et al., 2016). These models posit that
adolescence, compared to childhood and adulthood, is characterised by
changes in activity in subcortical circuitry involved in affect and reward
processing, such as the amygdala and ventral striatum (Galvan et al.,
2006; Somerville et al., 2011). Conversely, the prefrontal cognitive
control systems which interact with motivational systems show a more
linear and protracted development. With age, frontal control over
subcortical regions is thought to increase, thereby enabling greater
behavioural regulation (Heller et al., 2016; Vink et al., 2014). But
during adolescence these cortico-subcortical circuits are still devel-
oping, leading to a developmental imbalance in the influence of sub-
cortical systems on behaviour (Casey et al., 2016; Mills et al., 2014).
Consequently, when adolescents are exposed to emotionally or moti-
vationally salient information they are often unable to sufficiently re-
cruit inhibitory control resources to down-regulate robust appetitive
drives. This leads to a greater influence of appetitive information on
adolescent behaviour than during childhood and adulthood, often re-
sulting in impulsive behaviour.

While there is much research that supports these imbalance models,
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some have suggested that the claims may be overly simplistic, and do
not fully reflect the diversity of findings within the field (see for ex-
ample Pfeifer and Allen, 2012). For example, while numerous studies
have shown hyperresponsiveness in the amygdala and striatum during
adolescence (e.g. Chein et al., 2011; Guyer et al., 2008; Hare et al.,
2008; Somerville et al., 2011), there are also a number of studies which
did not replicate these findings (e.g. Bjork et al., 2010; Geier et al.,
2010; see also Scherf et al., 2013). This has led to the suggestion that
adolescent neural responses may vary as a function of stimuli, context
and task demands (Nelson et al., 2016). For example, in situations
where motivational and affective demands are low, adolescents are
often able to exhibit regulatory function that is comparable to that of
adults (Crone and Dahl, 2012). However, the reality of adolescence is
that many of the situations adolescents find themselves in are emo-
tionally charged, for example due to the presence of their peers. During
adolescence social relationships become increasingly important, and
consequently social acceptance becomes a powerful motivator for
adolescents to conform to patterns of behaviour that receive approval
from their social group (Allen et al., 2005). As a result, they are fre-
quently confronted with situations with could potentially undermine
their developing cognitive control abilities, and some are able to na-
vigate this more successfully than others. The current study aims to
elucidate how the interplay between emotional cues and cognitive
control differs between adolescents who show high or low levels of risk-
taking behaviour.

A number of previous studies have assessed the interaction between
emotional cues and inhibitory control using an emotional go/no-go
paradigm, though these interactions have not been explicitly linked to
risk-taking behaviours. Compared to adults and children, adolescents
appear to be less able to suppress responses to appetitive cues such as
happy faces, as well as showing enhanced reward-related activation in
the ventral striatum in response to these stimuli (Somerville et al.,
2011). Aversive stimuli, such as fearful or threatening faces, similarly
decrease inhibitory control and slow response times in adolescent
samples (Cohen-Gilbert and Thomas, 2013). These behaviours are
paralleled by increased activation during the task in limbic regions such
as the amygdala, and decreased recruitment of prefrontal regions,
rendering adolescents more sensitive to emotional interference during
the task (Dreyfuss et al., 2014; Hare et al., 2008). Increased con-
nectivity between these regions has been associated with improvements
in cognitive control (Heller et al., 2016). Even in a task where the
emotional information was task-irrelevant, adolescents were more dis-
tracted than adults by negative stimuli, though not by positive stimuli
(Cohen-Gilbert and Thomas, 2013; Grose-Fifer et al., 2013). These
studies suggest that adolescents find it more difficult than children or
adults to suppress their responses when faced with emotional stimuli,
regardless of whether the emotional information is task relevant or ir-
relevant.

Most previous work on emotional inhibition has examined re-
activity to fearful and happy facial emotions. While this provides in-
sight into affective interference caused by differences in valence be-
tween these negative and positive emotions, the compared emotions
differ in their motivational underpinnings: happiness is an approach-
related emotion, but fear is an avoidance-related emotion. In order to
distinguish the effect of these motivational differences from those due
to the valence of the emotions, a negative social emotion associated
with approach tendencies would be a more suitable comparison.
Research has shown that anger is related to the approach motivational
system (Carver and Harmon-Jones, 2009; Harmon-Jones and Allen,
1998), as it involves a reaction to something aversive, often resulting in
an active effort to change this. Thus, a comparison of happiness and
anger would help to examine the potential differential effects of posi-
tive and negative emotions on adolescent impulse control.

In this study we aimed to extend previous work by investigating
how the decreased ability to regulate behaviour in emotional contexts is
related to adolescent risk-taking. We examined the effect of emotional

information on cognitive control in a group of high risk-taking and a
group of low risk-taking adolescents using an emotional go/no-go
paradigm (Hare et al., 2008; Somerville et al., 2011). This type of task
has been shown to enable reliable assessment of the effects of the af-
fective context on task performance (Schultz et al., 2007). Happy, angry
and calm faces were used as stimuli, and participants were instructed to
respond to one emotion and ignore the other. We examined the dif-
ferential effects of happy and angry faces, as well as differences in these
effects between the risk-taking groups at both a behavioural and neural
level.

Additionally, we used graph-theoretical methods to model func-
tional connectivity between brain regions, to see if these regions play a
differential role in emotional impulse control in low and high risk-
taking adolescents. Graph-theoretical measures can be used to construct
easily computable representations of relatively complex data and are
therefore ideally suited to summarize functional connectivity networks
(Rubinov and Sporns, 2010). In theory, interpreting task-based func-
tional connectivity networks can be quite complicated as even if just a
few regions are used, this involves assessing a vast number of separate
potential connections between these regions. Graph theory facilitates
this interpretation by allowing examination of characteristics of the
network, while also considering the different functional connections
between the regions that comprise it. Framing functional connectivity
in terms of a network thus diminishes the need to separately look and
test for all possible connections between ROIs, and instead computes a
small number of neurobiologically meaningful measures (Sporns and
Zwi, 2004). Thus, it allows quantification and interpretation of the
relative importance a region plays within a network, without having to
interpret each of the connections between regions. This makes it a more
powerful, and often more intuitive approach. Furthermore, it follows
recent calls for a shift from one-to-one mappings of psychological states
and regions of the brain towards network-based analyses which re-
cognise the computational roles of the regions involved (Casey, 2015;
Pfeifer and Allen, 2016).

In our analyses we used the concept of degree centrality as a mea-
sure to describe the relative importance of a region within a functional
connectivity network. Degree centrality, which corresponds to the
number of connections a given region has, is viewed as the most fun-
damental network measure, as all other network measures are ulti-
mately linked to it (Bullmore and Sporns, 2009). In a functional con-
nectivity network, connections between regions reflect the magnitude
of correlations over time (Rubinov and Sporns, 2010). Consequently,
the centrality of a ROI in a functional connectivity network reflects
synchronous information processing across the regions it is connected
to. Differences between centrality scores thus highlight differences in
the importance of a region across task conditions and/or experimental
groups. It is important to note that since functional connectivity net-
works are undirected (i.e. the correlation between region A and B is the
same as between B and A), centrality does not reflect the direction of
information flow between regions.

In addition to degree centrality, network analyses often examine
measures reflecting functional integration in the brain, which reflect
the ease with which regions in the network communicate (Rubinov and
Sporns, 2010). A frequently used measure is that of the shortest path
length between nodes (e.g. brain regions) in a network, with shorter
path lengths revealing greater potential for integration between re-
gions. In our analyses we use both centrality and shortest path length
measures to examine functional connectivity within an a priori defined
fronto-striatal network of regions known to be involved in emotion
processing and cognitive control.

2. Method

2.1. Participants

The initial sample consisted of 35 healthy adolescents. Data from
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one participant was excluded due to incorrect inhibition on all no-go
trials in three of the four runs, leaving a sample of 34 participants (20
female, M age = 14.57, SD age = 0.80, range: 13.21–16.41).
Participants were recruited from a larger sample (N= 323) in an on-
going longitudinal project examining cognitive and socio-emotional
development during adolescence (see e.g.: Baumgartner et al., 2014;
Van Batenburg-Eddes et al., 2014). During data collection for this
project all participants completed the Columbia Card Task (CCT; Figner
et al., 2009). The CCT measures risk-taking under conditions of low and
high emotional arousal. During this task, participants draw from a deck
of cards, with each card earning or losing them points. The amount of
gain and loss and the number of loss cards in the deck varies across
trials. Consequently, the CCT is considered a dynamic risk-taking task:
the risk parameters change each time a card is turned over. Such tasks
are thought to be more reflective of real world behaviour than static
tasks, as well as being more engaging for the participant (Weber and
Johnson, 2009). In the ‘hot’ condition of the CCT, participants are
shown the outcome of each card after turning it over, and subsequently
decide if they wish to continue or move on to the next trial. This con-
dition measures risk-taking under high emotional arousal, as evidenced
by increases in physiological measures of arousal such as the skin
conductance response (Figner et al., 2009), as well as significant cor-
relations between performance and measures of reward responsiveness
(Penolazzi et al., 2012). The CCT has been shown to have good test-
retest reliability (Buelow and Barnhart, 2018). All participants in the
larger longitudinal sample were ranked based on their deviation from
optimal performance during the ‘hot’ condition of the task (defined as
the difference between the mathematically optimal number of cards per
condition and the actual number of cards chosen). The top and bottom
30% of the longitudinal sample (n= 220), defined as a high risk-taking
and low risk-taking group, were subsequently approached to participate
in the current study. Of the approached sample 15% were included in
the current study, with orthodontic braces forming a constraint for the
majority of those who were unable to participate. Participating ado-
lescents did not differ in age from those who were approached but
didn’t participate (t(45.59) = 1.04; p= .303), sex (Χ2(1) = 2.87;
p= .090), or in CCT scores (t(44.17) = 0.22; p= .823). In line with our
selection criteria, the two risk-taking groups significantly differed on
multiple aspects of their CCT performance, both with regards to per-
formance and outcomes. The low risk-taking group chose a close to
optimal number of cards (M= 0.14, SD= 1.00) while the high risk
group selected more cards than optimal (M= 7.47, SD= 1.01; differ-
ence low vs high: t(31.44) = 21.27, p < .001). The low risk group
ended trials before a loss card was drawn (or turned over no cards
during the trial) on an average of 71.2% (SD= 10.0%) of trials, while
the high risk group did so on only 48.2% (SD= 10.3%) of trials. This
difference was significant t(31.28) = 6.581; p < .001. In addition, the
low risk group finished the task with average earnings of −0.12 euro
(SD = 7.37) while the high risk group earned an average of -7.53 euro
(SD = 7.67). This difference was also significant t(31.16) = 2.860; p=
.007.

All participants were typically developing, had normal vision, re-
ported no neurological or psychiatric disorders and had no contra-
indications for MRI. Demographic characteristics are reported in
Table 1. Age and sex did not differ between the two risk-taking groups

(age: t(30.98) = 1.17, p= .249; sex: Χ2(1) = 0.08, p= .773). Consent
for all phases of the project was obtained from the Ethical Committee of
the University of Amsterdam Faculty of Behavioural and Social Sci-
ences. All participants and their guardians provided written informed
consent prior to participation.

2.2. Measures

2.2.1. Task development
The emotional go/no-go task (Hare and Casey, 2005; Somerville

et al., 2011) comprising calm, happy and angry facial expressions was
refined during an initial pilot phase to ensure comparable levels of
emotional valence between conditions in adolescents. A group of 126
adolescents were recruited from local schools specifically for the pilot.
Participants rated the valence of 96 (32 per emotion) calm, happy and
angry faces from the NimStim set of facial expressions (Tottenham
et al., 2009) using a Likert scale ranging from −4 (strongly negative) to
+4 (strongly positive). Participants reported how realistic they found
the expressions using a 7-point Likert scale (1 = completely unrealistic,
7 = very realistic).

In the happy and angry conditions, the data were used to select the
10 faces (5 male, 5 female) which the participants found most realistic
and with the highest absolute valence ratings in the intended direction.
Mean valence ratings were balanced between the happy and angry
conditions to ensure that differences between the emotions were not
due to the intensity of the emotions displayed. A set of 10 faces (5 male,
5 female) was also selected for the calm condition, based on those faces
rated by the participants as most realistic, and with the most neutral
valence ratings. Calm faces were used as neutral stimuli, as previous
research has shown that neutral faces are often characterised by par-
ticipants as portraying negative emotions (Herba and Phillips, 2004).
All conditions comprised a combination of open and closed mouths.2

2.2.2. Experimental task
A modified emotional go/no-go task was created with stimuli se-

lected based on data from the pilot phase (Fig. 1). Within a go/no-go
paradigm participants are instructed to press a button as quickly as
possible when shown a ‘go’ (i.e., target) stimulus and to inhibit their
response by not pressing the button when shown a ‘no-go’ (i.e., non-
target) stimulus.

The rapid event-related task comprised four blocks presented across
four different runs. Each block contained two facial emotions (calm and
happy, or calm and angry), one instructed to be the target and one as
the non-target stimulus, leading to four conditions: (i) happy go/calm
no-go, (ii) happy no-go/calm go, (iii) angry go/calm no-go, and (iv)
angry no-go/calm go.

At the start of each block participants were shown a screen in-
dicating the target emotion for that block, and reminding them not to
respond to other emotions. Each block consisted of 16 trials, with tar-
gets (‘go’) occurring on 75% of these trials, resulting in a total of 96
angry/happy go trials (48 happy, 48 angry), 32 angry/happy no-go
trials (16 happy, 16 angry), 96 calm go trials and 32 calm no-go trials
across the four runs (256 trials in total). Trials within a block, and block
order within a run, were randomized across participants. Each trial
started with a face, which was displayed for 500 ms, followed by a
fixation cross which was displayed for a variable interstimulus interval
between 1500 ms–2500 ms (in steps of 500 ms). After the last trial of a
block, the fixation cross was displayed for 10 s. During the last trial of a
run the fixation cross was displayed for 20 s in order to acquire the final
BOLD response in full.

The task was presented in Presentation using a projection screen
and mirror within the head coil. Responses were recorded using a re-
sponse box attached to the participant’s respiratory belt. Participants

Table 1
Participant characteristics.

Low risk-taskers High risk-takers

N 18 (11 females) 16 (9 females)
Age (M (SD)) 14.72 (.77) 14.40 (0.82)
CCT scorea 0.14 (1.00) 7.47 (1.01)

a CCT score was calculated as the deviation from optimal performance across
conditions. 2 A full list of the selected stimuli is available from the first author upon request.
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responded with their right index finger.

2.3. Image acquisition

Participants were scanned with a 3 T Philips Achieva XT with a 32-
channel receiver head coil. Functional images were acquired using a
single shot GE-EPI sequence (MS-FFE single shot EPI, TE = 27.63,
FA = 76.1, SENSE (AP) = 2, FOV = 2402, Bandwidth = 36.2 Hz) with
a voxel size of 3*3*3 mm (37 slices with an interslice gap of 0.3 mm)
and a TR of 2 s. Structural images were acquired using a fast MPRage
sequence (3DFFE multishot TFE, TR = 8.2, TE = 3.8, FA = 8, Sense P
(RL) = 2.5, Sense S(FH) = 2, FOV = 240*188, Bandwidth = 191.4 Hz),
with a voxel size of 1*1*1 mm (220 slices).

2.4. Analyses

2.4.1. Behavioural data analysis
Four behavioural outcome measures were computed based on the

go/no-go task: proportion of hits (correct response to go stimulus),
misses (failure to respond to go stimulus), correct rejections (correct
withholding of response to no-go stimulus) and false alarms (incorrect
response to no-go stimulus) across all trials. Mean reaction times for
hits and false alarms were also calculated. Differences in performance
between the risk-taking groups on trials classified as misses, false
alarms, and reaction times on hit and false alarm trials, were analysed
using a 3 (Emotion: calm, happy, angry) × 2 (Risk-taking: high, low)
ANOVA (linear mixed model with a random intercept across partici-
pants). Post-hoc paired samples t-tests were used to further examine
significant interactions.

2.4.2. Imaging data analysis
Pre-processing and General Linear Model (GLM) analyses were

performed using FSL (Jenkinson et al., 2012). Functional images were
brain extracted (Smith, 2002), motion corrected and registered to the
structural images using linear registration (FLIRT (BBR 12 dof),
Jenkinson and Smith, 2001). For the group analyses images were re-
gistered to standard MNI space. Time-series were pre-whitened and
low-pass filtered (90 s). Spatial smoothing was applied using a 6 mm
FWHM kernel. Blood Oxygenation Level Dependent (BOLD) responses
were modeled as a double-gamma Haemodynamic Response Functions
(HRF) with a temporal derivative to account for differences in slice
acquisition time. The GLM design matrix included six main regressors
(angry go, angry no-go, happy go, happy no-go, calm go, and calm no-

go) and two regressors of no interest (errors and instruction screens).
Motion regressors (6) derived from MCFLIRT (Jenkinson et al., 2002)
were added to the GLM design matrix as regressors of no interest, and
volumes with excessive motion (Root mean square (RMS) > 0.75
percentile + 1.5*Interquartile Range (IQR) using fsl_motion_outliers)
were regressed out using additional confound regressors. Mean number
of volumes censored per run was 6.07 (SD= 3.40, Range = (223)).
Average motion over all runs and subjects was 0.73 mm (SD= 0.88). In
five runs, maximum motion exceeded 3 mm (two runs maximum mo-
tion was 5.26 mm, in one run motion was 4.39, in one run motion was
3.62, and in one run motion was 3.28 mm). Motion in these volumes
was also censored. Four out of 136 runs (4 runs × 34 subjects) were
discarded due to no correct inhibitions on happy no-go trials (3 runs) or
no correct inhibitions on angry no-go trials (1 run).

A-priori region-of-interest (ROI) masks were generated bilaterally
for the amygdala, inferior frontal gyrus (IFG) (FSL Harvard Oxford
Atlas, 50% probability threshold), dorsal striatum and ventral striatum
(FSL Striatum Atlas). These regions have been reported previously as
being activated during emotional go/no-go tasks and implicated in
cognitive control (Hare et al., 2008; Somerville et al., 2011).

To confirm that regions previously implicated in emotional go/no-
go paradigms were also activated in our sample, two whole-brain GLM
analyses (Familywise Error (FWE) corrected with a cluster-forming
threshold of Z > 3.1; cluster-wise p < .05; Worsley, 2001) were ex-
amined. First, an emotional (angry + happy) > calm contrast was
used to examine involvement of regions usually active in emotional
paradigms. Second, a no-go > go contrast was used to examine the
contribution of regions associated with inhibitory control.

To examine differences between the risk-taking groups, masks were
constructed as a 4 mm radius sphere centred at the peak voxel in each a-
priori defined ROI for each of the six trial types and subjects separately.
Parameter estimates were extracted from this sphere for each ROI for
each of the six trial types (calm go, calm no-go, happy go, happy no-go,
angry go, angry no-go). An overview of the MNI coordinates of the
spheres extracted from each ROI is given in Table 2. The extracted
values were used in a 3 (Emotion: calm, happy, angry) × 2 (Trial Type:
go, no-go) × 2 (Risk-taking: high, low) ANOVA (linear mixed model
with a random intercept across participants). Where appropriate t-tests
were used to further examine significant interactions.

The ROI analyses were followed by an analysis to estimate func-
tional connectivity in each condition between the eight regions of in-
terest for each individual participant. We used a graph-theoretical ap-
proach using beta-series to determine connectivity between ROIs. This

Fig. 1. Go/no-go task design. The figure displays three trials in a run with calm faces as target stimuli and angry faces as non-targets.
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approach entails constructing a network with the 8 ROIs for each
condition and each subject, with the nodes of the network defined by
the 8 ROIs and the connections between the nodes defined by the
correlation of the beta-series of these ROIs. To construct the network,
we first summarized activity over time by taking the first eigenvector of
all the time-series of each voxel within each ROI (Friston et al., 2006).
This resulted in a time-series characteristic of each of the eight ROIs. On
these time-series single trial estimates of activity were calculated using
the Least-Squares Single (LSS) method by Mumford et al. (2012) and
Turner et al. (2012). This method entails performing a GLM for each
trial in the experiment separately. In each GLM the trial of interest (e.g.,
the first calm no-go trial in a run) is modelled as a single regressor, with
the other trials of the same stimulus type (e.g., the second through to
the last calm no-go trial) as a second regressor. Other trials of other
stimulus types (i.e. conditions) are added as additional regressors, as
are the confound regressors (e.g. motion parameters) used in the ROI
analyses. This resulted in an estimate of the amplitude of activation for
each single trial in the experiment. Single-trial estimates where then
concatenated over runs within each condition, resulting in an ‘ampli-
tude’ time-series for each condition for each subject in the experiment.

Next, for each condition in the experiment, we defined a network
with the eight ROIs as nodes and the correlation between the amplitude
time-series of the different ROIs as edges. The resulting network thus
indicates the functional connectivity between brain regions within a
certain condition. To overcome possible artefacts of differing lengths of
the amplitude time-series – for example, the task consisted of more
calm-go trials than angry no-go trials – we used a bootstrap approach.
Each amplitude time-series was restricted to have a maximum length of
16 (the theoretical maximum number of correct trials of the condition
with the lowest number of trials, 4 trials × 4 runs). At every bootstrap
iteration we sampled 16 data points from the amplitude time-series of
conditions with more than 16 trials. With these resampled amplitude
time-series we constructed the network. We repeated the resampling
and network construction 1000 times and averaged the functional
connectivity estimates (i.e. the correlations between ROIs within a
condition) over these 1000 iterations. This resulted in an ‘average’
network for each condition for each subject.

To assess the resulting functional connectivity networks for each
condition we looked at a measure of the relative importance of the ROIs
(i.e. nodes) within a network, termed centrality (Rubinov and Sporns,
2010). A node’s centrality can be interpreted as the relative importance
of the node within the network. Mathematically, it is the weighted sum
of all the correlations between that node and the other nodes. In terms
of a functional connectivity network (with the ROIs being nodes and the
correlations between ROIs the weighted edges), a high level of cen-
trality means that this ROI has a higher number and/or stronger cor-
relations with the other nodes in the network. High centrality thus
means that this region is more strongly functionally connected and/or
has more functional connections with the other nodes. We calculated
degree centrality and shortest path length for each ROI within each
average network, resulting in an estimate of the importance of a region
for each condition and each subject. These estimates were entered as
dependent variables in a linear mixed model with Risk group as be-
tween-subjects factor, Emotion and Trial-Type as within-subjects fac-
tors and a random intercept over subjects. Analyses were performed
separately for each ROI, similar to the ROI analyses in the previous
section.

To further specify if differences in centrality are due to an overall
increase of connections or due to large differences in the connectivity
strength of specific connections, we performed the same analysis on
binarized correlation matrices using different correlation thresholds
(r > 0.1, 0.3, 0.5, 0.7, or 0.9). This method is useful to filter out the
influence of small/weak links within the network. As thresholds are
determined somewhat arbitrarily, we follow the convention that mul-
tiple thresholds are used (see Rubinov and Sporns, 2010). In the bi-
narized network all correlations below the threshold (i.e. sub-
threshold) were set to zero, all the supra-threshold correlations were set
to 1. The number of incoming supra-threshold connections was taken as
the dependent variable.

To visualize the connectivity patterns, we plotted the graphs for
each of the six conditions for both risk groups. Network analyses were
performed using the R-package qgraph (Epskamp et al., 2012), cen-
trality measures were calculated using the method by Opsahl et al.
(2010) as implemented in qgraph.

Table 2
Median (bold), minimum and maximum values of the peak-voxel coordinates (across subjects, split for each condition) within each predefined Region-of-Interest. All
coordinates are in MNI space.

Region-Of-Interest Calm Go Calm No-go Happy Go Happy No-go Angry Go Angry No-go

x y z x y z x y z x y z x y z x y z

Amygdala Left median −22 −2 −14 −22 −2 −14 −22 −2 −14 −24 0 −16 −22 −2 −14 −22 −2 −14
min −16 −10 −24 −16 −10 −24 −16 −10 −24 −16 −10 −24 −16 −10 −24 −16 −10 −24
max −34 2 −12 −34 2 −10 −34 2 −10 −34 2 −10 −34 2 −10 −34 2 −10

Amygdala Right median 16 −2 −14 18 0 −14 18 −2 −12 18 0 −14 18 −2 −14 18 −2 −14
min 24 −10 −24 24 −10 −24 28 −10 −24 28 −10 −24 24 −10 −24 28 −10 −22
max 12 4 −8 12 4 −10 12 4 −10 12 4 −10 12 4 −10 12 4 −8

Dorsal Striatum Left median −14 2 12 −20 8 4 −16 6 8 −16 6 6 −18 4 12 −18 6 8
min −8 −16 −10 −8 −16 −10 −8 −16 −10 −8 −18 −10 −10 −18 −10 −8 −18 −10
max −34 16 26 −34 20 24 −34 14 24 −34 16 24 −34 24 26 −32 26 22

Dorsal Striatum Right median 10 6 10 10 10 10 12 2 10 10 4 12 12 4 12 12 4 10
min 30 −18 −8 30 −18 −8 30 −10 −6 28 −10 −8 30 −16 −8 30 −10 −6
max 6 26 28 4 20 28 6 16 28 6 26 28 4 24 26 6 24 24

Ventral Striatum Left median −14 10 −10 −14 10 −8 −14 12 −8 −14 10 −6 −16 10 −10 −14 10 −6
min −6 8 −12 −6 8 −12 −6 8 −12 −6 8 −12 −6 8 −12 −6 8 −12
max −22 22 2 −22 22 2 −20 22 2 −22 18 2 −22 22 2 −20 22 2

Ventral Striatum Right median 10 10 −8 12 12 −8 14 12 −8 12 10 −8 10 12 −6 12 12 −6
min 18 8 −10 18 8 −10 18 8 −10 18 8 −10 18 8 −10 18 8 −10
max 2 22 2 4 22 2 4 22 2 4 22 2 4 22 2 2 22 2

Inferior Frontal Gyrus Left median −56 18 14 −56 18 12 −56 20 10 −56 20 8 −56 18 10 −56 20 14
min −52 12 0 −50 12 2 −52 12 0 −52 12 0 −52 12 0 −52 12 0
max −58 36 28 −60 36 28 −58 36 28 −60 36 28 −60 30 28 −60 36 28

Inferior Frontal Gyrus Right median 54 22 14 52 20 8 54 22 10 52 20 12 54 22 14 52 20 8
min 58 14 0 58 14 0 58 14 0 58 14 0 58 14 0 58 14 0
max 48 34 28 48 34 30 52 32 30 48 34 30 48 34 28 48 34 30
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To correct for inflated type I error rates across our ROI analyses for
each of the 8 regions we used Bonferroni correction on the number of
ROIs (α = 0.05/8 = 0.0063; trends α = 0.0125). For consistency, p-
values in the text are uncorrected values. To show the specificity of our
ROI and connectivity analyses we performed these analyses again using
control regions where task effects weren’t expected. Results of these
analyses are shown in Appendix A.

3. Results

3.1. Behavioural results

The analyses showed a difference between the target emotional
expression in participants’ false alarm rates (main effect of Emotion: F
(2, 64) = 6.058, p= .004). Post hoc paired samples t-tests showed
more false alarms in response to angry non-targets relative to calm non-
targets (t(33) = −2.476, p= .019), and more false alarms to happy

non-targets in comparison to calm non-targets (t(33) = −3.610,
p= .001; Fig. 2a). The number of miss trials differed marginally be-
tween emotions (p= .065). Post-hoc tests showed that more misses
occurred in angry trials than in calm trials (t(33) = 2.226, p= .033).
No difference was found between the groups (p= .600) in the number
of miss trials. Subsequent analyses of reaction times showed a similar
main effect of Emotion on hit trials (F(2, 64) = 4.863, p= .011), due to
faster responses to angry (t(33) = 2.392, p= .023) and happy (t
(33) = 3.128, p= .004) compared to calm trials. Reaction times for
false alarms differed between emotions (F(2, 54) = 3.334, p= .043),
due to faster responses to happy faces than angry faces (t
(29) = −2.071, p= .047; Fig. 2b). No differences were found when
comparing the emotional to calm stimuli, suggesting that the heigh-
tened false alarm rate in the emotional conditions was not due to a
speed accuracy trade-off. No differences were found between risk-
taking groups for any of the behavioural or reaction time indices.

3.2. Imaging results

3.2.1. Whole brain analysis
Initial whole brain analyses (FWE cluster corrected, Z > 3.1,

p < .05) confirmed that regions previously implicated in go/no-go and
emotional task performance were also activated in our sample. For the
no-go > go contrast, clusters of activation were found in the temporal
cortex, dorso- and ventrolateral prefrontal cortex, parietal cortex and
the dorso-anterior cingulate cortex (Fig. 3, coordinates in Table 3). For
the emotional (happy + angry) > calm contrast, one cluster of acti-
vation was found in the temporal occipital fusiform cortex (Fig. 4, co-
ordinates in Table 4). Fig. 5 shows an overview of the a-priori ROIs
(blue) and the actual activation values in our sample (red, FWE cluster-
wise p < .05). For the emotional > calm contrast no overlap was
found. For the no-go > go contrast overlap between a-priori ROIs
concentrated on the amygdala.

3.2.2. Region-of-interest analysis
Further examination targeting the a priori ROIs revealed differences

in the magnitude of activation between go and no-go trials in the right
IFG (F(1, 160) = 9.593, p= .002), and in the right amygdala at trend
level (F(1, 160) = 6.383, p= .012). In these regions activation was
greater during no-go trials, which required higher levels of cognitive
control, than during go trials.

Analyses also showed a bilateral interaction effect of Trial Type and
Emotion in the left ventral striatum (F(2, 160) = 3.367, p= .037) and
right ventral striatum (F(2, 160) = 3.536, p= .031). While it did not
meet the Bonferroni adjusted p-value, it did fall within uncorrected
thresholds. We tentatively report the results here as Bonferroni cor-
rections are known to be conservative when tests are correlated
(Poldrack et al., 2011, p. 117), similar effects were found bilaterally,
and the findings are in line with previous research demonstrating that
the ventral striatum is known to play an important role in reward
processing (e.g. Delgado, 2007). Post hoc t-tests showed this was due to
greater activation during happy no-go than happy go trials in right/left

Fig. 2. Hit and false alarm responses per emotion (a) proportion of hits and
false alarms, (b) reaction times for hit and false alarm trials.

Fig. 3. Whole brain activation for the no-go > go contrast (FWE cluster corrected, Z > 3.1, p < .05) showing activation in the right temporal cortex, the right
dorso- and ventrolateral prefrontal cortex, right parietal cortex and the right dorso-anterior cingulate cortex. Coordinates are in MNI space.
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ventral striatum (right ventral striatum: t(33) = −2.650, p= .012; left
ventral striatum: t(33) = −2.180, p= .037). No trial type differences
were found for the calm or angry conditions in these areas. With re-
gards to risk-taking groups the main effects of Emotion and Trial Type,
as well as the interactions between these effects did not differ between
the groups. Estimated marginal means and standard errors are dis-
played in Table 5.

3.2.3. Connectivity analysis
Analyses of functional connectivity revealed a three-way Emotion

by Trial Type by Risk Group interaction in the dorsal striatum (Left
dorsal striatum: F(2,160) = 5.198; p= .006; Right dorsal striatum: F
(2,160) = 5.233; p= .006). Further inspection of these effects within
the risk-taking groups shows that the Emotion by Trial Type interaction
is reversed for the high risk-taking group as compared to the low risk-
taking group (see Table 6 and Figs. 6 and 7). For participants in the low

risk-taking group the dorsal striatum has lower centrality in the calm go
trials compared to the calm no-go trials, while centrality scores where
lower for emotional no-go trials than go trials. This effect is reversed for
participants in the high risk-taking group: they showed lower centrality
in the calm no-go trials than go trials, and the centrality of the dorsal
striatum increased as the emotional demands of the task increased (i.e.
from emotional go to no-go trials). This effect appeared stronger for
angry than happy trials. The same three-way interaction effect was
observed for the shortest path length (left dorsal striatum: F
(2,160) = 5.575; p= .005; right dorsal striatum: F(2,160) = 5.552;
p= .005), corroborating our degree centrality findings, where higher
centrality is associated with shorter path lengths. Marginal means are
displayed in Table 7.

To pinpoint if the differences in centrality scores in the left and right
dorsal striatum are due to a few stronger connections or due to a
smaller increase in many connections, we performed additional ana-
lyses on binarized networks using different thresholds. For the binar-
ized networks we see the same three-way interaction with correlation
thresholds between 0.2 and 0.45 for the right dorsal striatum, and for
thresholds between 0.3 and 0.5 for the left dorsal striatum. This in-
dicates that the number of incoming connections with a correlation
strength between these numbers are driving the centrality differences.
Appendix B shows the average connection strength of the connections
between the left and right dorsal striatum with the other ROIs for the
Emotion, Trial Type and Risk-taking groups. There is no indication that
one specific connection is driving the centrality differences, but that it
is more of an overall increase in connectivity strength of multiple ROIs.
As can be seen for example in the left dorsal striatum, the higher cen-
trality differences between the risk-taking groups in the angry no-go
condition are driven by the amygdala (strength from approximately
0.20 to 0.45) and by the increased connection between the dorsal
striatum and right IFG and ventral striatal areas (from approximately
0.40 to 0.52). A supplementary analysis where we subsequently left out
one of the ROIs connecting to the dorsal striatum and repeated the
centrality analysis, showed that the ventral striatal areas were most
important in driving the centrality differences. The IFG (bilateral) and
left amygdala were most important after that, while the right amygdala

Table 3
MNI Coordinates and z-values for significantly activated clusters (FWE cor-
rected p < .05, cluster forming threshold Z > 3.1) for the no-go > go con-
trast.

no-go > go contrast
Region z-value x y z

Middle Temporal Gyrus/Angular Gyrus/ 5.25 50 −26 −6
Supramarginal Gyrus (Right) 5.19 68 −40 24
(2408 voxels) 4.79 60 −46 30

4.73 50 −44 8
4.63 62 −32 36
4.62 66 −50 18

Frontal Pole (Right) 5.85 30 46 38
(1975 voxels) 5.61 30 56 28

5.10 38 50 16
5.09 34 48 14
4.58 26 54 16
4.46 28 58 18

Frontal Orbital Cortex / Insula (Right) 6.01 32 20 −10
(1510 voxels) 5.82 34 26 4

5.15 42 16 −4
4.11 20 −4 −12
4.05 30 2 −14
3.97 24 −2 −14

Superior Frontal Gyrus (Right) 4.66 20 0 68
(798 voxels) 4.50 14 10 62

4.45 18 −10 62
4.03 8 20 66
3.76 30 −6 60
3.22 36 −4 68

Frontal Orbital Cortex (Left) 5.00 −32 28 0
(498 voxels) 4.79 −28 20 −12

3.56 −20 10 −18

Precuneus Cortex (Right) 3.74 10 −66 44
(374 voxels) 3.62 8 −64 36

Fig. 4. Whole brain activation for the emotional (angry + happy) > calm contrast (FWE cluster corrected, Z > 3.1, p < .05) showing activation in the temporal
occipital fusiform cortex. Coordinates are in MNI space.

Table 4
MNI Coordinates and z-values for significantly activated clusters (FWE cor-
rected p < .05, cluster forming threshold Z > 3.1) for the emotional > calm
contrast.

emotional > calm contrast
Region z-value x y z

Temporal Occipital Fusiform Gyrus (Right) 5.00 44 −42 −14
(383 voxels) 3.99 40 −50 −16

3.64 44 −60 −10
3.47 34 −46 −18
3.25 38 −60 −10
3.25 48 −58 −18
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was least important.

4. Discussion

In the present study we used an emotional go/no-go paradigm to
investigate the effect of salient appetitive and aversive emotional in-
formation on cognitive control in a group of high risk-taking and a
group of low risk-taking adolescents. Consistent with prior work using a
similar paradigm (e.g. Dreyfuss et al., 2014; Somerville et al., 2011), we
show that emotional cues decreased levels of cognitive control. While
analysis of activation in our a priori regions of interest did not

conclusively demonstrate differences between the risk-taking groups,
analyses of functional connectivity did reveal differences, specifically in
the interactions between the dorsal striatum and other regions. Our
findings suggest that variance in fronto-striatal circuitry may underlie
the observed individual differences in risk-taking behaviour.

4.1. The influence of emotional cues on cognitive control

The behavioural data showed that when the emotional demands of
the task were high, participants made more inhibitory errors. These
behavioural effects did not differ between the risk-taking groups. The

Fig. 5. Overlap between a-priori defined ROIs (blue) and the two whole brain contrasts (red). Top panel (a) indicates overlap for the emotional > calm contrast.
Lower panels (b) indicate overlap with the no-go > go contrast, showing some overlap with the right amygdala. All coordinates are in MNI space (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article).
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results suggest that both positive and negative emotional information
disrupt adolescents’ ability to inhibit a prepotent behavioural response.
This is however not the case for neutral emotional information.
Previous work in adolescents has shown that appetitive stimuli, (i.e.,
happy faces) facilitate approach responses and decrease reaction times
(Somerville et al., 2011). Consequently, adolescents are often unable to
override this strong approach motivation, leading to behavioural errors
in the case of a go/no-go paradigm such as the one used in our study. A
growing body of evidence suggests that adolescents also show de-
creased performance when confronted with negatively-valenced stimuli
(Cohen-Gilbert and Thomas, 2013; Dreyfuss et al., 2014; Galvan and
McGlennen, 2013; Urben et al., 2012). While much of this previous
work has focused on fearful or threatening faces, our results show that
this is also the case for negatively valenced approach emotions, such as
anger, evidenced by the increased errors and faster responses in

response to angry compared to calm faces. This finding suggests that
both positively and negatively valenced approach stimuli disrupt in-
hibitory control. However, there may be situations in which the effects
of heightened emotional arousal during adolescence can be beneficial.
Recent work suggests that adolescents’ increased sensitivity to rewards
enables them to achieve adult levels of simple forms of cognitive con-
trol when offered an incentive to do so (Padmanabhan et al., 2011), but
not for more complex forms (Insel et al., under review). In our sample
the observed behavioural effects under emotional conditions did not
differ between the low and high risk-taking groups. This failure to find a
behavioural effect could be due to all participants in our relatively
small sample generally performing well on the task and making few
errors, thus leaving little room for individual differences in perfor-
mance.

Fig. 6. Mean centrality scores of the dorsal striatum (left and right) split by Trial Type (go, no-go) and Emotion (calm, happy, angry) for both risk-taking groups.
Error-bars indicate one standard error (Cousineau within-subjects, (Cousineau, 2005)) above/below the mean.
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4.2. Neural correlates of emotional cognitive control

Effects of emotional information on cognitive control were also
visible at a neural level. Activation in the right IFG was greater for non-
target (no-go) than target stimuli, and a similar effect was found at
trend level in the right amygdala. These results are in line with previous
work, and consistent with proposed models of adolescent inhibitory

control. Numerous studies have confirmed the role of the IFG in the
suppression of response tendencies in both emotional and neutral
contexts, as well as highlighting developmental shifts in this ability,
with adolescents often showing particularly strong prefrontal recruit-
ment compared to adults (e.g. Aron et al., 2003; Chikazoe et al., 2009;
Luna and Sweeney, 2004). The observed trend-level increased recruit-
ment of the amygdala in our study may be due to the heightened

Fig. 7. Functional connectivity networks for he
six experimental conditions. Circles indicate
the 8 ROIs (left/right inferior frontal gyrus
(IFG-L/R), amygdala (AM-L/R), dorsal
striatum (DS-L/R), and ventral striatum (VS-L/
R). Numbers in the circles indicate the cen-
trality values (red indicates high risk group,
blue indicates low risk group), which are also
shown in Fig. 6. Lines (red indicates high risk
group, blue indicates low risk group) between
the ROIs indicate the strength of the correla-
tion between the ROIs. Thicker and less trans-
parent lines indicate higher correlations. (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article).
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importance of the expressed facial emotions during no-go trials, as the
content of the facial expressions (whether calm, happy or angry) then
signifies the need for a change in dominant behaviour. This would be in
line with the crucial role of the amygdala in the processing of emotional
cues (Costafreda et al., 2008; Davis and Whalen, 2001; Ledoux, 2000),
as well as signalling the salience and relevance of (social) stimuli
(Adolphs, 2010). Scherf et al. (2013) have suggested that this is parti-
cularly the case during adolescence, when hormonal changes during
puberty result in the amygdala playing a vital role in the evaluation and
weighting of specifically social stimuli, resulting in an increased re-
levance of social signals such as facial emotions.

At an uncorrected threshold of p < .05, we also observed an in-
teraction between Emotion and Trial Type in the ventral striatum.
Though this effect should be interpreted with caution, it may be ex-
plained by the increased salience of emotions during no-go trials. The
effect appeared to be driven by a stronger striatal response to happy
non-target than happy target faces. The ventral striatum plays an im-
portant role in motivated behaviour, especially during the anticipation
and attainment of reward (Delgado, 2007; Galvan et al., 2006; Knutson
and Greer, 2008), suggesting that the increased relevance of happy
faces during non-target trials resulted in greater activation in our
sample. Some recent work has also shown striatal activation in response
to aversive outcomes, such as negative social feedback (Guyer et al.,
2009), or the administration of an aversive liquid (Galvan and
McGlennen, 2013) or auditory stimulus (Levita et al., 2009), indicating
a general sensitivity of this region to valenced stimuli, not just to re-
ward. We did not observe a difference between target and non-target
trials for angry faces. This suggests that the type of stimulus used may
be an important, with negative facial expressions not eliciting sig-
nificant striatal responses. This suggestion is supported by previous
work using fearful and happy facial emotions (Dreyfuss et al., 2014;
Hare et al., 2008).

4.3. Differences in functional connectivity networks between risk-taking
groups

Fronto-striatal circuitry has been identified as critical to goal-di-
rected and motivated behaviour in both adolescents and adults
(Balleine et al., 2007; Casey, 2015). Previous work examining the in-
hibition of approach responses to appetitive stimuli has suggested that
the functional organisation of the fronto-striatal network increases
during adolescence and into adulthood, and that during adolescence the
ventral-dorsal striatal coupling within this network is stronger than
during adulthood (Somerville et al., 2011). Other work has shown that
viewing emotional stimuli can reduce connectivity in cognitive control
networks (Patterson et al., 2016). In this study we used graph-

theoretical measures to examine functional connectivity networks. This
enabled us to succinctly summarize the properties of the functional
networks and identify the influence of brain regions under different
conditions of the experiment. As opposed to more traditional methods,
where every connection in a network is analysed separately, the graph-
theoretical approach thus allows identification of the properties of an
entire network and its most important brain regions. By using this
method, we were able to establish differences between the risk-taking
groups that were not visible when analysing each of the ROIs sepa-
rately.

Our analyses suggest there are differences between high and low
risk-taking adolescents in the recruitment of fronto-striatal networks
when regulating behaviour in emotional contexts. As the inhibitory
control demands increase within emotional contexts (i.e. happy and
angry no-go vs go trials), the centrality of the dorsal striatum increases
in the high risk-taking group, and this is accompanied by shorter path
lengths within the network. These effects are reversed in the low risk-
taking group. Though previous work has often focussed on the role of
the ventral striatum during adolescence, our findings suggest that the
dorsal striatum may play a central role in emotion regulation during
this period. The dorsal striatum is strongly interconnected with motor
and higher cortical association areas in frontal and parietal regions,
while the ventral striatum shows strong connections with regions in-
volved in emotional processing such as the ventral prefrontal cortex,
amygdala and anterior cingulate (Porter et al., 2015). The dorsal
striatum is often associated with learning and habit formation (Kimchi
et al., 2009), but has also been identified as a convergence point for
signals from prefrontal cognitive control regions and the ventral
striatum during goal-directed, motivated behaviour (Haber et al., 2006;
Haber and Knutson, 2009). Our findings are in line with this model, and
suggest that when regulating both positive and negative emotionally
salient cues, this role of the dorsal striatum may be of particular im-
portance in those adolescents more prone to risk-taking behaviour. The
increased centrality scores in the dorsal striatum were due to greater
interconnections with other regions in the high risk-taking group (also
reflected by shorter path lengths), and not due to changes in (a small
number of) specific connections within the network (as is shown in
Fig. 7). Therefore, the increased centrality may reflect greater en-
gagement of fronto-striatal networks from the dorsal striatum when
correctly suppressing responses to emotional stimuli. As no differences
were observed between the groups in behavioural responses, it seems
that the adolescents in the high risk-taking group may require greater
coordination within the fronto-striatal network through the dorsal
striatum to achieve the same level of performance as low risk-takers.

4.4. Limitations and conclusions

A number of limitations of the present study must be noted. Risk-
taking groups were defined based on CCT performance, and not on
reports of actual risk-taking behaviours. Previous work has however
shown that performance on risk-taking tasks is related to real-world
engagement in risk-taking behaviours (Lejuez et al., 2003), as well as
demonstrating a positive correlation between self-reported inhibitory
control and behavioural measures of inhibition in the presence of
emotionally salient stimuli (Shuster and Toplak, 2009). However, fur-
ther research is needed to confirm these relationships for the beha-
vioural task used in our study. As our sample comprised only adoles-
cents, further work examining children and adults is needed to
determine if the observed effects are adolescent-specific. Previous work
comparing performance on a variant of the emotional Go-Nogo task in
children, adolescents and adults suggests that this may indeed be the
case (Somerville et al., 2011). Finally, while not unusual for fMRI re-
search, the size of the risk-taking groups in our sample was relatively
small. Though by selecting participants from a larger sample based on
their risk-taking behaviour we were able to create more homogeneous
groups than would be expected if participants had been recruited from

Table 7
Estimated Marginal Means of the shortest path length values of the dorsal
striatum. Standard Errors are in brackets.

Trial
Type

Emotion Risk
Group

Dorsal Striatum (left) Dorsal Striatum
(right)

Mean SE Mean SE

Go Angry High risk 2.238 (0.14) 2.182 (0.14)
Low risk 2.111 (0.13) 2.159 (0.13)

Calm High risk 2.004 (0.14) 2.012 (0.14)
Low risk 2.333 (0.13) 2.343 (0.13)

Happy High risk 2.161 (0.14) 2.123 (0.14)
Low risk 2.192 (0.13) 2.177 (0.13)

No-go Angry High risk 1.852 (0.14) 1.861 (0.14)
Low risk 2.312 (0.13) 2.357 (0.13)

Calm High risk 2.293 (0.14) 2.310 (0.14)
Low risk 2.176 (0.13) 2.153 (0.13)

Happy High risk 2.121 (0.14) 1.977 (0.14)
Low risk 2.399 (0.13) 2.281 (0.13)
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the general population, thereby increasing the ability to examine the
differential effects of high and low levels of risk-taking. Our sample size
was largely influenced by the fact that many participants in our long-
itudinal study had braces, and therefore were not suitable for partici-
pation in MRI research. This constraint is important to consider when
working with adolescent samples, and oversampling may be required
when aiming to select specific groups of participants.

In conclusion, the results of the present study suggest that both
appetitive and aversive emotional cues lead to impairments in in-
hibitory control during adolescence. While no behavioural differences
were observed between the risk-taking groups, functional connectivity
analyses revealed differences at a neural level. The dorsal striatum was
shown to play an essential role within the fronto-striatal network in the
high risk-taking group when suppressing responses to emotional cues.

These findings offer an initial suggestion that variance in fronto-striatal
circuitry may underlie individual differences in risk-taking behaviour,
though further research is needed to elucidate this relationship.
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Appendix A. Control Region analysis

Processing

To examine the specificity of our ROI and connectivity analyses we performed the analysis using control ROIs. We used the bilateral Occipital
Fusiform Gyrus (OFG, Harvard Oxford atlas, with a probability threshold > 50%) and Heschl’s gyrus (Harvard Oxford atlas with a probability
threshold > 30%) as control regions. These four regions were chosen as we expected no task effects in these regions. Additionally, the control ROIs
showed no overlap with our whole-brain contrasts (no-go > go and emotional > calm).

The processing pipeline was the same as in our reported analyses. For the region-of-interest analysis we extracted data using 4 mm spheres from
the control ROIs. For the connectivity analysis we used the first eigenvector time-series to estimate beta-series. Functional networks were again
created using the first 16 values from the beta-series within a bootstrap framework. We performed a mixed model ANOVA with a random intercept
across subjects.

We also used the same strategy to interpret effects. We used a Bonferroni threshold based on 4 regions (alpha = 0.05/4 = 0.0125, alpha <
0.025 for trends) and interpreted bilateral effects at alpha = 0.05 (0.1 for trends).

Results

Results for the ROI activation showed no effects in the left OFG (all p’s > .125), right OFG (all p’s > .026), and left Heschl’s gyrus (all
p’s > .181). In the right Heschl’s gyrus we observed an Emotion by Trial Type trend (F(2, 160) = 3.886; p= .023).

Results for the centrality measures showed no effects in the left OFG (all p’s > .043), right OFG (all p’s > .108), and left Heschl’s gyrus (all
p’s > .218). In the right Heschl’s gyrus we observed a Risk group by Trial Type trend (F(1, 160) = 6.035; p= .015).

Appendix B

See Table B1

Table B1
The average connection strength of the left and right dorsal striatum (DS) with the other ROIs in the network for the Emotion, Trial Type and Risk-taking group
conditions.

DS Trial Type Emotion Risk Group Amyg (L) Amyg (R) IFG (L) IFG (R) VS (L) VS (R) DS (R/L)

Left Go Angry High risk 0.30 0.32 0.50 0.48 0.38 0.28 0.79
Low risk 0.33 0.32 0.55 0.44 0.41 0.47 0.87

Calm High risk 0.39 0.36 0.56 0.52 0.50 0.42 0.84
Low risk 0.29 0.28 0.42 0.41 0.37 0.34 0.87

Happy High risk 0.30 0.29 0.48 0.47 0.38 0.36 0.84
Low risk 0.28 0.31 0.42 0.40 0.43 0.46 0.89

No-go Angry High risk 0.47 0.40 0.45 0.52 0.58 0.53 0.83
Low risk 0.22 0.18 0.57 0.39 0.38 0.39 0.86

Calm High risk 0.26 0.34 0.47 0.48 0.41 0.33 0.84
Low risk 0.34 0.34 0.49 0.45 0.44 0.44 0.85

Happy High risk 0.19 0.20 0.47 0.56 0.46 0.30 0.87
Low risk 0.17 0.19 0.41 0.29 0.21 0.28 0.86

Right Go Angry High risk 0.25 0.35 0.49 0.57 0.40 0.35 0.79
Low risk 0.30 0.30 0.47 0.49 0.37 0.47 0.87

Calm High risk 0.35 0.36 0.56 0.56 0.47 0.43 0.84
Low risk 0.23 0.26 0.37 0.47 0.35 0.40 0.87

Happy High risk 0.30 0.32 0.51 0.51 0.34 0.36 0.84
Low risk 0.27 0.32 0.36 0.46 0.41 0.48 0.89

No-go Angry High risk 0.41 0.36 0.39 0.56 0.54 0.54 0.83
Low risk 0.19 0.19 0.47 0.39 0.33 0.43 0.86

Calm High risk 0.24 0.29 0.49 0.53 0.37 0.35 0.84
Low risk 0.33 0.31 0.48 0.50 0.43 0.44 0.85

Happy High risk 0.20 0.23 0.51 0.63 0.51 0.35 0.87
Low risk 0.08 0.17 0.35 0.40 0.16 0.31 0.86
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