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Molecular mechanisms of detection 
and discrimination of dynamic 
signals
G. Antunes1, A. C. Roque1 & F. M. Simoes-de-Souza   2

Many molecules decode not only the concentration of cellular signals, but also their temporal dynamics. 
However, little is known about the mechanisms that underlie the detection and discrimination of 
dynamic signals. We used computational modelling of the interaction of a ligand with multiple targets 
to investigate how kinetic and thermodynamic parameters regulate their capabilities to respond to 
dynamic signals. Our results demonstrated that the detection and discrimination of temporal features 
of signal inputs occur for reactions proceeding outside mass-action equilibrium. For these reactions, 
thermodynamic parameters such as affinity do not predict their outcomes. Additionally, we showed 
that, at non-equilibrium, the association rate constants determine the amount of product formed in 
reversible reactions. In contrast, the dissociation rate constants regulate the time interval required 
for reversible reactions to achieve equilibrium and, consequently, control their ability to detect and 
discriminate dynamic features of cellular signals.

Cells detect endogenous signals through changes in the activities of biomolecules that integrate signalling path-
ways and networks1–3. Similarly, many drugs exert their effects by regulating components of signalling net-
works4,5. In recent decades, the advances of molecular biology and proteomics promoted a rapid growth in the 
understanding of the topological organization of signalling networks and pathways2,6,7. However, despite the 
wealth of data, the comprehension of the dynamics of interconnected biomolecules and how they underlie spe-
cific cellular processes in response to a vast variety of signals remain a challenge2,5,6,8.

Signalling pathways and networks typically show high numbers of cross-talks and redundancies2,5,6,9. Often, 
networks that share mutual components execute opposite cellular responses10,11. Moreover, common intracellular 
signals trigger several competing processes9,10,12,13.

To ensure the appropriate response to different signals, the activities of the biomolecules must be tailored to 
detect only the correct information14. Historically, the law of mass action extensively influenced our understand-
ing of signalling transduction and the mechanisms of drug action15,16. In consequence, we tend to explain the 
activation of a molecule by a cellular signal or the effect of a drug as dose/concentration-dependent15. Thus, puta-
tive differences in the affinities for common activators is the typical explanation for the differential activations of 
competing signalling pathways17,18. Affinity is also a core concept in pharmacology, commonly used to predict the 
efficacy of drugs and lead compounds15,16,19,20. However, the concentrations of drugs and endogenous signals fluc-
tuate constantly in the biological systems and often with faster time scales than the rates of binding and unbinding 
from their cellular targets16,18,20. Frequently the rate constants of the reactions play a more decisive role to their 
outcomes than thermodynamic parameters such as binding affinity16,18,19,21. Cumulating evidences have showed 
that the lifetime of a drug on its target is often more important for its physiological effects than the affinity of the 
drug/target complex16,19. Similarly, several biomolecules and signalling pathways detect the temporal dynamics of 
intracellular signals13,14,18,22,23, which implies that the concentrations of their activators are not the only property 
carrying information2,13,14,22. Therefore, one of the most important aspects of cellular signalling transduction that 
still needs to be addressed is the identification of the mechanisms that underlie the detection and discrimination 
of the dynamic features of cellular signals.

In this work, we used computational models that simulate the interactions between a ligand and different 
targets to characterize the role of kinetic and thermodynamic parameters in the detection and discrimination of 
dynamic signals. Our results indicated that only reactions outside mass-action equilibrium are sensitive to the 
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temporal features of signal inputs. Consequently, their outcomes are not predicted by thermodynamic parameters 
such as binding affinities and dissociation constants. We also demonstrated that, outside mass-action equilibrium, 
the association rate constants regulate the amount of product formed in reversible reactions. The dissociation rate 
constants control the time required for reversible reactions to achieve equilibrium and determine their ability to 
detect and discriminate dynamic features of cellular signals. Moreover, in sequential reactions, fast dissociation 
rate constants act as bottlenecks for the propagation of dynamic signals.

Results
Mechanisms for the detection and discrimination of the durations of signals.  Thermodynamic and 
kinetic parameters regulate chemical reactions, but their individual contributions vary18,24. For a reversible reaction 
of binding and unbinding (reaction 1) between a molecule M and a ligand L forming the complex LM:

+   L M LM (chemical equation 1)

the dissociation constant (KD) quantifies the binding affinity of the complex LM formed at equilibrium, which is 
mathematically defined by equation 1:

=K L M
LM

[ ][ ]
[ ] (1)D

where the brackets indicate concentrations.
According to equation 1, the KD of a reversible reaction specifies which species are more abundant at equi-

librium (the reactants L and M or the product LM). The KD of a reversible reaction is related with its Gibbs free 
energy (ΔG), which designates the stability of the product LM relative to the reactants L and M (Fig. 1A)24,25. 
As thermodynamic quantities, KD and ΔG define the relative concentrations of its components at equilibrium, 
but do not indicate whether the reversible reaction occurs in a feasible time24. It is the energy barrier (energy 
of activation, EA) that must be overcome during a reaction that determines its velocity24. A low-energy barrier 
corresponds to a fast reaction and a high-energy barrier corresponds to a slow reaction (Fig. 1A). EA regulates 
the rate constant (k) of a reaction, but not whether it is thermodynamically favourable24. When reactions occur at 
equilibrium, they are under thermodynamic control and regulated by thermodynamic parameters such as KD

24,25. 
When they proceed outside equilibrium, they are under kinetic control and their rate constants determine their 
outcomes24,25.

In biological systems, the concentrations of drugs and endogenous signals vary often with time scales faster 
than the rates of binding and unbinding from their cellular targets16,18,20. In consequence, many cellular reac-
tions do not achieve equilibrium or steady-state16,18,20. We hypothesised that only reactions that proceed outside 
mass-action equilibrium detect and discriminate dynamic cellular signals. To test this hypothesis, we simulated 
the interactions of twelve different molecules (M1-M12) with a ligand L to form the corresponding complexes 
LM1-LM12 (Fig. 1B). We simulated the formation of three complexes (LM1-LM3) with high affinity at equilib-
rium (KD = 0.01 µmol.L−1), six with moderate affinity (LM4-LM6 with KD = 0.1 µmol.L−1 and LM7-LM9 with 
KD = 1 µmol.L−1) and three (LM10-LM12) with low affinity (KD = 10 µmol.L−1). For each KD, we implemented 
three different sets of rate constants of association (kf) and dissociation (kb) to simulate reactions with varied 
velocities (Fig. 1B). We then obtained the dose-response curves for the formations of LM1-LM12 as functions 
of free concentrations of L ([L]free) at equilibrium (Fig. 1C) to ensure that the values of KD used in the model 
matched the concentration of free ligand ([L]free) required to promote the half-maximum activation of each com-
plex implemented, which we verified by fitting the equation (2):

=
+

A A
L

K L
[ ]

[ ] (2)
Free
n

Dapp
n

Free
nmax

Hill

Hill Hill

where A is the activity (i.e. normalized concentration) of the complexes LM1-LM12, Amax corresponds to their 
maximum activity (=1), the term nhill is the Hill coefficient and KDapp is the apparent KD. As expected, inde-
pendently of the rate constants used for the reactions simulated, the KDapps of the dose-responses corresponded 
exactly to the KDs implemented (Fig. 1C). We set these KDapps as the control KDs of LM1-LM12 hereafter. All 
curves presented nHill equal to 1.

Next, we used square pulses of [L]free with different durations and peak concentrations to verify how the ther-
modynamic and kinetic parameters used regulate the detection and discrimination of dynamical signals, which 
we defined as the ability of molecules to respond and display different levels of activation to changes in the tempo-
ral properties of their signal activators. The durations and amplitudes of the pulses of [L]free were set in the simula-
tions in a non-conservative manner. Thus, the concentrations of L used in the pulses were buffered. Consequently, 
all molecules M1-M12 were exposed to the same signals and there was no competition among them.

The association and dissociation of complexes that have identical affinities at equilibrium proceeded with 
different time courses when we used square pulses of [L]free as input signals (Fig. 2). Moreover, complexes that 
have the same KD at equilibrium displayed different levels of activation (Fig. 2). These differences were strongly 
pronounced for short pulses, which possess durations within the range of pivotal cellular signals (varying from 
milliseconds to few seconds)26–28, and gradually disappeared as we stimulated the model with pulses that were 
long enough to allow the reactions to achieve equilibrium. For instance, LM10, LM11 and LM12 presented very 
different levels of activation when stimulated by brief pulses of [L]free (10 ms) (Fig. 2A,B), but equivalent activa-
tions for pulses of [L]free of 100 s (Fig. 2C,D).
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To analyse these data, we used equation 2 to fit dose-responses curves of the peak concentrations of 
LM1-LM12 obtained as functions of the peak amplitudes of the pulses of [L]free with different durations, and esti-
mated the values of their KDapp and nHill for comparisons with the results of the system at equilibrium.

The dose-response curves of most complexes showed that the durations of pulses of [L]free modulated their 
formations (Fig. 3A) by changing the values of KDapp in comparison to their control KDs in a duration-dependent 
manner. Figure 3B shows the KDapp/KD ratios to facilitate their comparisons, we listed the exact values of KDapp in 
Suppl. Table S1. As we increased the durations of pulses of [L]free, the values of KDapp decreased until they matched 
the control KDs (KDapp/KD = 1) indicating that the reversible reactions had reached equilibrium, which happened 
at different pulse durations for the molecules simulated (Fig. 3B). The dynamic changes of KDapps showed that the 
molecules detected the durations and the peak concentrations of the pulses of [L]free by temporally integrating 
these signals over time. Once the durations of pulses of [L]free were sufficiently long for the reactions to achieve 
mass-action equilibrium, they became insensitive to time and detected only the variations in the concentrations 
of L.

Our results demonstrated that the key point for the temporal discrimination of cellular signals relies on the 
different time scales in which each reversible reaction reach thermodynamic equilibrium. The longer it takes for 
a reaction to reach equilibrium, the larger is the range of durations of signals it can detect and discriminate by 
dynamically changing its KDapp (Fig. 3B).

Figure 1.  Thermodynamic and kinetic parameter of chemical reactions. (A) The energy profile for a simple 
reversible reaction of complex formation. The species L and M are the initial reactants, LM is the complex 
formed, kf and kb are the rate constants for the association (forward) and dissociation (backward) reactions, 
respectively. ΔEAf and ΔEAb state for the energy of activation for the forward and backward reaction, 
respectively, R is the ideal gas constant, and T is the temperature in Kelvin. (B) Diagram of the simulated system, 
which consists of twelve different molecules (M1-12) interacting with a ligand (L) with different affinities (KDs) 
and rate constants (kfs are given in µmol.L−1.s−1 and kbs in s−1). (C) Dose-response curves for the formation of 
the complex LM1-LM12 as functions of [L]free. The KDapps estimated with these curves were set as the control 
KDs for the formation of LM1-LM12 in our simulations.
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Figure 2.  Examples of time courses of LM1-LM12 for pulses of [L]free with different durations and 
concentrations. (A,B) Pulses of [L]free of 10 ms of duration and varying concentrations (A) and the 
corresponding activations of LM1-LM12 (B). The insets show the results with different scales for better 
visualization. (C,D) Pulses of L with 100 s of duration and varying concentrations (C) and the activations of 
LM1-LM12 (D). The KDs for the formation of the complexes at equilibrium are showed on the right, and the 
association rate constants of complex formation (kf) on the top of the panels showed in B and D. The kb for each 
reaction is calculated by: = ×k k Kb f D. The legend indicates the colour code used to represent each 
concentration of [L]free.
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The results of Fig. 3B also revealed that the dissociation rate constants (kbs) used in our simulations played 
a pivotal role in determining the time required for each reversible reaction to reach equilibrium (Fig. 3B). In a 
reversible reaction, the slower is the kb the longer it takes for the activation of a given molecule to peak29. Our 
results indicated that, for the conditions that we simulated, the slower was the kb the longer was the time interval 
required for the reactions to reach equilibrium independently of the kf used. For instance, the reactions of forma-
tions of LM7 and LM10 occurred with very fast kbs in our simulations. Their formations proceeded at equilibrium 
for all pulse durations tested, consequently, they only detected the concentrations of L (Fig. 3B). However, the 
formation of LM1, which happened with the same kf used for the formations of LM7 and LM10 but a slower kb, 
required pulses of 500 ms to exhibit KDapp compatible to its control KD. Reactions that have same kbs required 
identical durations of pulses of [L]free to reach equilibrium independently of their kfs (Fig. 3B and Suppl. Table S1, 

Figure 3.  Activations of LM1-LM12 for pulses of [L]free with different durations and concentrations. (A) Dose-
response curves for the formations of LM1-LM12 as functions of pulses of [L]free with different durations. (B) 
KDapp/KD ratios calculated using the KDs showed in Fig. 1C and the KDapps (Suppl. Table S1) obtained from the 
curves showed in A. The control KDs for the interaction of each molecule with L are showed on the right of the 
panels and the kfs for the association reactions are indicated on the top of A. The kb for each reaction is 
calculated by: = ×k k Kb f D. The insets show the same results in a different scale for better visualization. The 
legend indicates the colour code used to represent each duration of [L]free.
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compare the pairs LM1 and LM8, LM2 and LM9, LM5 and LM12). The complexes that dissociated with identical 
values of kb also presented similar KDapp/KD ratios (Fig. 3B).

Outside the mass-action equilibrium, reversible reactions with identical values of kf had equivalent numerical 
values of KDapp independently of their kbs and of their control KDs (Suppl. Table S1). For instance, the values of 
KDapp obtained for the formation of LM3 were much more similar to the KDapps of LM9 for most pulse dura-
tions tested than the KDapps of LM1 (Suppl. Table S1), even though LM1 and LM3 have identical KDs at equi-
librium and the KD of LM9 is 100-fold weaker. The larger were their kfs, the lower were their KDapps observed at 
non-equilibrium. This result indicates that complexes with faster kfs activate preferentially outside mass-action 
equilibrium. However, the closer the reversible reactions got to reaching equilibrium, the lesser their outcomes 
depended on their kfs and the more they depended on their thermodynamic affinities as expected30.

In addition to the changes in KDapp, we verified that durations of the pulses of [L]free promoted variations in 
the nHill for the reactions that proceeded outside mass-action equilibrium, which displayed nHill larger than 1 even 
though the components of our system have no allosteric cooperativity (Fig. 4). The parameter nHill is commonly 
defined as an “interacting-coefficient” that reflects the cooperative binding of ligands to multiple sites of a mol-
ecule31. Nevertheless, it is important to note that, in addition to allosteric cooperativity, nHill larger than 1 can 
indicate ultrasensitivity. Multiple mechanisms promote ultrasensitivity including feedback loops, small changes 
in reactions near saturating conditions, distributive phosphorylations, among others32–36. In a ultrasensitivity 
system, nHill designates the degree of bistability33,34,36. In our results, we verified that the values of nHill became 
larger than 1 only for reactions happening outside mass-action equilibrium. For these reactions, the values of 
nHill increased as we reduced the durations of pulses of [L]free. The changes of nHill resulted from ultrasensitivity 
promoted by the filtering of fast signals with low amplitudes as if they were noise. Previously, it was proposed that 
biology evolved to use non-equilibrium to efficiently discriminate signals from noise16, which is consistent with 
our results. We had observed similar changes of nHill previously18.

Detection and discrimination of frequencies and number of pulses of dynamic signals.  Next, 
we investigated how the kinetic and thermodynamic parameters underlie the discrimination of interpulse inter-
vals and number of pulses of trains of signals of L, a property displayed by several enzymes and signalling path-
ways18,22,23,37. We stimulated the formation of LM1-LM12 with trains of ten pulses of [L]free delivered at 1 Hz 
(1 s of interpulse interval), 10 Hz (100 ms of interpulse interval), or 100 Hz (10 ms of interpulse interval). Each 
pulse had duration of 50 ms (Suppl. Fig. S1A–C) or 100 ms (Suppl. Fig. S1D–F). Figure 5 and Suppl. Fig. S2 show 
examples of the time courses of LM1-LM12 observed. To verify whether the formation of LM1-LM12 detected 
the interpulse interval and the number of pulses of L simulated, we measured the peak amplitude of LM1-LM12 
formed as functions of the peak of each pulse of [L]free within a train (Suppl. Fig. S3). We used these data to fit 
ten dose-response curves for each frequency tested using equation 2 (Suppl. Figs S4 and S5). Each curve corre-
sponded to the formations of LM1-LM12 observed for a specific pulse number (Suppl. Figs S4 and S5). With 
these curves, we investigated whether the values of KDapp and nHill varied during each train and quantified their 
discrepancies from the control KDs (Fig. 1C).

Figure 4.  Values of nHill estimated from the dose-response curves showed in Fig. 3A.
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The KDapps obtained (Fig. 6A and B) revealed different types of dynamic signal discriminations that relied 
heavily on the kbs used in the reactions of the different complexes. The KDapps for the formations of LM4 
(kb = 100 s−1), LM7 (kb = 1000 s−1), LM10 (kb = 10000 s−1) and LM11 (kb = 100 s−1) corresponded to the control 
KDs to all situations tested and demonstrated that these complexes were insensitive to the number of pulses, the 
interpulse intervals and the durations of pulses used in the simulations. However, as we decreased the kbs, this 
scenario changed.

The KDapps of LM1 and LM8, which had kb = 10 s−1, detected and discriminated mainly the interpulse interval 
between the signals of [L]free used. Moreover, we observed changes of their KDapps during the initial pulses of 
[L]free released at 10 Hz and 100 Hz. Thus, LM1 and LM8 also discriminated a limited number of pulses released 

Figure 5.  Examples of the time courses for the formation of LM1-LM12 obtained using trains of ten pulses 
of [L]free with different peak amplitudes released at 1 Hz (A), 10 Hz (B), or 100 Hz (C). Each pulse of [L]free 
had 50 ms of duration. The time courses of [L]free are showed in Suppl. Fig. S1A–C. The control KDs for the 
interactions of M1-M12 with L are showed on the right of the panels and the kfs for the association reactions are 
indicated in A. The legend indicates the colour code used to represent each concentration of [L]free.
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at intermediary or high frequencies, because their interpulse intervals were shorter than the time required for the 
inactivation of both complexes. Consequently, there were summations of their activations for the initial pulses of 
trains released at 10 Hz and 100 Hz (Figs 5 and S2), which promoted alterations in their KDapps (Fig. 6A and B). 
In contrast, pulses released at 1 Hz had a long interpulse interval (1 s) that prevented the accumulation of LM1 
and LM8 from one pulse to another (Figs 5 and S2). The KDapps of LM1 and LM8 matched the control KDs when 
stimulated with 3 or more pulses of L with 100 ms of duration released at 100 Hz.

LM5 and LM12 (kb = 1 s−1) exhibited KDapps that changed as functions of both the interpulse interval and the 
number of pulses of [L]free released at 10 Hz and 100 Hz. For signals of [L]free released at 1 Hz, the KDapps of LM5 
and LM12 changed only during the initial four pulses (Fig. 6A and B). Thus, LM5 and LM12 acted as good detec-
tors and discriminators of the interpulse intervals for all frequencies tested and of the number of pulses of [L]free 
released at moderate to high frequencies, but poor detectors of the number of pulses released at a low frequency 
(Fig. 6A and B).

The KDapps of LM2 and LM9 (kb = 0.1 s−1) detected and discriminated the number of pulses of [L]free for all fre-
quencies tested. In addition, LM2 and LM9 discriminated the interpulse interval of pulses released at 1 Hz from 
pulses released at 10 Hz or 100 Hz. However, their KDapps did not discriminate the interpulse interval of pulses 
released at 10 Hz from pulses released at 100 Hz (Fig. 6A and B).

Figure 6.  Variations of the KDapps observed for the stimulations of the model with trains of pulses of [L]free. We 
estimated the KDapps (in µmol.L−1) from dose-responses curves showed in Suppl. Figs S4 and S5. The results 
showed in (A) and (B) were obtained for pulses of 50 ms and 100 ms, respectively. The dashed lines correspond 
to the control KDs, also indicated on the right of the panels, the kfs for the association reactions are indicated in 
A. The insets show the same results in different scales for better visualization. The legend shows the colour code 
used to represent the pulse number of [L]free.
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LM3 and LM6, the two complexes with the slowest kbs implemented (kb = 0.001 s−1 and 0.01 s−1, respectively), 
presented KDapps that discriminated the number of pulses of [L]free, but were insensitive to their interpulse inter-
vals (Fig. 6A and B).

None of the KDapps of LM2, LM3, LM5, LM6, LM9 and LM12 matched their control KDs (Fig. 6A and B, black 
dashed lines) evidencing that they did not reach mass-action equilibrium in the situations simulated. Moreover, 
the values of nHill for all the complexes that did not present values of KDapp compatible with the control KDs were 
larger than 1, which indicated that their activations had a bistability not observed at equilibrium (Suppl. Fig. S6). 
The kbs used in the simulations regulated the KDapp/KD ratio, as observed in the previous session. Hence, mole-
cules with identical kbs (LM1/LM8, LM2/LM9, LM5/LM12) exhibit KDapps that diverged from KD with equivalent 
magnitudes (Suppl. Fig. S7).

Detection and discrimination of dynamic signals in sequential reactions.  Next, we explored 
the detection and discrimination of dynamic signals in sequential reactions. Firstly, we implemented the reac-
tions of association/dissociation of LM1-LM12 with the targets T1-T12 using one set of rate constants (kf = 10 
µmol−1.L.s−1, kb = 0.1 s−1, KD = 0.01 µmol.L−1). Specifically, LM1 reacted with Tf1, LM2 with Tf2, LM3 with Tf3, and 
so on, which resulted in twelve ternary complexes LM1T1-LM12T12 formed according to the sequential reactions:
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where n = 1, 2, 3, …, 12. The parameters kf and kb refer to the rate constants used for the association/dissociation 
of LM1-LM12 (Fig. 1B).

In a different set of simulations, we implemented the interactions of LM1-LM12 with the targets T′1-T′12 to 
form LM1T′1-LM12T′12 using a different set of rate constants (kf = 0.1 µmol−1.L.s−1, kb = 0.001 s−1, KD = 0.01 
µmol.L−1), but equivalent sequential reactions:

+ + ′ ′
  

µ

.

. . .

−

− −

 ⥫ ⥬======L Mn LMn T LMnT
(chemical equation 3)k

k

n
s

mol L s
n

0 001

0 1

b

f

1

1 1

Initially, we simulated the formations of LM1T1-LM12T12 and LM1T′1-LM12T′12 at steady-state as functions 
of different [L]free to obtain dose-response curves fitted with equation 2 and estimate the control KDs and nhill. 
Note that the KD used for the interactions of LM1-LM12 with T1-T12 and with T′1-T′12 are identical (KD = 0.01 
µmol.L−1). Nevertheless, the control KDs for the formations of LM1T1-LM12T12 and LM1T′1-LM12T′12 as func-
tions of [L]free varied according to the KD of their binary precursors. Thus, the ternary complexes formed by 
LM1, LM2 and LM3 (LM1T1, LM2T2, LM3T3, LM1T′1, LM2T′2 and LM3T′3) exhibited control KDs as functions 
of [L]free of approximately 0.00001 µmol.L−1 (Fig. 7, Suppl. Table S2), which is 1000-fold lower than the control 
KDs of their binary precursors (Suppl. Table S1). The ternary complexes formed by LM4, LM5 and LM6 (LM4T4, 
LM5T5, LM6T6, LM4T′4, LM5T′5 and LM6T′6) had control KDs as a function of [L]free of 0.0001 µmol.L−1, which 
is higher than the KDs of the ternary complexes LM1T1-LM3T3 and LM1T′1-LM3T′3, but is also 1000-lower than 
the KDs for the formations of their precursors LM4, LM5 and LM6 (Fig. 7, Suppl. Table S2). The same pattern 
was also observed for the other ternary complexes simulated. Consequently, all the ternary complexes exhibited 
control KDs for their activations as functions of [L]free at steady-state approximately 1000-fold lower than the KDs 
of their binary precursors, which demonstrated that the binding of each binary complex to a target affected its 
interaction with L. This type of alteration is commonly observed in biological systems18,38.

Next, we used square pulses of [L]free with different durations (100 ms, 500 ms, 1 s, and 5 s) and peak con-
centrations to investigate how they regulated the formations of the ternary complexes LM1T1-LM12T12 and 
LM1T′1-LM12T′12. The results obtained were used to trace dose-responses curves of the peak concentrations of 
LM1T1-LM12T12 and LM1T′1-LM12T′12 as functions of the peak [L]free using equation 2. The curves were used to 
verify whether the ternary complexes simulated detected and discriminated the durations of the signals of [L]free 
by changing their values of KDapp, nHill and maximum activation (Amax) in comparisons to the values observed at 
steady-state (Fig. 7A,B).

In the previous sessions, we demonstrated that the rate constants used for the interactions of L with its targets 
M1-M12 modulated their KDapp and nHill. The results showed in Fig. 7A,B revealed that the rate constants used in 
the reactions of M1-M12 with L can also modulate the values of Amax obtained for the dose-response curves of the 
formations of their respective ternary complexes. Thus, binary precursors that dissociated with fast kbs (≥1 s−1) 
from L impaired the Amax observed for the activation of their corresponding ternary complexes. However, such 
impairment only occurred for the ternary complexes formed with slow kf (0.1 µmol−1.L.s−1), which indicates that 
it is the combination of the kb of the precursor with the kf for its interaction with its target that regulates Amax 
(Fig. 7B) and, in addition, also affected the values of KDapp and nHill (Fig. 7C,D and Suppl. Fig. S8).

Our results demonstrated that all ternary complexes simulated decoded the pulses duration tested and exhib-
ited changes in their KDapp values in comparisons to their control KD values observed at steady-state (Fig. 7C,D). 
Yet, all the ternary complexes that exhibited impairments of Amax for the durations of pulses of [L]free also showed 
higher shifts in their values of KDapp in comparison to the values observed at steady-state (Fig. 7C,D). Thus, the 
combination of short half-lives of fast dissociating binary precursors greatly impaired the formation of ternary 
complexes that associate with slow kf. For instance, the binary complexes LM4, LM5 and LM6, which share the 
same control KD, dissociated with kb of 100 s−1, 1 s−1 and 0.01 s−1, respectively. Due to the fast inactivation rate of 
LM4, the dose-response curves of activation of LM4T′4 as functions of pulses of [L]free with different durations 
exhibited strong modulations of Amax, but a similar modulation was not observed for the activation of LM4T4, 
which reacted faster with its precursor. Moreover, LM4T′4 exhibited much higher values of KDapp than LM4T4 
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for the pulses of [L]free tested though both species have the same binary precursor and identical control KD. 
The curves for the activations of LM5T′5 showed a similar pattern observed for the curves of LM4T′4, but with 
less pronounced modulations as its binary precursor had a slower kb. LM5T′5 also exhibited higher values of 
KDapp than LM5T5, though both complexes have identical control KD values and interact with the same binary 
precursor. In contrast, the dose-response curves of LM6T′6 had no variation in their Amax because its precursor, 
LM6, had a slow kb. In addition, the values of KDapp verified for LM6T6 were very similar to the values observed 
for LM6T′6. Thus, the slow time course for the inactivation of LM6 allow it to act as a “molecular memory” and 
propagate the transient signals of L for longer periods in comparison to LM4 and LM5.

In Suppl. Fig. S8A and B we plotted the nHill obtained for each dose-response curve showed in Fig. 7A 
and B. Our results demonstrated that, outside mass-action equilibrium, the formations of LM1T1-LM12T12 
showed higher values of nHill in comparison to their binary precursors LM1-LM12, which indicated an increase 
in bistability along the sequential reactions simulated caused exclusively by kinetic factors (Suppl. Fig. S8A). 
Nevertheless, for the ternary complexes LM1T′1-LM12T′12, the curves that presented impairments of Amax exhib-
ited values of nHill close to 1 and often lower than the values observed for their binary precursors (Suppl. Fig. S8B). 

Figure 7.  Detection and discrimination of dynamic signals by sequential reactions. (A) Dose-response curves 
of the complexes LM1Tf1-LM12Tf12 as functions of [L]free with different durations. (B) Dose-response curves of 
the complexes LM1T′1-LM12T′12 as functions of [L]free with different durations. (A,B) Values of KDapp estimated 
for the activation of LM1Tf1-LM12Tf12 (C) and LM1T′1-LM12T′12 (D) for pulses of [L]free with different 
durations. The legend indicates the colour code used to represent durations of the pulses of [L]free.
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These results indicated that, when we used pulses of [L]free with different durations to promote the formation of 
LM1T′1-LM12T′12, the short half-life of binary precursors with fast kbs impaired their activations and affected not 
only their Amax and KDapp, but also their values of nHill.

Detection and discrimination of dynamic signals in competing systems.  The last stage of our work 
consisted in investigating how competition among different molecules shapes their response. For this analysis, 
we used a simplified version of our system containing only the formation of LM4, LM5 and LM6, which exhibit 
very distinct patterns of activation even though they share the same control KD. Each one of this species were 
responsible for the activation of two targets simulated as described in the previous session. However, for this stage 
of the work, we simulated the two targets activated by each LM complex competing for their activators (Fig. 8A). 
We then used pulses of L with different durations (0.5 s and 5 s) to verify the consequences of competition in the 
results previously described (Fig. 8B–D).

The competition for a common activator had two consequences in our system. For the formation of 
fast-reacting ternary complexes (LM4T4, LM5T5, and LM6T6), independently of the pulse duration tested, the 
competition with slow-reacting ternary complexes (LM4T′4, LM5T′5, and LM6T′6) did not affect the maximum 
amplitude of activation for each pulse tested, but accelerated the inactivation of LM6T6 (Fig. 8B–D). In con-
trast, for the slow-binding complexes (LM4T′4, LM5T′5, and LM6T′6), the presence of competition affected their 
maximum activation, which reduced slightly the Amax of their dose-response curves of activation (8E-F, Suppl. 
Table S3). Moreover, for LM6T′6 competition promoted a delay in its activation curves (Fig. 8B–D) and shifted 
the KDapp of its dose-response curves (8E-F). Taken together, these results indicated that the effects of competition 
vary depending on the combination of the half-life of the initial precursor (LM4, LM5, and LM6) with the rates 
of activation of the subsequent molecules.

Figure 8.  The role of competition in the detection and discrimination of dynamic signals. (A) The simulated 
system consisted of 3 targets activated by L (M4, M5, and M6) forming the complex LM4, LM5 and LM6. Each 
complex activated two substrates in a competitive manner. (B) We used pulses of [L]free with different durations 
(0.5 and 5 s) and peak concentrations to verify the role of competition in the activation of the targets of LM4, 
LM5, and LM6. (C,D) The results obtained showed that competition did not affected the peak activation of fast-
reacting targets (LM4T4, LM5T5, LM6T6) for pulses of [L]free with 0.5 s (C) or 5 s (D) of duration in comparison 
to the results without competition (dashed lines). However, the presence of competition impaired the peak 
activation of slow reacting-targets (LM4T′4, LM5T′5, LM6T′6), promoting a slightly reduction in the peak 
amplitude of their dose-response curves of activation and a shift in their values of KDapp (E-F), which became 
larger (Suppl. Table S3).
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Discussion
Time is an important variable in the biological environments. The temporal dynamics of cellular signals regulate 
many molecules and signalling networks13,14,18,22,23,37. However, the comprehension of the molecular mechanisms 
that underlie the temporal regulation of cellular processes remains a challenge because much of our understand-
ing of signalling processes results from data obtained at equilibrium or steady-state conditions. In this work, we 
focused on the identification of the molecular mechanisms that underlie the detection and discrimination of the 
temporal features of signals. For that, we simulated reactions of association and dissociation between molecules 
and a ligand. Previously, we used realistic models of different biomolecules with intricate interactions with endog-
enous ligands to investigate their modes of activation18. However, the level of complexity of our previous work 
made the comparison among different molecules difficult. Thus, in this work we have opted to use a generic and 
simpler system.

Biological systems are open systems in constant change16,18,19. The concentrations and levels of activa-
tion of biomolecules fluctuate continually, which sets perfect conditions for several reactions to proceed at 
non-equilibrium16,18,19. Consequently, many reactions in biological systems detect and discriminate dynamic sig-
nals and use temporal properties to display differential patterns of activation13,14,22,23,37. Because these reactions 
are sensitive to the temporal features of their components, they are under kinetic control and thermodynamic 
parameters such as KD do not predict their outcomes, which is a conclusion fully supported by our results.

Several data have revealed that the association and dissociation rate constants (kf and kb, respectively) for the 
interaction between biomolecules or of a drug with its targets are often more important than the binding affinity 
of the resulting complexes19,21,39,40. However, though in some systems the values of kf are crucial21, especially for 
the interaction of drugs with their targets the kb appears to play a more fundamental role19,40. Our results indi-
cated that both rate constants are important in the detection of dynamical signals because they play different 
roles. At non-equilibrium, the kfs used in our simulations played a predominate role in determining the levels of 
activation of the ligand/molecule complexes simulated. The faster were kfs, the lower were the KDapps obtained, 
which indicate that molecules with fast kfs activate better at non-equilibrium. Similar results were observed previ-
ously21. Our results showed that the affinities observed at equilibrium do not ensure which molecules will activate 
in larger amounts18,19,21. A high affinity complex with slow rate constants can display a KDapp equivalent to the 
KDapp of a weak affinity complex when their reactions occur outside mass-action equilibrium. Only when the reac-
tions approach mass-action equilibrium their rate constants become less important and their outcomes gradually 
become defined by their control KDs30.

In our simulations, the kbs played a pivotal role determining the time required for each reaction to achieve 
equilibrium. The slower was the kb used, the larger was the range of signal durations that a reaction detected and 
discriminated and the longer was the time required for it to reach equilibrium. Slow kbs also promoted reactions 
sensitive to the frequencies and number of pulses of reacting signals. Nevertheless, the slower was the kb used in 
our simulations, the better the reactions detected the number of pulses despite of their interpulse interval, which 
indicates that reactions with slow kbs integrate the signals over time more efficiently. These results contribute to 
explain why some molecules are sensitive to the interpulse interval of their signals, while others count pulses of 
signals regardless of their frequencies18,23. In addition, this type of information is crucial for the design of artificial 
signalling systems and probes41,42. We also demonstrated that the kbs played a crucial role in the propagation of 
dynamic signals. Thus, ligand/molecule complexes that dissociate with fast kbs do not propagate efficiently fast 
signals for slow-interacting targets. Consequently, in this scenario, complexes that dissociate slowly propagate 
dynamic signals better. Several observations have demonstrated that often drugs that dissociate slowly from their 
endogenous targets are more efficient, though the reasons for this process are not totally understood19,40. In this 
work, we have not explored this process specifically. The time intervals of the dynamic signals that we investigated 
are more compatible with physiological signals. However, our observations are not restricted to endogenous mol-
ecules and might explain the role of rate constants on the efficacy of drugs as well.

Methods
We implemented the computational models using BioNetGen43, a rule-based software for modelling signaling 
networks and pathways. All simulations were solved deterministically.

To define the parameters of the model, we used KDs (0.01 µmol.L−1, 0.1 µmol.L−1, 1 µmol.L−1 and 10 µmol.
L−1) commonly found for the interactions between biomolecules10,18,38,44,45. We defined the kinetic parameters of 
the model by setting a kf of 1000 µmol−1.L.s−1 as our upper limit, which is consistent with the second order rate 
constant of a diffusion limited reaction in the cellular milieu. The other two kfs used in the model (10 µmol−1.L.s−1 
and 0.1 µmol−1.L.s−1) were defined by dividing 1000 µmol−1.L.s−1 by 100 and 10000, respectively, in order to sim-
ulate reactions that cover a large range of velocities. All the kfs used are within the range of values observed for the 
interactions of biomolecules, which typically vary from 0.001 µmol−1.L.s−1 to 1000 µmol−1.L.s−1 46,47. For instance, 
calcium ions interact with many calcium-binding proteins with rates typically in the range of diffusion-limited 
reactions48. The complex calcium/calmodulin activates many targets with rate constants of binding around 1–10 
µmol−1.L.s−1 18,49. In contrast, protein kinase A, a tetrameric enzyme involved in several signaling processes, has 
rate constants for the binding of its catalytic and regulatory subunits that vary around 0.5 to 0.05 µmol−1.L.s−1 44. 
We estimated the kbs for the reactions of the model using equation 3:

=K k
k (3)

D
b

f

The concentration of M1-M12 was set to 1 µmol.L−1 initially (Figs 1–6). In the simulations showed in Figs 7 
and 8, we set the initial concentrations of M1-M12 (M4-M6 in Fig. 8) to 10 µmol.L−1 and the concentrations of 
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T1-T12 and T′1-T′12 to 1 µmol.L−1 (T4-T6 and T4′-T6′ in Fig. 8). The interaction of LM1-LM12 with T1-T12 and 
T′1-T′12 were simulated separately.

To obtain the dose-response curves at steady-state (Figs 1 and 7A,B), we performed the simulations until the 
reactions had reached steady-state. Then, we annotated the final concentrations of the complexes investigated 
and the concentration of free L ([L]free). To trace the dose-responses curves using square pulses of L, we simulated 
non-conservative signals of [L]free. The durations and peak concentrations of the pulses were set by the simula-
tions and were not changed due to interactions with M1-M12, which prevented the competition among them. 
We defined the durations of the pulses of L setting 10 ms as our lower limit, which corresponds to fast calcium ion 
signals28. We then systematically increased the durations of the pulses until all complexes LM1-LM12 exhibited 
KDapps compatible with their control KDs. The data used in the dose-responses curves showed in Figs 3 and 6 
corresponded to the peak activations of LM1-LM12 obtained as functions of the peak [L]free. In Figs 3 and 6, we 
varied the peak concentrations of the pulses of L from 0 µmol.L−1 to ~450 µmol.L−1 to achieve saturation of all 
complexes LM1-LM12. In Fig. 7, we varied the peak concentrations of the pulses of L from 0 µmol.L−1 to ~200 
µmol.L−1 to saturate the complexes LM1T1-LM12T12 and LM1T′1-LM12T′12. Nevertheless, we opted to plot the 
curves of Figs 3, 6 and 7 with a smaller range of concentrations of [L]free for better visualization. We fitted the 
dose-response curves showed in Figs 3, 7 and 8 and Suppl. Figs S4, S5 and S8 using Matlab curve fitting tool with 
95% of confidence interval. The full description of the reactions and the parameters used in the models are listed 
in Suppl. Table S4.
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