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Abstract
Sequence capture of ultraconserved elements (UCEs) associated with massively parallel

sequencing has become a common source of nuclear data for studies of animal systematics

and phylogeography. However, mitochondrial and microsatellite variation are still commonly

used in various kinds of molecular studies, and probably will complement genomic data

in years to come. Here we show that besides providing abundant genomic data, UCE

sequencing is an excellent source of both sequences for microsatellite loci design and

complete mitochondrial genomes with high sequencing depth. Identification of dozens of

microsatellite loci and assembly of complete mitogenomes is exemplified here using three

species of Poospiza warbling finches from southern and southeastern Brazil. This strategy

opens exciting opportunities to simultaneously analyze genome-wide nuclear datasets and

traditionally used mtDNA and microsatellite markers in non-model amniotes at no additional

cost.

Introduction
Mitochondrial DNA and microsatellites have been the markers of choice since the emergence
of molecular data in studies of ecology and evolution [1–2]. Sequencing of mitochondrial DNA
and isolation of microsatellites have relied for a long time on classic methods such as Sanger
sequencing of amplicons [3], library enrichment [4] or cloning [5]. More recently, next-genera-
tion sequencing (NGS) has replaced Sanger sequencing in both prospection of microssatelite
loci [6] and assembly of mitogenomes [7] due to its higher efficiency and lower costs per base
pair.
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The benefits of using multilocus data in estimates of historical demography, population
structure and kinship have received strong theoretical and empirical support [8–12]. Recent
emergence of massively parallel sequencing associated with techniques of genome reduction
provide a cost-effective method to acquire large numbers of independent loci in a short time-
frame. Consequently, studies based on techniques such as RAD-seq and sequence capture are
becoming increasingly common [13–14]. Despite rapid increase in use of genomic data in evo-
lutionary studies, mtDNA and microsatellite markers are still commonly used, and they will
likely be employed in biodiversity studies along with NGS data for years to come.

Among the protocols currently used to obtain genomic variation, next-generation sequenc-
ing of ultraconserved elements has become a major source of data for animal phylogenetics in
the last half decade. Nuclear ultraconserved elements (referred to henceforth as “UCEs”) are
genomic regions first discovered in humans and which are highly conserved (>95% of identity)
across distantly related organism, such as mammals, birds and fishes [15]. Such regions have
been recently adopted as molecular markers for phylogenetic studies [16] due to their univer-
sality, which allows sequencing of thousands of homologous markers from sets of species
with little genomic resources available. In addition, despite their conservatism, UCE flanking
regions may contain sufficient information to study both deep [17] and shallow divergences
[18]. The high similarity of UCE sequences allows the same set of target regions to be used
across a number of distantly related amniotes [16] and more recently, fishes [19] and arthro-
pods [20]. Despite its targeted nature, sequence capture is not 100% specific, and sequences
located outside the target regions—called off-target sequences—may reach levels as high as
60% of all sequences obtained using commercial exome-capture kits [21,22]. Those unexpected
sequences may be assembled, for example, into large mtDNA contigs [18], sometimes being
sufficient to assemble an entire mitogenome (as briefly mentioned with UCEs in [23] and
[24]). Mitogenomes are routinely assembled in human exome studies [25–27], but are still little
explored subproducts of UCE studies.

Here we show in detail that the increasingly common sequence capture of UCEs may be
used simultaneously as a source of dozens to hundreds of microsatellite loci and mitogenomes
with high sequencing depth, rendering UCE sequencing a low-cost, hybrid strategy to obtain
traditional markers alongside powerful genomic data. We use as exemplars three species of
Poospiza warbling finches from the subtropical Brazilian Atlantic Forest, from which we
obtained dozens of microsatellite loci and complete mtDNA genomes.

Material and Methods

Tissue sampling
We included three samples in this study, which represent one sample from each of three species
of warbling-finches: the Gray-Throated Warbling Finch (Poospiza cabanisi), Buff-Throated
Warbling Finch (Poospiza lateralis) and Bay-chested Warbling Finch (Poospiza thoracica).
These species inhabit montane and subtropical forests in SE and S Brazil, and they are being
studied as part of a larger phylogeography study (Amaral et al. in prep). A recent phylogenetic
study [28] including two of these species (P. thoracica and P. cabanisi) suggests that they are
not close relatives, and that Poospizamay be polyphyletic. Poospiza lateralis and P. cabanisi, in
turn, appear to have split recently, and their divergence may be among the most recent in the
Neotropics (Amaral et al., unpublished data). Poospiza lateralis and P. cabanisi are allopatric,
while P. thoracica is sympatric to both. Specimens were attracted in the field using playback
recordings and collected using an air shotgun [29]. This research has been approved by the eth-
ics committee of the Federal University of São Paulo (CEP 0069/12), including the adopted
sampling procedure. Field expeditions and specimen collection permits for all visited localities
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were granted by ICMBio (permit numbers 14673 and 30840). All specimens were housed at the
ornithological collection of the Museu de Zoologia da Universidade de São Paulo (MZUSP),
and tissue samples deposited at the Laboratório de Genética e Evolução de Aves da Universidade
de São Paulo (LGEMA-USP, see Table 1).

Laboratory methods
We extracted total DNA from muscle samples using the Qiagen DNeasy kit (Valencia, CA)
according to the manufacturer's protocol, including the suggested RNAse treatment. Sequence
capture and sequencing of ultraconserved elements were performed according to the original
UCE capture and sequencing protocols [16] by RAPiD Genomics (Gainesville, FL, USA). Mod-
ifications made to the original protocol consisted of the reduction from 2,560 to 650 probes
(targeting 634 loci selected to cover all chromosomes of the Gallus genome), use of 100 bp
paired-end Illumina Hiseq 2000 sequencing run, and use of 16 cycles in both pre- and post-
capture PCR reactions. We sequenced the three specimens used here in a multiplexed batch of
48 individuals (i.e. sequencing included 45 individuals from other studies).

Sequence quality control and assembly
We separated raw sequences by individual tags using Illumina's Casava software. Sequences
were initially evaluated using FastQC 0.10.1 [30]. Adapters, barcodes and low quality regions
were removed using Illumiprocessor 2.0.7 [31], which allows processing of Illumina sequencing
reads using the trimming tool Trimmomatic 0.32.1 [32]. The resulting reads were processed
using Phyluce 1.4 [33], which is a software package that allows processing of trimmed reads
into aligned loci. We performed processing in Phyluce up to the assembly stage, using the Trin-
ity assembler v20140717 [34]. All analyses were performed using default parameters. Contigs
resulting from assembly were used for downstream analyses.

mtDNA assembly, variant calling, annotation and phylogenetic inference
Contigs were compared to all avian mtDNA genomes at NCBI as of August 6th 2014 using the
standalone version of BLAST 2.2.28 [35]. Contigs with a strong match (e-value< 0.1) to avian
mtDNA were used to manually assemble the mitogenome in Bioedit 7.1.3 [36]. Despite the
haploid nature of mtDNA, we called SNPs in order to detect potential heteroplasmy and/or
PCR errors. Paired reads processed in Illumiprocessor were resynchronized using custom
scripts and then mapped to the respective mitogenome using Bowtie2 v2.2.4 [37]. PCR dupli-
cates, which consist of identical sequences that arise due to amplification during library prepa-
ration, were removed using Samtools 0.1.19 [38], and variants and indels were called with
Freebayes 0.9.15 [39] using the diploid option and standard filters (-m 30-q 20-R 0-S 0).
Sequencing depth statistics were obtained using Bedtools 2.17 [40].

Complete mitochondrial genomes were annotated based on the automatic methods of
MITOS [41] and DOGMA [42] using default parameters. Incongruences in the results
obtained between the two methods for each species were manually adjusted based on compari-
sons to the annotated mtDNA genomes of Gallus gallus (NC_001323) and Emberiza pusilla
(NC_021408). Final annotation of the mitogenomes was performed using Geneious 6.1.8 [43].

In order to evaluate mitochondrial sequence authenticity, we performed a phylogenetic
analysis including cytochrome b sequences from the mitogenomes obtained here and public
sequences from species attributed to the Poospizinae sub-family [28], which were sequenced
by those authors using standard Sanger sequencing. We included representatives of the genera
Poospiza, Compsospiza, Cnemoscopus, Cypsnagra, Donacospiza, Hemispingus, Nephelornis,
Piezorina, Pyrrhocoma, Thlypopsis, Urothraupis and Xenospingus. We generated sequence
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alignments in Muscle [44] and performed model selection based on the Akaike Information
criterion as implemented in MrModeltest 2 [45], which indicated HKY+I+G as the best-fit
model. We performed Bayesian phylogenetic inference in MrBayes 3.2.3 [46] using the CIPRES
infrastructure [47], adopting a conservative burnin of 25% and Xenospingus concolor as out-
group. MrBayes runs were performed twice to verify convergence of topology and posterior
probabilities obtained from independent runs.

Identification of microsatellite loci candidates
Contigs resulting from the Trinity assembler (implemented in Phyluce) were used as input
for QDD 1.3 [48], which is a software package that detects microsatellites and allows primer
design. We searched for pure di-, tri-, tetra-, penta- and hexa-nucleotides with at least five
repeats. Potential primers were designed using default settings in Primer3 [49] as implemented
in QDD. Sequences used for primer design were compared to the corresponding species’mito-
genome using BLAST, and removed in case of matches. The same procedure was also per-
formed using sex chromosomes in order to identify sex-linked microsatellites. Comparisons to
sex chromosomes were based on both chicken and zebra finch Z chromosomes, while only the
chicken W chromosome was used due to the lack of currently available zebra finch W chromo-
some sequences. Identification of homologous loci across species was based on alignment of
sequences used for primer design in Geneious. Alignments with a minimum of two species
were used to evaluate microsatellite polymorphism.

Results and Discussion

Mitogenomes
Here we show that UCE sequencing may be a low-cost (~ US$ 100 per sample) and efficient
method for obtaining high-depth complete mitogenomes based solely on off-target sequences,

Table 1. Sample information and descriptive sequence statistics.

Poospiza cabanisi Poospiza lateralis Poospiza thoracica

Field number FRA67 FRA46 SC04

Locality Pelotas, RS, Brazil Dores do Rio Preto, ES Brazil Urubici, SC, Brazil

Coordinates -31.5265, -52.5505 -20.5125; -41.8075 -28.1449; -49.6324

Read pairs 2527058 3105898 2935389

Contigs assembled 8638 11392 9365

UCE loci captured 625 632 626

Mitogenome length (bp) 16768 16773 16772

Mitogenome GC content (%) 47.1 47.1 46.6

mtDNA Sequencing depth (X) with duplicates (Mean, st. dev., min, max) 1161, 263, 37, 2258 1081, 294, 9, 2419 588, 138, 32, 1083

mtDNA Sequencing depth (X) without duplicates (Mean, st. dev., min, max) 95, 10, 6, 122 74, 9, 4, 95 81, 11, 2, 112

Number of microsatellite loci (total / with primer designed)

Dinucleotide 250 / 54 307 / 57 277 / 52

Trinucleotide 85 / 6 105 / 15 87 / 13

Tetranucleotide 23 / 4 30 / 3 27 / 3

Pentanucleotide 2 / 0 6 / 0 4 / 0

Hexanucleotide 1 / 0 3 / 2 2 / 0

All repetition types 361 / 64 451 / 77 397 / 68

MZUSP and LGEMA numbers pending. “Read pairs” refer to number of pairs resulting from resynchronization of files processed with Illumiprocessor.

doi:10.1371/journal.pone.0138446.t001
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with no need for mtDNA-specific baits. The three samples sequenced here provided complete
mitogenomes along with at least 625 out of 634 target loci per sample (Table 1). Mitogenome
sequencing depth was high in all cases (Table 1), with means higher than 500x when PCR
duplicates were considered. Removal of the PCR duplicates considerably dropped depth, but
mean depths remained high (>70x), with depth ranging from 2x to 122x. Use of skeletal mus-
cle as source material, which has a high mtDNA/nDNA ratio, may be responsible for such
high mean depths [25,50], and further tests will be important to evaluate the efficiency of this
protocol with other types of tissue. Blood samples, for example, appear to be a poor source of
mtDNA off-target in UCE experiments (B. Faircloth, personal communication). Our results in
particular showed PCR duplication levels higher than 90% for all three species, and those val-
ues may be considerably lowered by decreasing the number of PCR cycles during library ampli-
fication (B. Faircloth, personal communication).

Mitogenome completeness of the three warbling finches is supported by the presence of all
regions found in two close mitogenomes available (Thraupis episcopus, [51]; Emberiza pusilla,
[52]), including one control region, two rRNAs, 22 tRNAs and 13 protein-coding genes (S1
Table). Gene synteny was observed among the three species (S1 Table), and their gene order is
the one present in most oscines studied so far. Genome sizes and G+C contents were also simi-
lar to those of published avian mitogenomes, ranging between 16,768–16,773 bp and 46.6–
47.1%, respectively. Five mitochondrial polymorphic sites were found (P. lateralis, T and C at
position 7847 and A and T at position 15290; P. cabanisi, C and A at position 15600; P. thora-
cica, A and T at position 14, and T and C at position 15606), and they can be explained by PCR
error or heteroplasmy, which is an increasingly common finding in mtDNA studies [53–55].
Although an early diverging numt could also explain these polymorphic sites [56], we expect
that use of muscle as DNA source makes this hypothesis unlikely due to its high mtDNA/
nDNA ratio. Bayesian phylogenetic inference based on cytochrome b sequences also supported
authenticity of the mitochondrial sequences with maximum posterior probabilities (S1 Fig).
Poospiza lateralis was sister to P. cabanisi, a finding in line with their conspecificity according
to some authors (see [57] for a taxonomic review). In addition, both sequences of P. cabanisi
and P. thoracica collected here were sister to conspecific sequences obtained from Genbank.

Microsatellite loci
We found a minimum of 361 microsatellites per species (Table 1), with primer design being
possible for at least 64 loci per species (S1 Table). These loci numbers are higher than those rec-
ommended by Gardner et al. [58] for typical molecular ecology studies (~40 designable, unique
loci). We believe that the number of microsatellites for which primers cannot be designed may
decrease with use of inserts larger than the ones used here (~300 bp), which could translate
into higher average assembly length and consequently longer flanking regions for primer
design. We found microsatellite loci in both UCE and non-UCE data. Purifying selection may
be a concern in UCE regions [59], which may include linked microsatellite loci. However, less
than one fifth of the loci with flanking sequence suitable for primer design found here matched
UCEs (P. cabanisi: 11 of 64; P. lateralis: 11 of 77; P. thoracica: 10 of 68). No mitochondrial or
W-linked microsatellite loci were found, but a minor proportion (eight in P. cabanisi, eight in
P. lateralis, and nine in P. thoracica) were Z-linked. From the microsatellite loci alignable
between at least two species (23), 10 matched UCE loci and 13 consisted of non-UCE loci, with
one of each category being variable. Although the small panel of individuals (2–3) may not be
sufficient to reliably explore polymorphism, most of the sequences found were outside UCE
regions, and thus should present levels of variation similar to those of microsatellite loci iso-
lated using standard techniques (e.g. microsatellite enrichment).
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Advantages and potential pitfalls
Obtaining mitogenomes and microsatellite loci from off-target sequences is an opportunistic
approach that depends on the incomplete efficiency of sequence capture protocols. Thus,
future increases in sequence capture efficiency can negatively affect any application based on
off-target sequences. However, despite the rising efficiency in sequence capture, off-target
sequences are still common (e.g. protocols with only 40% on target in some cases, [26]), pro-
viding abundant mtDNA sequences and microsatellite loci. Even in cases of high specificity,
increasing sequencing depth may still provide sufficient off-target sequences for diverse appli-
cations at reasonable costs. When the intended number of microsatellite loci or the desired
mitogenome completedeness is not met, the low cost associated with UCE sequencing (~ US$
100/sample) makes replicated sequencing of the same sample or sequencing of multiple indi-
viduals of a given species still a cost-effective strategy. Use of mixed mtDNA and nuclear baits
(as suggested by Falk et al. [60]) is certainly an exciting and promising alternative to simulta-
neous sequencing of mtDNA and UCEs, but may also have its downsides, such as the addi-
tional costs of design and synthesis of compatible baits at different concentrations. In addition,
designing baits for fast-evolving mitogenomes may be challenging when sequencing distant
species, which is a common requirement of phylogenetic studies. Finally, use of off-target
sequences may facilitate locus design of non-model organisms, since they contain non-UCE
microsatellite markers.

Conclusion
Here we show that the increasingly common sequencing of UCE loci may be a low-cost and
simultaneous source of mitogenomes and sequences for microsatellite primer design with good
sequencing depth. Since UCE sequencing has been successfully used in many non-model spe-
cies of amniotes—and more recently, fishes and arthropods—the mitogenomes and microsatel-
lite loci can be obtained for thousands of animal species using the strategy presented here,
including species with limited genomic resources available.

Supporting Information
S1 Table. Characterization of the mitogenomes of Poospiza cabanisi, P. lateralis and P.
thoracica.
(XLS)

S2 Table. List of microsatellite with designable primers.
(XLS)

S1 Fig. Bayesian phylogeny of Poospizinae thraupids based on cytochrome b sequences.
Bold names with asterisks indicate sequences obtained here. Numbers on branches correspond
to posterior probabilities.
(TIF)
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