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Abstract

Introduction

Prosthetic alignment, positioning of a prosthetic foot relative to a socket, is an iterative pro-

cess in which an amputee’s gait is optimized through repetitive optical gait observation and

induction of alignment adjustments when deviations are detected in spatiotemporal and

kinematic gait parameters. An important limitation of the current prosthetic alignment

approach is the subjectivity and the lack of standardized quantifiable baseline values. The

purpose of this systematic review is to investigate if an optimal alignment criterion can be

derived from published articles. Moreover, we investigated the effect of alignment changes

on spatiotemporal, kinematic and kinetic gait parameters.

Results

A total of 11 studies were included, two controlled before-and-after studies and nine-inter-

rupted time series studies.

Discussion

The results demonstrate that alignment changes have a predictable influence on the

included kinetic parameters. However, the effect of alignment changes on spatio-temporal

and kinematic gait parameters are generally unpredictable. These findings suggest that it is

imperative to include kinetics in the process of dynamic prosthetic alignment. Partially this

can be established by communication with the prosthetic user in terms of perceived socket

comfort, but the use of measurement tools should also be considered. While current litera-

ture is not conclusive about an optimal alignment, future alignment research should focus

on alignment optimisation based on kinetic outcomes.
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Introduction

Individuals with a transtibial amputation (TTA) have an altered functioning ankle joint, result-

ing in the loss of important ambulation functions, including energy absorption, propulsion

and active push-off. To compensate for the functional loss, the human body adapts so that it

can perform the necessary functions despite the structural asymmetry between the prosthetic

limb (PL) and the non-prosthetic limb (NPL) [1].

During prosthetic fitting, the prosthetist will examine both the socket fit and the prosthetic

alignment. Prosthetic alignment involves altering the position of a prosthetic foot relative to a

socket. This process aims to reduce an amputee’s restrictions and discomfort during daily life

activity [2]. By changing the relative orientation of the foot in respect to the socket, a prosthet-

ist is able to influence spatiotemporal, kinematic and kinetic gait parameters in order to opti-

mize the dynamic balance and biomechanical function exhibited by the user [3]. One aspect of

the alignment process is dynamic alignment, where possible gait deviations are observed in a

clinical environment. Adjustments of the position and orientation of the foot relative to the

socket are applied in the sagittal-, coronal- and transverse-plane, so that the amputee’s gait is

influenced to achieve minimal optical gait deviations and to satisfy both user and prosthetist

with the resulting gait.

One limitation of dynamic alignment is its attempt to achieve a perfectly ‘normal’ symmet-

rical gait. Firstly, the prosthetic user’s personal limitations may require gait deviations. Sec-

ondly, increasing the symmetry in TTA gait does not necessarily result in gait improvement

[4]. Multiple studies reported dissimilarities between TTA gait and nondisabled gait. Lower

average cadence, velocity, stride length and single limb support time are observed in TTA gait

[5–8]. Additionally, the swing time and step length of the PL are found to be greater, and the

stance phase duration on the NPL are increased, compared to the PL [9,10]. Asymmetry may

be a prerequisite to achieve gait stability during ambulation [1]. Therefore, it may be argued

that kinematic and spatiotemporal symmetry should not be the goal of dynamic alignment of

the prosthesis.

A more extensive and objective interpretation of the effect of different prosthetic align-

ments on the gait pattern of TTA patients is desirable in an attempt to define optimal align-

ment. The current interpretation of optimal alignment is subjective, with both the prosthetist

and user indicating optimal gait through a trial-and-error process. As a result, the dynamic

alignment achieved by the conventional dynamic alignment process is found to be highly vari-

able, with a wide range of alignments tolerated by below knee prosthetic users [11]. Although

the prosthetist may observe an optimal gait after alignment alterations, the prosthetic user may

actually be maintaining the given gait pattern with strongly altered kinetics. Detailed examina-

tion of the generated joint moments required to produce the observed gait may reveal the

abnormalities [8]. The relationship between prosthetic adjustments, gait deviations and com-

pensatory mechanisms remain unclear.

This systematic review will examine the current literature of alignment changes on spatio-

temporal, kinematic and kinetic parameters in TTA gait. Secondly, the review will attempt to

find the most widely accepted definition of optimal alignment for TTA gait.

Methods

Our study was conducted and reported according to the Preferred Reporting Items for System-

atic Reviews and Meta-analysis Statement (S1 Checklist). A systematic search was performed

in the PubMed and Embase databases, from the initiation of the databases up to October 15th,

2014 (Table 1). Two reviewers, (NJ and PvdW) independently screened each title to select

potentially relevant papers. The resulting abstracts were screened to select articles matching
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the research question (Fig 1). Only articles fulfilling both the in- and exclusion criteria follow-

ing a full text review were included in the systematic review. The references of the final selec-

tion of articles were reviewed to find potentially relevant articles, which may have been missed,

in the initial search.

Data extracted from the studies included: study design, population (sample size and age),

initial prosthetic alignment, prosthetic alignment adjustments, all reported spatiotemporal gait

parameters and kinematics and kinetics of both lower extremities during gait.

To the best of the authors’ knowledge, no validated critical appraisal has been published

which matches this review’s scope. As such, an adapted version of a non-validated critical

appraisal by van der Linde et al. was used [12]. Van der Linde et al. based their appraisal on the

integration of two existing criteria lists for quality assessments of randomized controlled trials

[13,14]. Each of those criteria were individually assessed and adapted to the relevance of this

systematic review, for both before-and-after study designs and interrupted time series designs.

Some criteria were removed or altered where they scored ‘0’ or ‘1’ by definition. The adapted

critical appraisal evaluated a checklist of ten criteria (S1 Appraisal).

Table 1. Search strategy.

Database Search Strategy n-

hits

PubMed search

syntax

((“Trans-tibial” [Title/Abstract] OR Transtibial [Title/Abstract] OR “Below-knee”

[Title/Abstract]) AND (Amput* [Title/Abstract])) AND ((“Alignment” [Title/

Abstract] OR “Malalignment” [Title/Abstract] OR “Align” [Title/Abstract]) AND

(Prosthe* [Title/Abstract])).

72

EMBASE search

syntax

((‘Trans-tibial’:ti:ab OR Transtibial:ti:ab OR ‘Below-knee’:ti:ab) AND (Amput*:

ti:ab)) AND ((‘Alignment’:ti:ab OR ‘Malalignment’:ti:ab OR ‘Align’:ti:ab) AND

(Prosthe*:ti:ab))

75

Total 147

doi:10.1371/journal.pone.0167466.t001

Fig 1. Inclusion and exclusion criteria.

doi:10.1371/journal.pone.0167466.g001
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To determine the risk of bias in this review we deviated from the Cochrane system because

this is primarily designed for intervention studies. Instead, we utilized the COSMIN system

box F: ‘Hypothesis testing’, to evaluate the risk of bias per studied measurement property

[15,16]. Each item is scored on a four-point scale (Excellent, Good, Fair or Poor) and the final

score is judged by using a ‘worst count score’. In accordance with previous studies we relin-

quish from judgements on sample size requirements in this quality assessment procedure

because it was expected that all studies contains less than 30 subjects [15]. Two reviewers inde-

pendently scored the included articles; any dissimilarity in an item assessment was resolved by

a consensus meeting.

Results

A total of 85 studies were identified using the search strategy as shown in Fig 2. After full text

assessment 7 studies were excluded [11,17–22] Followed by screening of the reference section

of the remaining 11 studies, this did not result in the inclusion of additional studies. The stud-

ies included in this review include two controlled before-and-after study design studies and

nine-interrupted time series design studies (Table 2).

Four studies scored a good and seven studies a fair for the hypotheses assessment by the

COSMIN guideline. The critical appraisal showed criterion specific shortcomings, which are

mainly present in the selection criteria. Due to a lack of descriptive data the homogeneity of

the investigated groups is questionable. The quality assessments of all the included studies are

listed in Table 2.

Of the included studies, three compared gait parameters of the NPL with the PL in unilat-

eral TTA [23–25], whereas the other eight only investigated the PL [26–33] Of the three studies

examining both the NPL and the PL, two included an additional group of abled-bodied per-

sons for comparison [23,24]. The relevant outcomes are subdivided into three result tables:

spatiotemporal (Table 3), kinematic (Table 4) and kinetic (Table 5) data.

Six of the included studies had an affiliation with Orthocare Innovations (OI) and pre-

sented data from two different cohorts: four studies obtained data from the ‘OI 2012’ cohort

[27,28,30,31] and two studies the ‘OI 2014’ cohort [26,33]. An additional two studies [23,24]

had an affiliation with ‘Centre de Readaptations Louis Pierquin’ and presented data obtained

from the same cohort, which will be called the ‘CRLP’ cohort in this review. The remaining

studies [25,29,32] appear to be based on unique cohorts.

Experimental Procedures

Two of the included studies[23,24] started from an alignment where no alternations had been

made on the participant’s own prosthesis. In eight studies [25–31,33] a visual dynamic align-

ment of the prosthesis of all participants was executed by experienced prosthetists before start-

ing the measurements, and was called the nominally or initial alignment. Given that both

nominally and initial alignment are one and the same starting point, this review only used

nominal alignment. One study [32] performed a static nominal alignment using the LASAR-

posture1 -system [34].

Alignment perturbations are reported as change of orientation of the foot in relation to the

socket or vice versa. Three studies investigated the influence of transverse alignment changes by

rotating the foot relative to the socket [23–25]. The studies of the CRLP cohort compared the

nominal alignment to a 6˚ external rotation and a 6˚ internal rotation [23,24]. One study com-

pared the nominal alignment to alignment changes of +18˚ and +36˚ external rotation [25].

Seven studies [26–31,33] included sagittal and coronal alignment changes on the socket rel-

ative to the foot. The studies of the OI 2012 cohort [27,28,30,31] made adjustments on the
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Fig 2. PRISMA flow diagram.

doi:10.1371/journal.pone.0167466.g002

Effect of Alignment Alternations on Amputee’s Gait

PLOS ONE | DOI:10.1371/journal.pone.0167466 December 6, 2016 5 / 18



T
a
b

le
2
.

S
tu

d
ie

s
in

c
lu

d
e
d

in
s
y
s
te

m
a
ti

c
re

v
ie

w
.

F
ir

s
t
a
u

th
o

r
C

o
h

o
rt

R
e
s
e
a
rc

h
fo

c
u

s
N

S
e
x

(F
/M

)
A

g
e

m
e
a
n

(S
D

)
y
e
a
r

P
ro

s
th

e
ti

c

F
e
e
t

T
im

e
s
in

c
e

a
m

p
u

ta
ti

o
n

M
e
a
n

(S
D

)
y
e
a
r

S
tu

d
y

D
e
s
ig

n
S

e
le

c
ti

o
n

In
te

rv
e
n

ti
o

n
S

ta
ti

s
ti

c
a
l
V

a
li
d

it
y

T
o

ta
l
S

c
o

re
H

y
p

o
th

e
s
is

te
s
ti

n
g

e
x
c
lu

s
iv

e
o

f
s
a
m

p
le

s
iz

e
*

A
1

A
2

A
B

3
B

4
B

5
A

B
5
B

B
6

B
C

7
C

8
C

9
C

B
o

x
F

B
e
y
a
e
rt

[2
4
]

C
e
n
tr

e
d
e

R
e
a
d
a
p
ta

ti
o
n

L
o
u
is

P
ie

rq
u
in

C
o
h
o
rt

,

2
0
0
8

C
o
m

p
e
n
s
a
to

ry
fu

n
c
ti
o
n

o
f

th
e

k
n
e
e

jo
in

t
o
f
th

e
N

P
L

re
la

te
d

to
tr

a
n
s
v
e
rs

e

p
ro

s
th

e
ti
c

fo
o
t
a
lig

n
m

e
n
t

p
e
rt

u
rb

a
ti
o
n
.

1
5

A
B

N
R

4
6

(1
6
)

2
S

A
C

H
1
6
.7

(1
7
.6

)
C

B
A

0
0

0
1

1
1

1
1

5
1

1
1

3
8

F
a
ir

G
ru

m
ill

ie
r

[2
3
]

C
o
m

p
e
n
s
a
to

ry
h
ip

fu
n
c
ti
o
n

in
re

s
p
o
n
s
e

to

u
n
c
o
m

fo
rt

a
b
le

g
a
it

in
d
u
c
e
d

b
y

tr
a
n
s
v
e
rs

e
p
ro

s
th

e
ti
c

fo
o
t
a
lig

n
m

e
n
t.

1
7

T
T

A

N
R

4
5

(1
7
)

1
5

E
S

R
C

B
A

0
0

0
1

1
1

1
1

5
1

1
1

3
8

F
a
ir

B
o
o
n
e

[3
0
]

O
rt

h
o
c
a
re

In
n
o
v
a
ti
o
n

c
o
h
o
rt

,

2
0
1
2

E
ff

e
c
t
o
f
tr

a
n
s
-t

ib
ia

l

a
lig

n
m

e
n
t
c
h
a
n
g
e
s

o
n

th
e

m
o
m

e
n
ts

m
e
a
s
u
re

d
a
t
th

e

b
a
s
e

o
f
th

e
s
o
c
k
e
t.

1
1

T
T

A

1
F

/
1
0
M

4
7

(1
3
)

1
1

S
A

C
H

N
R

IT
S

0
0

0
1

1
0

0
1

3
1

1
1

3
6

G
o

o
d

K
o
b
a
y
a
s
h
i
[3

1
]

T
h
e

e
ff
e
c
t
o
f
s
y
s
te

m
a
ti
c

c
o
ro

n
a
la

lig
n
m

e
n
t
c
h
a
n
g
e
s

o
n

s
a
g
it
ta

l
s
o
c
k
e
t
re

a
c
ti
o
n

m
o
m

e
n
ts

a
n
d

v
ic

e
v
e
rs

a
,

w
it
h

tr
a
n
s
-t

ib
ia

l
a
m

p
u
te

e
s
.

IT
S

0
0

0
1

1
0

1
1

4
1

1
1

3
7

G
o

o
d

K
o
b
a
y
a
s
h
i
[2

7
]

T
h
e

e
ff
e
c
t
o
f
a
lig

n
m

e
n
t

p
e
rt

u
rb

a
ti
o
n
s

o
n

s
a
g
it
ta

l

a
n
d

c
o
ro

n
a
ls

o
c
k
e
t

re
a
c
ti
o
n

m
o
m

e
n
t

in
te

ra
c
ti
o
n
s
.

IT
S

0
0

0
1

1
0

1
1

4
1

1
0

2
6

F
a
ir

K
o
b
a
y
a
s
h
i
[2

8
]

In
d
iv

id
u
a
l
re

s
p
o
n
s
e

to

a
lig

n
m

e
n
t
p
e
rt

u
rb

a
ti
o
n
s

b
y

m
e
a
s
u
re

m
e
n
t
o
f
th

e

e
x
te

rn
a
l
s
o
c
k
e
t
re

a
c
ti
o
n

m
o
m

e
n
t.

IT
S

0
0

0
0

1
0

0
1

2
1

1
1

3
5

F
a
ir

F
ri
d
m

a
n

[2
5
]

U
n
iq

u
e

c
o
h
o
rt

In
fl
u
e
n
c
e

o
f
tr

a
n
s
v
e
rs

e

p
ro

s
th

e
ti
c

fo
o
t
a
lig

n
m

e
n
t

o
n

g
a
it

p
a
ra

m
e
te

rs
a
n
d

c
o
m

p
e
n
s
a
ti
n
g

p
a
tt

e
rn

s
.

8

T
T

A

8
M

4
9

(9
)

8
S

A
C

H
1
3
.5

(1
0
.0

)
IT

S
0

1
1

0
0

1
1

1
3

0
1

1
2

6
F

a
ir

K
o
b
a
y
a
s
h
i
[2

6
]

O
rt

h
o
c
a
re

In
n
o
v
a
ti
o
n

c
o
h
o
rt

,

2
0
1
4

E
ff

e
c
t
o
f
a
lig

n
m

e
n
t

c
h
a
n
g
e
s

o
n

th
e

e
x
te

rn
a
l

s
o
c
k
e
t
re

a
c
ti
o
n

m
o
m

e
n
t

w
h
ile

u
s
in

g
e
n
e
rg

y
s
to

ra
g
e

a
n
d

re
tu

rn
fe

e
t.

1
0

T
T

A

4
F

/
6
M

5
0

(1
1
)

1
0

E
S

R
1
7

(1
4
)

IT
S

0
0

0
1

1
0

1
1

4
1

1
1

3
7

G
o

o
d

K
o
b
a
y
a
s
h
i
[3

3
]

E
ff

e
c
t
o
f
a
lig

n
m

e
n
t

c
h
a
n
g
e
s

o
n

th
e

s
o
c
k
e
t

re
a
c
ti
o
n

m
o
m

e
n
t
im

p
u
ls

e
,

in
th

e
p
la

n
e

o
f
th

e

a
d
ju

s
tm

e
n
t.

IT
S

0
0

0
1

1
0

1
1

4
1

1
1

3
7

G
o

o
d

P
in

z
u
r

[2
9
]

U
n
iq

u
e

c
o
h
o
rt

In
v
e
s
ti
g
a
te

th
e

re
la

ti
o
n
s
h
ip

b
e
tw

e
e
n

p
ro

s
th

e
ti
c

a
lig

n
m

e
n
t
a
n
d

te
n
ta

ti
v
e

lo
a
d

o
n

th
e

P
L

a
n
d

o
n

th
e

N
P

L
o
f
u
n
ila

te
ra

l

a
m

p
u
te

e
s

1
4

T
T

A

2
F

/
1
2
M

4
5

(N
R

)
1
4

S
A

C
H

N
R

IT
S

0
0

0
0

1
0

0
1

2
1

0
0

1
3

F
a
ir

S
c
h
m

a
lz

[3
2
]

U
n
iq

u
e

c
o
h
o
rt

D
e
fi
n
in

g
th

e
in

fl
u
e
n
c
e

o
f

p
ro

s
th

e
ti
c

a
lig

n
m

e
n
t
o
n

th
e

m
e
ta

b
o
lic

e
n
e
rg

y

c
o
n
s
u
m

p
ti
o
n

a
n
d

b
io

m
e
c
h
a
n
ic

a
l
g
a
it

p
a
ra

m
e
te

rs
d
u
ri
n
g

w
a
lk

in
g
.

7

T
T

A

N
R

4
9

(1
7
)

7
S

A
C

H
2
3

(1
9
)

IT
S

0
0

0
0

0
1

0
0

1
0

1
1

2
3

F
a
ir

S
tu

d
ie

s
th

a
t
re

p
o
rt

e
d

d
a
ta

o
f
o
n
e

a
n
d

th
e

s
a
m

e
c
o
h
o
rt

a
re

s
u
b
d
iv

id
e
d

in
to

th
o
s
e

c
o
h
o
rt

s
.
E

v
e
ry

a
rt

ic
le

w
a
s

s
c
o
re

d
o
n

th
re

e
c
ri
te

ri
a
:
In

te
rv

e
n
ti
o
n
,
S

ta
ti
s
ti
c
a
lA

n
a
ly

s
is

a
n
d

V
a
lid

it
y

a
n
d

s
c
o
re

d
o
n

m
e
th

o
d
o
lo

g
ic

a
l
q
u
a
lit

y
b
y

th
e

C
O

S
M

IN
c
h
e
c
k
lis

t,
B

o
x

F
:
H

y
p
o
th

e
s
is

te
s
ti
n
g
.

A
b
b
re

v
ia

ti
o
n
s
:
A

B
=

A
b
le

d
B

o
d
ie

d
,
C

B
A

=
C

o
n
tr

o
lle

d
B

e
fo

re
-a

n
d
-A

ft
e
r
S

tu
d
y
,
E

S
R

=
E

n
e
rg

y
S

to
ra

g
e

a
n
d

R
e
tu

rn
fe

e
t,

F
=

F
e
m

a
le

,
IT

S
=

In
te

rr
u
p
te

d
T

im
e

S
e
ri
e
s

D
e
s
ig

n
s
,
M

=
M

a
le

,

N
P

L
=

N
o
n

P
ro

s
th

e
ti
c

L
e
g
,
N

R
=

N
o
t
R

e
p
o
rt

e
d
,
P

L
=

P
ro

s
th

e
ti
c

L
e
g
,
S

A
C

H
=

S
o
lid

A
n
k
le

C
u
s
h
io

n
H

e
e
l,

S
D

=
S

ta
n
d
a
rd

D
e
v
ia

ti
o
n
,
T

T
A

=
T

ra
n
s
ti
b
ia

lA
m

p
u
te

e

*
M

e
th

o
d
o
lo

g
ic

a
lq

u
a
lit

y
b
y

C
O

S
M

IN
g
u
id

e
lin

e
fo

r
s
y
s
te

m
a
ti
c

re
v
ie

w
s
.

d
o
i:
1
0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
1
6
7
4
6
6
.t
0
0
2

Effect of Alignment Alternations on Amputee’s Gait

PLOS ONE | DOI:10.1371/journal.pone.0167466 December 6, 2016 6 / 18



T
a
b

le
3
.

S
p

a
ti

o
te

m
p

o
ra

l
g

a
it

p
a
ra

m
e
te

rs
.

F
ir

s
t

a
u

th
o

r(
s
)

C
o

h
o

rt
O

u
tc

o
m

e
v
a
ri

a
b

le
V

a
lu

e
n

o
m

in
a
l
a
li
g

n
m

e
n

t
(S

D
)

C
o

n
d

it
io

n

V
a
lu

e
(S

D
)

C
e
n
tr

e
d
e

R
e
a
d
a
p
ta

ti
o
n

L
o
u
is

P
ie

rq
u
in

C
o
h
o
rt

,
2
0
0
8

+
6
˚
IR

+
6
˚

E
R

B
e
y
a
e
rt

[2
4
]

W
a
lk

in
g

s
p
e
e
d

(m
/s

)
1
.3

6
(0

.2
0
)

1
.3

5
(0

.1
8
)

1
.3

4
(0

.2
0
)

G
ru

m
ill

ie
r

[2
3
]

C
a
d
e
n
c
e

(s
te

p
s
/m

in
)

1
0
9

(8
)

1
0
9

(8
)

1
0
8

(8
)

S
tr

id
e

le
n
g
th

(m
)

1
.5

1
(0

.1
9
)

1
.5

0
(0

.1
8
)

1
.4

7
(0

.1
9
)

S
in

g
le

s
u
p
p
o
rt

p
h
a
s
e

P
L

(s
)

0
.4

2
(0

.0
3
)

0
.4

0
(0

.0
4
)*

+
0
.4

1
(0

.0
4
)

+

S
in

g
le

s
u
p
p
o
rt

p
h
a
s
e

N
P

L
(s

)
0
.4

4
(0

.0
3
)

0
.4

4
(0

.0
3
)

+
0
.4

4
(0

.0
3
)

+

S
ta

n
c
e

p
h
a
s
e

P
L

(%
o
f
G

C
)

6
1

(2
)

6
0

(1
)

+
6
1

(2
)

+

S
ta

n
c
e

p
h
a
s
e

N
P

L
(%

o
f
G

C
)

6
3

(2
)

6
4

(2
)*

+
6
4

(2
)*

+

K
o
b
a
y
a
s
h
i
[2

7
]

O
rt

h
o
c
a
re

In
n
o
v
a
ti
o
n

c
o
h
o
rt

,
2
0
1
2

F
le

x
io

n
E

x
te

n
s
io

n
A

b
d
u
c
ti
o
n

A
d
d
u
c
ti
o
n

K
o
b
a
y
a
s
h
i
[2

8
]

3
˚

6
˚

3
˚

6
˚

3
˚

6
˚

3
˚

6
˚

K
o
b
a
y
a
s
h
i
[3

1
]

C
a
d
e
n
c
e

(s
te

p
s
/m

in
)

1
0
9

(1
6
)

N
R

1
0
4

(1
3
)*

1
0
1

(1
7
)*

1
0
0

(1
5
)*

N
R

N
R

1
0
3

(1
9
)*

N
R

S
ta

n
c
e

p
h
a
s
e

(%
o
f
G

C
)

m
a
x
.
v
a
ru

s
/v

a
lg

u
s

m
o
m

e
n
t
o
c
c
u
rr

e
d

3
1

3
3

2
9

2
7

2
6

3
1

3
2

1
4

1
8

S
ta

n
c
e

p
h
a
s
e

(%
o
f
G

C
)

m
a
x
.
e
x
te

n
s
io

n
m

o
m

e
n
t
o
c
c
u
rr

e
d

7
6

7
6

7
7

7
3

7
3

7
6

7
6

7
5

7
5

A
n
te

ri
o
r

tr
a
n
s
la

ti
o
n

P
o
s
te

ri
o
r

tr
a
n
s
la

ti
o
n

M
e
d
ia

l

tr
a
n
s
la

ti
o
n

L
a
te

ra
l
tr

a
n
s
la

ti
o
n

5
m

m
1
0
m

m
5
m

m
1
0
m

m
5
m

m
1
0
m

m
5
m

m
1
0
m

m

C
a
d
e
n
c
e

(s
te

p
s
/m

in
)

1
0
9

(1
6
)

N
R

N
R

N
R

N
R

N
R

N
R

N
R

N
R

S
ta

n
c
e

p
h
a
s
e

(%
o
f
G

C
)

m
a
x
.
v
a
ru

s
/v

a
lg

u
s

m
o
m

e
n
t
o
c
c
u
rr

e
d

3
1

2
8

3
0

3
0

2
5

2
9

1
5

3
2

3
1

S
ta

n
c
e

p
h
a
s
e

(%
o
f
G

C
)

m
a
x
.
e
x
te

n
s
io

n
m

o
m

e
n
t
o
c
c
u
rr

e
d

7
6

7
6

7
5

7
4

7
4

7
6

7
4

7
6

7
5

U
n
iq

u
e

c
o
h
o
rt

+
1
8
˚

E
R

+
3
6
˚

E
R

F
ri
d
m

a
n

[2
5
]

S
ta

n
c
e

ti
m

e
o
n

P
L

(s
)

0
.7

7
(0

.0
8
)

0
.7

5
(0

.0
9
)

0
.7

3
(0

.0
9
)

S
ta

n
c
e

ti
m

e
o
n

N
P

L
(s

)
0
.7

8
(0

.0
9
)

0
.7

8
(0

.1
1
)

0
.7

9
(0

.1
1
)

+

In
te

r
le

g
s
ta

n
c
e

ti
m

e
d
if
fe

re
n
c
e

(s
)

0
.0

2
(0

.0
5
)

0
.0

3
(0

.0
5
)

0
.0

6
(0

.0
7
)*

L
e
g

s
y
m

m
e
tr

y
ra

ti
o

(N
P

L
v
s
.
P

L
)

0
.9

8
(0

.0
6
)

0
.9

7
(0

.0
6
)

0
.9

2
(0

.0
8
)*

U
n
iq

u
e

c
o
h
o
rt

S
w

in
g

ti
m

e
o
f
P

L
(s

)
0
.4

3
(0

.0
5
)

0
.4

4
(0

.0
4
)

0
.4

4
(0

.0
5
)

S
w

in
g

ti
m

e
o
f
N

P
L

(s
)

0
.4

1
(0

.0
4
)

0
.4

1
(0

.0
3
)

0
.3

9
(0

.0
4
)

+

C
o
n
ti
n
u
e
s

fr
o
m

p
re

v
io

u
s

p
a
g
e

In
te

r
le

g
s
w

in
g

ti
m

e
d
if
fe

re
n
c
e

(s
)

0
.0

2
(0

.0
4
)

0
.0

3
(0

.0
3
)

0
.0

5
(0

.0
4
)*

L
e
g

s
y
m

m
e
tr

y
ra

ti
o

(N
P

L
v
s
.
P

L
)

0
.9

5
2

(0
.0

9
)

0
.9

3
7

(0
.0

8
)

0
.8

9
3

(0
.0

8
)*

S
te

p
le

n
g

th
o
f
P

L
(c

m
)

6
7
.3

6
(1

0
.2

6
)

6
6
.7

6
(1

0
.0

7
)

+
6
5
.1

0
(1

0
.9

7
)

+

S
te

p
le

n
g
th

o
f
N

P
L

(c
m

)
6
3
.0

6
(7

.0
8
)

6
2
.1

3
(7

.7
9
)

+
5
9
.6

3
(8

.4
5
)

+

In
te

r
le

g
s
te

p
le

n
g
th

d
if
fe

re
n
c
e

(c
m

)
3
.1

6
(4

.9
3
)

4
.6

1
(5

.5
8
)

5
.8

3
(5

.1
2
)*

L
e
g

s
y
m

m
e
tr

y
ra

ti
o

(N
P

L
v
s
.
P

L
)

0
.9

6
(0

.0
7
)

0
.9

4
(0

.0
8
)

0
.9

2
(0

.0
7
)*

K
o
b
a
y
a
s
h
i
[2

6
]

O
rt

h
o
c
a
re

In
n
o
v
a
ti
o
n

c
o
h
o
rt

.
2
0
1
4

S
ta

n
c
e

ti
m

e
(s

)
0
.7

2
(0

.1
1
)

N
o

s
ig

n
ifi

c
a
n
t
c
h
a
n
g
e

in
a
ll

2
4

m
a
la

lig
n
e
d

c
o
n
d
it
io

n
s

c
o
m

p
a
re

d
to

n
o
m

in
a
la

lig
n
m

e
n
t

K
o
b
a
y
a
s
h
i
[3

3
]

C
a
d
e
n
c
e

(s
te

p
s
/m

in
)

1
0
4

(1
2
)

N
o

s
ig

n
ifi

c
a
n
t
c
h
a
n
g
e

in
a
ll

2
4

m
a
la

lig
n
e
d

c
o
n
d
it
io

n
s

c
o
m

p
a
re

d
to

n
o
m

in
a
la

lig
n
m

e
n
t

P
in

z
u
r

[2
9
]

U
n
iq

u
e

c
o
h
o
rt

+
1
0
˚

A
d
d
u
c
ti
o
n

+
1
0
˚
A

b
d
u
c
ti
o
n

+
1
0
˚
F

le
x
io

n
+

1
0
˚
E

x
te

n
s
io

n

S
ta

n
c
e

ti
m

e
(s

)
0
.8

3
(9

.8
4

(S
E

M
))

0
.8

3
(9

.8
4

(S
E

M
))

0
.8

7
(9

.8
4

(S
E

M
))

0
.8

7
(9

.8
4

(S
E

M
))

0
.8

4
(9

.8
4

(S
E

M
))

S
c
h
m

a
lz

[3
2
]

U
n
iq

u
e

c
o
h
o
rt

2
0
m

m
P

o
s
te

ri
o
r

tr
a
n
s
la

ti
o
n

2
0
m

m
A

n
te

ri
o
r

tr
a
n
s
la

ti
o
n

+
1
0

d
o
rs

ifl
e
x
io

n
+

1
0

p
la

n
ta

r
fl
e
x
io

n

W
a
lk

in
g

s
p
e
e
d

(k
m

/h
)

5
.2

(0
.6

)
5
.2

(0
.4

)
5
.1

(0
.5

)
5
.1

(0
.4

)
5
.0

(0
.6

)

S
tr

id
e

le
n
g
th

(m
)

0
.7

3
(0

.0
5
)

0
.7

5
(0

.0
5
)

0
.7

3
(0

.0
4
)

0
.7

3
(0

.0
5
)

0
.7

4
(0

.0
6
)

A
b
b
re

v
ia

ti
o
n
s
:
c
m

=
c
e
n
ti
m

e
tr

e
,
E

R
=

E
x
te

rn
a
lR

o
ta

ti
o
n
,
G

C
=

G
a
it

C
y
c
le

,
IA

=
In

it
ia

lA
lig

n
m

e
n
t,

IR
=

In
te

rn
a
lR

o
ta

ti
o
n
,
k
m

/h
=

k
ilo

m
e
tr

e
a

h
o
u
r,

m
=

m
e
tr

e
,
m

m
=

m
ill

im
e
tr

e
,

m
/s

=
m

e
tr

e
p
e
r
s
e
c
o
n
d
,
m

in
.
=

m
in

u
te

,
N

P
L

=
N

o
n

P
ro

s
th

e
ti
c

L
im

b
,
N

R
=

N
o
t
R

e
p
o
rt

e
d
,
N

/S
=

N
o
t
S

ig
n
ifi

c
a
n
t,

P
L

=
P

ro
s
th

e
ti
c

L
im

b
,
s

=
s
e
c
o
n
d
s
,
S

E
M

=
S

ta
n
d
a
rd

e
rr

o
r
o
f
th

e
m

e
a
n

*
S

ig
n
ifi

c
a
n
t
d
if
fe

re
n
c
e

(p
<0

,0
5
)
b
e
tw

e
e
n

n
o
m

in
a
la

lig
n
m

e
n
t
a
n
d

m
a
la

lig
n
e
d

c
o
n
d
it
io

n

+
S

ig
n
ifi

c
a
n
t
d
if
fe

re
n
c
e

(P
<0

,0
5
)
b
e
tw

e
e
n

P
L

a
n
d

N
P

L
in

th
e

s
a
m

e
c
o
n
d
it
io

n

d
o
i:
1
0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
1
6
7
4
6
6
.t
0
0
3

Effect of Alignment Alternations on Amputee’s Gait

PLOS ONE | DOI:10.1371/journal.pone.0167466 December 6, 2016 7 / 18



T
a
b

le
4
.

K
in

e
m

a
ti

c
g

a
it

p
a
ra

m
e
te

rs
.

F
ir

s
t

a
u

th
o

r(
s
)

C
o

h
o

rt
O

u
tc

o
m

e
v
a
ri

a
b

le
V

a
lu

e
n

o
m

in
a
l

a
li
g

n
m

e
n

t
(S

D
)

C
o

n
d

it
io

n

V
a
lu

e
(S

D
)

B
e
y
a
e
rt

[2
4
]

C
e
n
tr

e
d
e

R
e
a
d
a
p
ta

ti
o
n

L
o
u
is

P
ie

rq
u
in

C
o
h
o
rt

,
2
0
0
8

F
o

o
t

(-
=

e
x
te

rn
a
l
ro

ta
ti
o
n
)

C
o
n
tr

o
l
g
ro

u
p

+
6
˚

IR
+

6
˚

E
R

F
o
o
t
a
n
g
le

P
L

(˚
)

-3
(5

)
-8

(4
)

7
(8

)
*

-1
2

(6
)

*

G
ru

m
ill

ie
r

[2
3
]

F
o
o
t
a
n
g
le

N
P

L
(˚

)
-8

(9
)

-8
(4

)
-8

(9
)

-9
(9

)

K
n

e
e

(-
=

e
x
te

n
s
io

n
)

M
a
x
.
K

n
e
e

fl
e
x
io

n
P

L
(˚

)
1
5

(9
)

1
9

(4
)

1
0

(8
)

*
+

1
4

(8
)

+

M
a
x
.
K

n
e
e

fl
e
x
io

n
N

P
L

(˚
)

2
4

(7
)

1
9

(4
)

2
8

(7
)

*
+

2
3

(9
)

+

H
ip

R
o

M
(-

=
e
x
te

n
s
io

n
)

S
a
g
it
ta

l
R

o
M

o
f
P

L
d
u
ri
n
g

0
–
8
%

o
f
G

C
(˚

)
-4

.9
(1

.7
)

+
$

-2
.3

(1
.6

)
-5

.0
(1

.8
)

+
$

-4
.2

(1
.5

)
+

$

S
a
g
it
ta

l
R

o
M

o
f
N

P
L

d
u
ri
n
g

0
–
8
%

o
f
G

C
(˚

)
3
.0

(1
.9

)
+

$
-2

.3
(1

.6
)

4
.6

(2
.5

)
**

+
$

3
.2

(2
.5

)
+

$

S
a
g
it
ta

l
R

o
M

o
f
P

L
d
u
ri
n
g

8
–
3
0
%

o
f
G

C
(˚

)
-2

2
.2

(4
.8

)
-2

1
.3

(4
.0

)
2
3
.1

(5
.2

)
-2

1
.7

(4
.2

)

S
a
g
it
ta

l
R

o
M

o
f
N

P
L

d
u
ri
n
g

8
–
3
0
%

o
f
G

C
(˚

)
-2

7
.8

(3
.0

)
+

$
-2

1
.3

(4
.0

)
-2

8
.3

(4
.8

)
+

$
-2

6
.7

(4
.1

)
+

$

H
ip

F
le

x
io

n
(-

=
e
x
te

n
s
io

n
)

M
a
x
.
H

ip
F

le
x
io

n
o
c
c
u
rr

e
d

a
t
P

L
(%

o
f
G

C
)

9
2
.7

(4
.0

)
+

$
9
1
.7

(4
.0

)
9
2
.5

(4
.1

)
+

$
9
2
.6

(4
.6

)
+

$

M
a
x
.
H

ip
F

le
x
io

n
o
c
c
u
rr

e
d

a
t
N

P
L

(%
o
f
G

C
)

7
.8

(1
.3

)
+

$
9
1
.7

(4
.0

)
8
.1

(1
.3

)
+

$
8
.5

(1
.9

)
+

$

M
a
x
.
H

ip
F

le
x
io

n
a
t
N

P
L

(˚
)

4
1
.1

(6
.7

)
3
8
.8

(4
.6

)
4
2
.7

(5
.8

)
*
*

$
4
1
.1

(6
.9

)

F
ri
d
m

a
n

[2
5
]

U
n
iq

u
e

c
o
h
o
rt

F
o

o
t

(-
=

e
x
te

rn
a
l
ro

ta
ti
o
n
)

+
1
8
˚

E
R

+
3
6
˚

E
R

F
o
o
t
ro

ta
ti
o
n

P
L

(˚
)

-1
0
.9

(5
.2

)
-2

3
.2

(6
.3

)
*

+
-3

7
.1

(9
.9

)
*

+

F
o
o
t
ro

ta
ti
o
n

N
P

L
(˚

)
-1

3
.9

(8
.1

)
-1

4
.4

(7
.0

)
+

-1
2
.1

(9
.4

)
+

In
te

r-
le

g
d
if
fe

re
n
c
e

(˚
)

3
.2

(6
.8

)
9
.1

(7
.4

)
*

2
3
.8

(1
3
.5

)
*

A
b
b
re

v
ia

ti
o
n
s
:
c
m

=
c
e
n
ti
m

e
tr

e
,
E

R
=

E
x
te

rn
a
lR

o
ta

ti
o
n
,
G

C
=

G
a
it

C
y
c
le

,
IR

=
In

te
rn

a
l
R

o
ta

ti
o
n
,
N

P
L

=
N

o
n

P
ro

s
th

e
ti
c

L
im

b
,
P

L
=

P
ro

s
th

e
ti
c

L
im

b
,
R

o
M

=
R

a
n
g
e

o
f
M

o
ti
o
n
,

S
D

=
S

ta
n
d
a
rd

D
e
v
ia

ti
o
n

*
S

ig
n
ifi

c
a
n
t
d
if
fe

re
n
c
e

(p
<0

.0
5
)
b
e
tw

e
e
n

n
o
m

in
a
la

lig
n
m

e
n
t
a
n
d

m
a
la

lig
n
e
d

c
o
n
d
it
io

n

**
S

ig
n
ifi

c
a
n
t
d
if
fe

re
n
c
e

(p
<0

.0
1
)
b
e
tw

e
e
n

n
o
m

in
a
la

lig
n
m

e
n
t
a
n
d

m
a
la

lig
n
e
d

c
o
n
d
it
io

n
+

S
ig

n
ifi

c
a
n
t
d
if
fe

re
n
c
e

(P
<0

.0
5
)
b
e
tw

e
e
n

P
L

a
n
d

N
P

L
in

th
e

s
a
m

e
c
o
n
d
it
io

n
$

S
ig

n
ifi

c
a
n
t
d
if
fe

re
n
c
e

(P
<0

.0
5
)
b
e
tw

e
e
n

P
L

a
n
d

c
o
n
tr

o
lg

ro
u
p
.
O

n
ly

a
p
p
lic

a
b
le

fo
r
B

e
y
a
e
rt

e
t
a
l.

[1
6
]
a
n
d

G
ru

m
ill

ie
r

e
t
a
l.

[1
5
].

d
o
i:
1
0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
1
6
7
4
6
6
.t
0
0
4

Effect of Alignment Alternations on Amputee’s Gait

PLOS ONE | DOI:10.1371/journal.pone.0167466 December 6, 2016 8 / 18



T
a
b

le
5
.

K
in

e
ti

c
g

a
it

p
a
ra

m
e
te

rs
.

F
ir

s
t

a
u

th
o

r
C

o
h

o
rt

O
u

tc
o

m
e

v
a
ri

a
b

le
V

a
lu

e
n

o
m

in
a
l

a
li

g
n

m
e
n

t

C
o

n
d

it
io

n

M
e
a
n

(S
D

)
M

e
a
n

(S
D

)

O
rt

h
o
c
a
re

In
n
o
v
a
ti
o
n

c
o
h
o
rt

,

2
0
1
2

F
le

x
io

n
E

x
te

n
s
io

n
A

n
te

ri
o
r
tr

a
n
s
la

ti
o
n

P
o
s
te

ri
o
r
tr

a
n
s
la

ti
o
n

K
o
b
a
y
a
s
h
i[

2
7
]

S
a
g

it
ta

l
(-

=
fl

e
x
io

n
)

3
˚

6
˚

3
˚

6
˚

5
m

m
1
0
m

m
5
m

m
1
0
m

m

K
o
b
a
y
a
s
h
i[

2
8
]

M
in

im
u
m

m
o
m

e
n
t:

(N
m

/k
g
)

-0
.1

4
7

(0
.1

1
7
)

-0
.1

0
4

(0
.1

1
6
)*
*

-0
.0

7
7

(0
.1

2
0
)*
*

-0
.1

4
4

(0
.1

1
6
)

-0
.1

5
8

(0
.1

0
6
)

-0
.1

6
3

(0
.1

3
1
)

-0
.1

8
7

(0
.1

3
4
)

-0
.0

9
5

(0
.1

1
2
)*
*

-0
.0

5
9

(0
.1

2
0
)*
*

B
o
o
n
e

[3
0
]

M
o
m

e
n
t
a
t
4
5
%

o
f

s
ta

n
c
e

p
h
a
s
e
:
(N

m
/

k
g
)

0
.2

1
7

(0
.1

4
1
)

0
.1

7
6

(0
.1

7
7
)

0
.1

6
0

(0
.1

8
2
)

0
.3

6
3

(0
.1

2
5
)*
*

0
.3

6
9

(0
.1

2
9
)*

0
.2

2
7

(0
.1

2
9
)

0
.2

0
3

(0
.1

3
6
)

0
.2

5
2

(0
.1

1
8
)

0
.2

8
7

(0
.1

5
2
)

K
o
b
a
y
a
s
h
i[

3
1
]

M
a
x
im

u
m

m
o
m

e
n
t:

(N
m

/k
g
)

0
.7

1
9

(0
.1

7
7
)

0
.7

5
5

(0
.1

5
7
)

0
.7

9
3

(0
.1

4
2
)

0
.6

7
2

(0
.1

8
3
)

0
.6

0
9

(0
.2

2
3
)*
*

0
.6

9
3

(0
.1

5
3
)

0
.6

1
3

(0
.1

5
3
)*
*

0
.7

7
6

(0
.1

5
3
)*

0
.8

2
1

(0
.1

4
9
)*
*

A
b
d
u
c
ti
o
n

A
d
d
u
c
ti
o
n

M
e
d
ia

lt
ra

n
s
la

ti
o
n

L
a
te

ra
lt

ra
n
s
la

ti
o
n

3
˚

6
˚

3
˚

6
˚

5
m

m
1
0
m

m
5
m

m
1
0
m

m

M
in

im
u
m

m
o
m

e
n
t:

(N
m

/k
g
)

-0
.1

5
2

(0
.1

1
2
)

-0
.1

2
8

(0
.1

0
9
)

-0
.1

4
2

(0
.1

1
1
)

-0
.1

3
7

(0
.1

1
4
)

-0
.1

4
2

(0
.1

1
8
)

-0
.1

1
9

(0
.0

9
8
)

-0
.1

3
2

(0
.1

1
7
)

-0
.1

2
2

(0
.1

3
1
)

-0
.1

3
7

(0
.1

3
0
)

M
o
m

e
n
t
a
t
4
5
%

o
f

s
ta

n
c
e

p
h
a
s
e
:
(N

m
/

k
g
)

0
.2

1
7

(0
.1

4
1
)

0
.2

4
8

(0
.1

3
3
)

0
.2

6
9

(0
.1

2
7
)

0
.2

5
5

(0
.1

7
2
)

0
.2

4
9

(0
.1

8
0
)

0
.2

4
4

(0
.1

2
1
)

0
.3

0
4

(0
.2

1
2
)

0
.2

5
0

(0
.1

7
4
)

0
.2

1
7

(0
.1

0
5
)

M
a
x
im

u
m

m
o
m

e
n
t:

(N
m

/k
g
)

0
.7

1
9

(0
.1

7
7
)

0
.7

2
6

(0
.1

6
5
)

0
.7

2
2

(0
.1

6
2
)

0
.7

0
8

(0
.1

7
6
)

0
.7

2
9

(0
.1

7
4
)

0
.7

3
0

(0
.1

5
2
)

0
.7

1
8

(0
.1

3
9

0
.7

2
2

(0
.1

7
5
)

0
.7

3
5

(0
.1

9
4
)

F
le

x
io

n
E

x
te

n
s
io

n
A

n
te

ri
o
r
tr

a
n
s
la

ti
o
n

P
o
s
te

ri
o
r
tr

a
n
s
la

ti
o
n

C
o

ro
n

a
l
p

la
n

e
(-

=

v
a
ru

s
)

3
˚

6
˚

3
˚

6
˚

5
m

m
1
0
m

m
5
m

m
1
0
m

m

M
o
m

e
n
t
a
t
3
0
%

o
f
th

e

s
ta

n
c
e

p
h
a
s
e
:
(N

m
/

k
g
)

-0
.0

7
7

(0
.0

7
8
)

-0
.0

7
3

(0
.0

7
9
)

-0
.0

7
2

(0
.0

7
3
)

-0
.0

3
3

(0
.0

7
5
)*

-0
.0

2
9

(0
.0

7
1
)*

-0
.0

6
7

(0
.0

8
6
)

-0
.0

5
5

(0
.0

7
6
)

-0
.0

6
0

(0
.0

6
7
)

-0
.0

7
2

(0
.0

7
3
)

M
o
m

e
n
t
a
t
7
5
%

o
f
th

e

s
ta

n
c
e

p
h
a
s
e
:
(N

m
/

k
g
)

0
.0

1
3

(0
.0

5
5
)

0
.0

0
1

(0
.0

6
5
)

0
.0

0
3

(0
.0

6
3
)

-0
.0

0
6

(0
.0

6
8
)

-0
.0

1
9

(0
.0

6
3
)

0
.0

1
0

(0
.0

7
6
)

0
.0

0
2

(0
.0

6
1
)

0
.0

1
6

(0
.0

7
5
)

0
.0

2
1

(0
.0

8
8
)

A
b
d
u
c
ti
o
n

A
d
d
u
c
ti
o
n

M
e
d
ia

lt
ra

n
s
la

ti
o
n

L
a
te

ra
lt

ra
n
s
la

ti
o
n

3
˚

6
˚

3
˚

6
˚

5
m

m
1
0
m

m
5
m

m
1
0
m

m

M
o
m

e
n
t
a
t
3
0
%

o
f
th

e

s
ta

n
c
e

p
h
a
s
e
:
(N

m
/

k
g
)

-0
.0

7
7

(0
.0

7
8
)

-0
.0

1
3

(0
.0

7
7
)*
*

-0
.0

1
7

(0
.0

6
6
)*
*

-0
.0

0
6

(0
.0

7
3
)*
*

0
.0

7
4

(0
.0

7
8
)*
*

-0
.0

3
3

(0
.0

8
6
)*
*

0
.0

2
5

(0
.0

6
9
)*
*

-0
.1

0
9

(0
.0

8
2
)*
*

-0
.0

1
6

(0
.0

8
6
)*
*

M
o
m

e
n
t
a
t
7
5
%

o
f
th

e

s
ta

n
c
e

p
h
a
s
e
:
(N

m
/

k
g
)

0
.0

1
3

(0
.0

5
5
)

-0
.0

4
6

(0
.0

9
0
)*

-0
.0

8
9

(0
.1

1
0
)*
*

0
.0

4
9

(0
.0

7
3
)*

0
.1

1
1

(0
.0

8
5
)*
*

0
.0

5
4

(0
.0

6
8
)*

0
.0

9
6

(0
.0

6
0
)*
*

-0
.0

2
3

(0
.0

7
3
)*
*

-0
.0

6
2

(0
.0

8
4
)*
*

F
le

x
io

n
E

x
te

n
s
io

n
A

n
te

ri
o
r
tr

a
n
s
la

ti
o
n

P
o
s
te

ri
o
r
tr

a
n
s
la

ti
o
n

K
o
b
a
y
a
s
h
i[

2
6
]

O
rt

h
o
c
a
re

In
n
o
v
a
ti
o
n

c
o
h
o
rt

,

2
0
1
4

S
a
g

it
ta

l
(-

=
fl

e
x
io

n
)

2
˚

4
˚

6
˚

2
˚

4
˚

6
˚

5
m

m
1
0
m

m
1
5
m

m
5
m

m
1
0
m

m
1
5
m

m

E
x
te

n
s
io

n
m

o
m

e
n
t

im
p
u
ls

e
:
(N

m
�s

/k
g
)

0
.1

6
6

(0
.0

5
1
)

0
.1

7
0

(0
.0

5
5
)

0
.1

7
3

(0
.0

6
2
)

0
.1

8
2

(0
.0

7
5
)

0
.1

6
2

(0
.0

4
8
)

0
.1

6
5

(0
.0

4
8
)

0
.1

6
2

(0
.0

4
5
)

0
.1

4
7

(0
.0

4
1
)*

0
.1

3
3

(0
.0

4
1
)*
*

0
.1

1
7

(0
.0

3
7
)*
*

0
.1

8
6

(0
.0

6
0
)*
*

0
.2

0
3

(0
.0

7
3
)*
*

0
.2

3
7

(0
.0

7
9
)*
*

K
o
b
a
y
a
s
h
i[

3
3
]

F
le

x
io

n
m

o
m

e
n
t

im
p
u
ls

e
:
(N

m
�s

/k
g
)

-0
.0

0
9

(0
.0

1
1
)

-0
.0

0
7

(0
.0

0
8
)

-0
.0

0
7

(0
.0

1
0
)

-0
.0

0
7

(0
.0

1
5
)

-0
.0

0
9

(0
.0

1
1
)

-0
.0

0
9

(0
.0

0
9
)

-0
.0

0
8

(0
.0

0
7
)

-0
.0

1
1

(0
.0

1
0
)

-0
.0

1
5

(0
.0

1
3
)*
*

-0
.0

1
8

(0
.0

1
5
)*
*

-0
.0

0
7

(0
.0

0
9
)

-0
.0

0
5

(0
.0

0
8
)*

-0
.0

0
4

(0
.0

0
7
)*

M
in

im
u
m

m
o
m

e
n
t:

(N
m

/k
g
)

-0
.1

8
0

(0
.1

3
6
)

-0
.1

5
5

(0
.1

4
1
)

-0
.1

4
5

(0
.1

6
6
)

-0
.1

0
7

(0
.1

4
2
)*
*

-0
.2

1
2

(0
.1

3
5
)

-0
.2

1
4

(0
.1

3
4
)

-0
.2

2
6

(0
.1

2
1
)

-0
.2

1
9

(0
.1

3
1
)*
*

-0
.2

4
3

(0
.1

4
4
)*
*

-0
.2

7
4

(0
.1

5
7
)*
*

-0
.1

5
9

(0
.1

4
0
)*

-0
.1

3
8

(0
.1

3
8
)*
*

-0
.1

1
3

(0
.1

3
6
)*
*

M
o
m

e
n
t
a
t
4
5
%

o
f

s
ta

n
c
e

p
h
a
s
e
:
(N

m
/

k
g
)

0
.2

4
5

(0
.1

5
5
)

0
.2

3
1

(0
.1

4
1
)

0
.2

0
2

(0
.1

3
5
)

0
.1

6
3

(0
.1

9
7
)

0
.2

7
7

(0
.1

5
0
)

0
.3

0
6

(0
.1

3
7
)*

0
.3

1
9

(0
.1

0
4
)*

0
.2

4
0

(0
.1

2
0
)

0
.1

8
2

(0
.1

4
5
)

0
.1

5
7

(0
.1

5
0
)*

0
.2

9
8

(0
.1

4
9
)*
*

0
.3

1
8

(0
.1

6
5
)*
*

0
.3

6
3

(0
.1

4
3
)*
*

C
o
n
ti
n
u
e
s

fr
o
m

p
re

v
io

u
s

p
a
g
e

M
a
x
im

u
m

m
o
m

e
n
t:

(N
m

/k
g
)

0
.8

3
0

(0
.0

9
9
)

0
.8

3
7

(0
.1

2
4
)

0
.8

3
8

(0
.1

2
7
)

0
.8

5
0

(0
.1

3
8
)

0
.7

9
9

(0
.1

2
1
)*
*

0
.7

5
0

(0
.1

0
7
)*
*

0
.6

9
8

(0
.1

1
9
)*
*

0
.7

4
2

(0
.1

0
2
)*
*

0
.7

1
2

(0
.0

8
8
)*
*

0
.6

9
4

(0
.0

9
0
)*
*

0
.8

5
5

(0
.1

1
9
)

0
.8

7
7

(0
.1

3
4
)

0
.9

0
5

(0
.1

3
4
)*

A
b
d
u
c
ti
o
n

A
d
d
u
c
ti
o
n

M
e
d
ia

lt
ra

n
s
la

ti
o
n

L
a
te

ra
lt

ra
n
s
la

ti
o
n

(C
o
n
ti
n
u
e
d

)

Effect of Alignment Alternations on Amputee’s Gait

PLOS ONE | DOI:10.1371/journal.pone.0167466 December 6, 2016 9 / 18



T
a
b

le
5
.

(C
o
n
ti
n
u
e
d

)

F
ir

s
t

a
u

th
o

r
C

o
h

o
rt

O
u

tc
o

m
e

v
a
ri

a
b

le
V

a
lu

e
n

o
m

in
a
l

a
li

g
n

m
e
n

t

C
o

n
d

it
io

n

M
e
a
n

(S
D

)
M

e
a
n

(S
D

)

K
o
b
a
y
a
s
h
i[

2
6
]

O
rt

h
o
c
a
re

In
n
o
v
a
ti
o
n

c
o
h
o
rt

,

2
0
1
4

C
o

ro
n

a
l
(-

=
v
a
ru

s
)

2
˚

4
˚

6
˚

2
˚

4
˚

6
˚

5
m

m
1
0
m

m
1
5
m

m
5
m

m
1
0
m

m
1
5
m

m

V
a
lg

u
s

m
o
m

e
n
t

im
p
u
ls

e
:
(N

m
�s

/k
g
)

-0
.0

0
3

(0
.0

0
4
)

0
.0

0
1

(0
.0

0
1
)*

0
(0

)
0

(0
)

0
.0

1
1

(0
.0

0
9
)

0
.0

2
8

(0
.0

1
9
)*
*

0
.0

5
3

(0
.0

2
8
)*
*

0
.0

0
7

(0
.0

0
7
)*

0
.0

1
8

(0
.0

1
4
)*
*

0
.0

3
4

(0
.0

2
2
)*
*

0
.0

0
1

(0
.0

0
2
)*

0
(0

)
0

(0
)

K
o
b
a
y
a
s
h
i[

3
3
]

V
a
ru

s
m

o
m

e
n
t

im
p
u
ls

e
:
(N

m
�s

/k
g
)

-0
.0

2
8

(0
.0

1
7
)

-0
.0

5
8

(0
.0

2
6
)*
*

-0
.0

8
6

(0
.0

2
4
)*
*

-0
.1

1
3

(0
.0

4
2
)*
*

-0
.0

1
1

(0
.0

1
1
)*
*

-0
.0

0
4

(0
.0

0
5
)*
*

-0
.0

0
2

(0
.0

0
4
)*
*

-0
.0

1
5

(0
.0

1
1
)*
*

-0
.0

0
6

(0
.0

0
5
)*
*

-0
.0

0
2

(0
.0

0
2
)*
*

-0
.0

5
3

(0
.0

2
7
)*
*

-0
.0

7
4

(0
.0

2
7
)*
*

-0
.1

0
5

(0
.0

2
6
)*
*

M
o
m

e
n
t
a
t
3
0
%

o
f
th

e

s
ta

n
c
e

p
h
a
s
e
:
(N

m
/

k
g
)

-0
.0

8
1

(0
.0

6
4
)

-0
.1

4
9

(0
.0

7
6
)*
*

-0
.1

9
3

(0
.0

8
7
)*
*

-0
.2

4
6

(0
.1

2
6
)*
*

-0
.0

2
3

(0
.0

5
6
)*
*

0
.0

3
1

(0
.0

5
6
)*
*

0
.0

8
4

(0
.0

6
1
)*
*

-0
.0

4
3

(0
.0

7
5
)*
*

0
.0

0
9

(0
.0

6
5
)*
*

0
.0

5
7

(0
.0

7
1
)*
*

-0
.1

3
0

(0
.0

8
1
)*
*

-0
.1

8
4

(0
.0

9
2
)*
*

-0
.2

2
5

(0
.0

9
3
)*
*

M
o
m

e
n
t
a
t
7
5
%

o
f
th

e

s
ta

n
c
e

p
h
a
s
e
:
(N

m
/

k
g
)

-0
.0

4
6

(0
.0

8
2
)

-0
.1

0
4

(0
.0

8
9
)*
*

-0
.1

4
8

(0
.0

8
8
)*
*

-0
.2

0
8

(0
.0

9
2
)*
*

-0
.0

0
1

(0
.0

8
8
)*
*

0
.0

5
4

(0
.1

0
1
)*
*

0
.1

0
8

(0
.1

1
0
)*
*

-0
.0

1
8

(0
.0

8
0
)*
*

0
.0

2
3

(0
.0

8
8
)*
*

0
.0

6
8

(0
.0

8
5
)*
*

-0
.1

0
1

(0
.0

9
5
)*
*

-0
.1

2
9

(0
.0

9
0
)*
*

-0
.1

8
7

(0
.0

9
1
)*
*

A
b
b
re

v
ia

ti
o
n
s
:
k
g

=
k
ilo

g
ra

m
,
m

m
=

m
ill

im
e
tr

e
,
N

m
/k

g
=

N
e
w

to
n

m
e
tr

e
,
N

/S
=

N
o
t
s
ig

n
ifi

c
a
n
t,

s
=

s
e
c
o
n
d
,
S

D
=

S
ta

n
d
a
rd

D
e
v
ia

ti
o
n

*
S

ig
n
ifi

c
a
n
t
d
if
fe

re
n
c
e

(p
<0

.0
5
)
b
e
tw

e
e
n

n
o
m

in
a
la

lig
n
m

e
n
t
a
n
d

m
a
la

lig
n
e
d

c
o
n
d
it
io

n

**
S

ig
n
ifi

c
a
n
t
d
if
fe

re
n
c
e

(p
<0

.0
1
)
b
e
tw

e
e
n

n
o
m

in
a
la

lig
n
m

e
n
t
a
n
d

m
a
la

lig
n
e
d

c
o
n
d
it
io

n

d
o
i:
1
0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
1
6
7
4
6
6
.t
0
0
5

Effect of Alignment Alternations on Amputee’s Gait

PLOS ONE | DOI:10.1371/journal.pone.0167466 December 6, 2016 10 / 18



nominal alignment by 3˚/6˚ flexion/extension/abduction/adduction and 5mm/10mm ante-

rior/posterior/medial/lateral translation. These changes are consistent with the adjustments

applied on the OI 2014 cohort: 2˚/4˚/6˚ flexion/ extension/abduction/adduction and 5mm/

10mm/15mm anterior/posterior/medial/lateral translation. Larger adjustments have been

investigated by Pinzur et al. with a change of the nominal alignment by 10˚ flexion/extension/

abduction and adduction of the socket relative to foot [29].

Schmalz et al. applied all alignment changes in the sagittal plane. They changed the foot rel-

ative to the socket by: 2cm anterior and posterior translation and 10˚ dorsiflexion and plantar

flexion of the foot [32].

With the exception of Schmalz et al. [32], all the studies used a self-selected walking speed

for the reported outcome measurements [23–31,33]. This single study of Schmalz et al. per-

formed measurements at two pre-set speeds: a walking speed of 4.0 km/h for five minutes

directly followed by 4.8 km/h for five minutes [32].

Spatiotemporal gait parameters

The extracted spatiotemporal gait parameter data from the included studies are shown in

Table 3. Three studies [23–25] included the influence of the transverse plane adjustments by

rotating the foot relative to the socket. These studies also compared the PL to the NPL in differ-

ent alignment conditions.

Transverse plane. The studies of the CRLP cohort [23,24] reported a significant longer

single support phase and a higher percentage of the stance phase during the gait cycle at the

NPL compared to all three PL conditions: nominal alignment, 6˚ internal rotation and 6˚

external rotation. Moreover, Fridman et al. reported a significantly larger step length for all

three conditions of the PL (nominal alignment, +18˚ and +36˚ external rotation), compared to

the NPL [25].

Fridman et al. demonstrated a significant decrease of leg symmetry between PL and NPL at

+36˚ condition, for stance time, swing time and step length, compared to the nominal alignment

condition. The PL stance time was significantly shorter than the stance time on the NPL and the

PL swing time was significantly longer compared to the NPL. An increase in external rotation

resulted in a significant decreased step length for both the PL and NPL. No significant differences

have been found in spatiotemporal gait parameters in the +18˚ external rotation condition [25].

Additionally, both studies of the CRLP cohort included the effect of internal rotation and

reported a significant decrease in single limb support phase of the PL, compared to the nomi-

nal alignment [23,24].

Sagittal plane. Seven studies [26–29,31–33] investigated the influence of sagittal plane

adjustments on the spatiotemporal gait parameters. One study [32] investigated the influence

on velocity and step length after sagittal plane adjustments and reported no significant change

in any alignment condition compared to the nominal alignment. Pinzur et al. also did not

report a significant difference compared to the nominal alignment when evaluating the stance

phase time [29]. Both OI 2012 cohort studies [27,31] investigated cadence and reported a sig-

nificant decrease after 3˚/6˚ extension and 6˚ of flexion, compared to the nominal alignment.

Furthermore, a significant positive correlation of the maximum sagittal ESRM to cadence was

reported, where an increased cadence induced an increased ESRM [28].

Coronal plane. Six studies investigated the influence of coronal plane adjustments on the

spatiotemporal gait parameters [26–29,31,33]. Pinzur et al. [29] and the OI 2014 cohort studies

[26,33] did not report a significant change of the spatiotemporal gait parameters after align-

ment perturbation, compared to the nominal alignment. This is in contrast to three studies

using the OI 2012 cohort, where two [28,31] reported a significant reduction in cadence at an
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alignment of 3˚ adduction, compared to the nominal alignment. The remaining study [27]

from the OI 2012 cohort reported an earlier occurrence of the maximum varus/valgus ESRM

during stance phase after the alignment changes of 3˚/6˚ adduction and 10mm medial transla-

tion, compared to all other alignment conditions.

Kinematic gait parameters

All kinematic gait data extracted from the included studies are shown in Table 4. Three studies

[23–25] included kinematic gait parameters in their research and made adjustments in the trans-

verse plane by rotating the foot relative to the socket. The studies using the CRLP cohort mea-

sured a significant change in the foot progression angle, more externally orientated at external

rotation condition and more internally orientated at internal rotation condition [23,24]. In con-

trast, Fridman et al. did not include internal rotation however, they adjusted the nominal foot

alignment to an extra 18˚ and 36˚ external rotation, which resulted in a smaller external rotation

than the expected sum [25]. Consequently, the difference of the external foot rotation between

PL and NPL increased significantly in both conditions compared to nominal alignment.

A single study included knee kinematics and reported a significant decrease of the maximal

knee flexion angle at the PL during internal rotation condition compared to both the nominal

alignment and the control group. The maximal knee flexion of the NPL was significantly

higher at the internal rotation condition, compared to the nominal alignment, PL and control

group [24].

The hip kinematics after alignment adjustments was investigated in Grumillier et al. At the

PL the sagittal range of motion (ROM) during 0–8% of the gait cycle appeared significantly

more extension-orientated regardless of the alignment condition, compared to the control

group. During this initial gait cycle phase (0–8%) the NPL hip was significantly more flexion-

orientated, compared to the control group and the PL conditions in the TTA group. Internal

rotation of the foot resulted in a significantly more flexion-orientated NPL ROM at 0–8% of

the gait cycle compared to the ROM of the NPL during nominal alignment. The same study

investigated the hip ROM during 8–30% of the gait cycle and concluded a significantly

increased extension-orientated ROM at all three conditions of the NPL, compared to all PL

conditions and the control group [23].

Grumillier et al. also investigated the occurrence of maximal hip flexion during the gait

cycle. The maximal hip flexion at the PL occurred before initial contact of the PL and that of

the NPL after initial contact of the NPL. Additionally, a significant increase of the maximal

knee flexion at the NPL was observed at internal rotation-condition, compared to the nominal

alignment and the control group [23].

Kinetic gait parameters

The kinetic gait data extracted from the included studies is shown in Table 5. A total of six

studies included kinetic data, divided into two cohorts: the OI 2012 and OI 2014 cohort.

Of the six studies, five studies (concerning two cohorts) reported the influence of an align-

ment adjustment in a given plane on the kinetics in that same plane (e.g. the influence of sagit-

tal alignment adjustments on sagittal kinetics) [26–28,30,33]. Kobayashi et al. [27] and

Kobayashi et al. [28] both focus on a graphical interpretation of the OI 2012 cohort whereas

Boone et al. investigated the quantitative interpretation of the same cohort [30]. Therefore this

review’s kinetic section will focus on three studies: one of the OI 2012 cohort [30] and two of

the OI 2014 cohort [26,33].

Only one study investigated [31] the out-of-plane socket ESRM’s, the influence of sagittal

alignment on the coronal plane and vice versa.
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Sagittal plane. Two studies [30,31] of the OI 2012 cohort and one study [26] of the OI

2014 cohort investigated three parameters in the sagittal plane: the maximal and minimal

ESRM and ESRM at 45% of stance phase. The other study of the OI 2014 cohort investigated

the sagittal ESRM’s impulse [33].

A significant reduction of the minimal sagittal ESRM has been reported in the OI 2012

cohort after an adjustment by: 3˚ flexion, 6˚ flexion and 5mm and 10mm posterior translation,

compared to nominal alignment. Similarly, a significant reduction of the minimal sagittal

moment after alignment perturbations of 6˚ flexion and 5/10/15mm posterior translations,

compared to the nominal alignment was reported by Kobayashi et al. [26] (OI 2014 cohort).

Additionally, Kobayashi et al. reported an increase of the sagittal minimum ESRM after 5mm/

10mm/15mm anterior translation [26].

A significant decrease of the maximal sagittal ESRM (OI 2012 cohort) has been reported

after 6˚ extension and 10 mm anterior translation [30]. Similarly, a 2˚/4˚/6˚ extension as well

as a 5/10/15mm anterior translation induced the same results for Kobayashi et al. [26] (2014

cohort). The latter also reported a larger maximal sagittal ESRM after an alignment perturba-

tion of 15mm posterior translation, whereas two earlier studies on the OI 2012 cohort had

reported the same results following a smaller (5mm/10mm) posterior translation.

A significantly more extension-orientated ESRM at 45% of the gait has been reported on

the OI 2012 cohort by Boone et al., after an alignment perturbation of 3˚ and 6˚ extension

[30]. Likewise, Kobayashi et al. (OI 2014 cohort) reported the same for five alignment pertur-

bations: 4˚/6˚ extension and 5mm/10mm/15mm posterior translation [26].

Coronal plane. Three studies reported the coronal ESRM, two [30,31] investigating the OI

2012 cohort and one [26] investigating the OI 2014 cohort. In both cohorts each coronal align-

ment perturbations induced a significant change of the coronal ESRM at 30% and 75% of the

stance phase. One of the studies on the OI 2014 cohort [33] investigated the ESRM impulse, mea-

sured in the coronal plane.

At 30% of the gait the ESRM was significantly more varus-orientated after abduction and

lateral translation changes for both cohorts. The ESRM was significantly less varus-orientated

after 3˚ adduction and 5mm medial translation in the OI 2012 cohort and after 2˚ adduction

and 5mm medial translation in the OI 2014 cohort. A sign change is reported on both cohorts

after alignment perturbations greater than 3˚ adduction and 5mm translation, respectively

from varus- to a valgus-orientated ESRM [26,30].

At 75% of the gait the ESRM at the nominal alignment was valgus-orientated for the OI

2012 cohort and all perturbations by adduction and medial translations induced a significantly

larger valgus moment. Additionally, a significant change from valgus to varus was reported at

75% of the gait after all abduction and lateral translation perturbations [30]. With respect to

the OI 2014 cohort [26], a varus-orientated ESRM was reported at nominal alignment, where

2˚ adduction and 5mm medial translation produced a significantly smaller varus ESRM.

Larger perturbations in adduction and medial translation resulted in a significant change from

varus to valgus. Moreover, significantly larger varus moments were reported after all abduc-

tions and lateral translations.

Only Kobayashi et al. (2014 cohort) investigated the ESRM impulses, separated into valgus

impulse (0–30% of stance phase) and the varus impulse (30–100% of stance phase) [33]. Only

seven coronal perturbations, 2˚abduction, 4˚/6˚ adduction, 5mm lateral translation and 5mm/

10mm/15mm medial translation, influenced the valgus ESRM impulse during gait. All 12 cor-

onal alignment perturbations produced a significant change in the varus ESRM impulse[33].

Furthermore, Kobayashi et al. [31] investigated the influence of sagittal alignment changes

on the coronal ESRM was studied. A significant reduction of the ESRM at 30%, after sagittal

perturbations of 3˚ and 6˚ extension, was found.
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Discussion

In this review, the effects of alignment changes in coronal/sagittal and transverse direction

have been assessed. Changes in the transverse plane demonstrated a clear effect on foot pro-

gression angle and internal hip rotation angle. Coronal and sagittal plane adjustments showed

an important influence on external socket reaction moments and impulses. A remarkable

result from this review is the observation that a predetermined alignment change did not result

in a predictable kinematic or spatiotemporal change.

This systematic review’s results report no considerable changes in kinematic and spatio-

temporal gait data after alignment changes. These observations suggest that patients with a

TTA appear to minimize the effect of alignment changes by kinetic adaptions. For example, a

rotation change of the prosthetic foot in the transverse plane does not result in a predictable

change of the foot progression angle during gait [23–25]. It appears that TTA patients com-

pensate for the latter alignment changes by additional internal hip rotation. While at first the

alignment is satisfactory for both the prosthetist and amputee, since optical gait observation

suggests a correct alignment, it may induce stump problems later on during more extended

walking periods [9,22]. In order to produce consistent spatio-temporal and kinematic gait

parameters adjustments are required in the TTA’s kinetic parameters. This is supported by

this review, since alignment alternations result in a predictable change in kinetic data, reported

as ESRM’s.

Interestingly, kinetic parameters are also subjected to compensatory mechanisms. A consider-

able alignment change of 4˚/6˚ abduction and 10/15mm lateral translation in the OI 2014 cohort

did not produce a significant change in the ESRM impulse, compared to nominal alignment

[33]. However, consistent significant changes are reported for ESRM parameters after smaller

alignment changes in the same study. Additional muscular forces may have been induced to

change kinetic force patterns on the lower limbs to obtain a more comfortable magnitude.

It is not known what an ideal moment and impulse should be in each phase of the gait.

The OI 2012 and OI 2014 cohort studies describe the nominal alignment as a standardized

position and determine a perturbations’ influence significance by a subjective starting point. It

could be expected that the timings of ESRM measurement be in the same order of timing as

the moments working in the same plane on the knee joint. However, the magnitude of the

moments will differ at the knee joint compared to the base of the socket. Whereas the magni-

tude of the ground reaction force is the same, the distance for the calculated moment around

the base of the socket is likely different from the distance to the knee joint centre.

The ESRM is influenced differently by angulations and translations. In the included studies,

angulations changes have a slightly bigger influence on ESRM compared to translations. This

may be expected where an angulation in the coronal plane is producing both a translation and

a foot eversion (or inversion) and a sagittal angulation will induce a translation and a foot

plantar flexion (or dorsiflexion). Therefore, it may be interesting to investigate the changes

separately or present the flexion/extension and abduction/adduction data as the change of foot

position relative to the socket. Study data should be consistently presented to allow compari-

son of studies in meta-analysis and consensus evaluations, which would help to improve the

analysis of an optimal alignment approach.

Although most studies examined the effect of alignment changes in a given plane on kine-

matics and kinetics in the same plane, one study focused on out-of-plane effects. Kobayashi

et al. reported an effect of sagittal alignment angulation on coronal kinetic data and vice-versa

[31] The findings may have important implications for the clinical alignment process. These

results imply that it is preferable to start the alignment process with transverse plane adjust-

ments, influencing sagittal and coronal parameters, followed by sagittal adjustments and
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ending with coronal adjustments [31]. However, since only one study to date has reported

out-of-plane adjustments, further research is required to evaluate these effects in detail.

At present, there is no golden standard to achieve an optimal prosthetic alignment, since

alignment is performed on an individual basis, where the end-point resulting in a perfect fit is

unknown. An indication of a correct prosthetic alignment may be provided by an increase in

symmetry between the PL and NPL. However, increasing gait symmetry for TTA does not nec-

essarily result in an improvement of gait [4]. Moreover, asymmetry may even be a prerequisite

to achieve gait stability during ambulation [1]. Reported studies question if current prosthetic

alignment approaches are the correct method to optimize prosthetic alignment, since the current

approaches are based on achieving symmetry in spatiotemporal and kinematic gait data [35,36].

A limitation of prosthetic alignment research is that gait deviation can be related to pros-

thetic socket-fit as well as to prosthetic alignment. Ideally, the socket-stump interface is as stiff

a coupling as the normal abled-bodied leg. This is not the case, as such, movement inside a

socket will result in unwanted error at alignment measurements through the resulting stump

volume change, improper use of stump socks or an insufficient prosthetic fit. It is especially

interesting regarding this review, and for future alignment studies, to find a way to quantify

both alignment and prosthetic fit. Moreover, socket fit and alignment are potentially inter-

linked, where alignment could provide an approach to solve socket-fit mismatches.

Several interesting results are seen in the critical appraisal results (Table 2). Most of the

appraised studies did not adequately describe the patient population, of which only one pro-

vided a clear description of the study sample. It is therefore advised to expand the methodology

sections to properly describe the study’s in- and exclusion criteria and to include a detailed

baseline table in original research articles. Which should include items such as: age, weight,

height, gender, level of amputation, residual limb length, reason for amputation, activity level

of the amputee, time since onset and stump condition. Additionally, an improvement on con-

trolled interventions is desirable with a minimum of variables influencing the outcome mea-

surements. For example, a considerable amount of research is executed on different prosthetic

components, e.g. prosthetic feet, shoes, socket fittings. It is highly recommended that pros-

thetic research aims towards an overall improvement of the methodology in addition to the

use of quantifiable outcome measurements.

One limitation of this systematic review is potentially having missed relevant literature

on the chosen subject and might be subjected to selection bias through the exclusion of

articles other than the English language. Although a reference check did not result in new

studies, the possibility of having missed relevant literature cannot be excluded. Another lim-

itation is the lack of published standardized critical appraisal available for the chosen sub-

ject. A validated scoring system would have helped to better identify methodologically

sound, or potentially less strong, data. However, an adjusted critical appraisal in addition

with the validated COSMIN checklist led to a clear view on the methodological quality of

the included articles.

The results described in this review highlight that alignment changes have a consistent

influence on the kinetic parameters: ESRM and ESRM impulse. However, individuals may

respond differently towards alignment adjustments [28]. The results suggest that an acceptable

range, instead of an exact value, may be established as an ideal alignment criteria, where the

range can be varied depending on the function and perception of the individual. [27]

Conclusion

Prosthetic alignment changes have no consistent influence on spatio-temporal and kinematic

gait data. This is in contrast to kinetic parameters that show significant clinical relevant
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changes after alignment adjustments. It is highly recommended that prosthetic research should

aim towards an overall improvement of the study design. The findings from this review suggest

that it is imperative to include kinetics in the process of dynamic prosthetic alignment. While

current literature is not conclusive about an optimal alignment, future alignment research

should focus on alignment optimization based on kinetic outcomes.

Supporting Information

S1 Checklist. PRISMA 2009 Checklist.

(DOC)

S1 Appraisal. Critical Appraisal.

(DOCX)

Acknowledgments

The authors acknowledge support of Ms Grada Emerentia Wensink, MD, for her editorial

support.

Author Contributions

Conceptualization: NJ MP AB PvdW.

Formal analysis: NJ PvdW.

Investigation: NJ PvdW.

Methodology: NJ MP AB PvdW.

Project administration: NJ.

Resources: NJ PvdW.

Validation: NJ MP AB PvdW.

Visualization: NJ MP PvdW.

Writing – original draft: NJ.

Writing – review & editing: NJ MP AB PvdW.

References
1. Hak L, van Diee JH, van der Wurff P, Houdijk H. Stepping asymmetry among individuals with unilateral

transtibial limb loss might be functional in terms of gait stability. Phys Ther. 2014; 94(10):1480–8. doi:

10.2522/ptj.20130431 PMID: 24903115

2. Major MJ, Howard D, Jones R, Twiste M. The effects of transverse rotation angle on compression and

effective lever arm of prosthetic feet during simulated stance. Prosthet Orthot Int [Internet]. 2012 Jun

[cited 2015 Jan 7]; 36(2):231–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22389423 doi:

10.1177/0309364611435996 PMID: 22389423

3. Boone DA. Invesitagtion of socket reactions from transtibial prosthesis malalignment. The Hong Kong

Polythechnic University; 2005.

4. Winter D, Sienko S. Biomechanics of below-knee amputee gait. J Biomech. 1988; 21(5):361–367.

PMID: 3417688

5. Isakov E, Keren O, Benjuya N. Trans-tibial amputee gait: Time-distance parameters and EMG activity.

Prosthet Orthot Int [Internet]. 2000 Jan; 24(3):216–20. PMID: 11195356

6. Rossi S, Doyle W, Skinner H. Gait initiation of persons with below-knee amputation: The characteriza-

tion and comparison of force profiles. J Rehabil Res Dev. 1995; 32(2):120–7. PMID: 7562651

Effect of Alignment Alternations on Amputee’s Gait

PLOS ONE | DOI:10.1371/journal.pone.0167466 December 6, 2016 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167466.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167466.s002
http://dx.doi.org/10.2522/ptj.20130431
http://www.ncbi.nlm.nih.gov/pubmed/24903115
http://www.ncbi.nlm.nih.gov/pubmed/22389423
http://dx.doi.org/10.1177/0309364611435996
http://www.ncbi.nlm.nih.gov/pubmed/22389423
http://www.ncbi.nlm.nih.gov/pubmed/3417688
http://www.ncbi.nlm.nih.gov/pubmed/11195356
http://www.ncbi.nlm.nih.gov/pubmed/7562651


7. Sadeghi H, Allard P, Duhaime M. Muscle power compensatory mechanisms in below-knee amputee

gait. Am J Phys Med Rehabil. 2001; 80:25–32. PMID: 11138951

8. Sanderson DJ, Martin PE. Lower extremity kinematic and kinetic adaptations in unilateral below-knee

amputees during walking. Gait Posture [Internet]. 1997 Oct; 6(2):126–36. Available from: http://

linkinghub.elsevier.com/retrieve/pii/S0966636297011120

9. Isakov E, Mizrahi J, Susak Z, Ona I, Hakim N. Influence of prosthesis alignment on the standing balance

of below-knee amputees. Clin Biomech. 1994; 9:258–62.

10. Tokuno CD, Sanderson DJ, Inglis JT, Chua R. Postural and movement adaptations by individuals with

a unilateral below-knee amputation during gait initiation. Gait Posture [Internet]. 2003 Dec [cited 2015

Jan 11]; 18(3):158–69. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0966636203000043

PMID: 14667949

11. Zahedi M, Spence W, Solomonidis S, Paul J. Alignment of lower-limb prostheses. J Rehabil Res. 1986;

23(8):2–19.

12. van der Linde H, Hofstad CJ, Geurts ACH, Postema K, Geertzen JHB, van Limbeek J. A systematic lit-

erature review of the effect of different prosthetic components on human functioning with a lower-limb

prosthesis. J Rehabil Res Dev. 2004; 41(4):555–70. PMID: 15558384

13. van Tulder MW, Assendelft WJ, Koes BW, Bouter LM. Method guidelines for systematic reviews in the

Cochrane collaboration back review group for spinal disorders. Spine (Phila Pa 1976). 1997; 22

(20):2323–30.

14. Verhagen AP, de Vet HC, de Bie RA, Kessels AG, Boers M, Bouter LM, et al. The Delphi list: a criteria

list for quality assessment of randomized clinical trials for conducting systematic reviews developed by

Delphi consensus. J Clin Epidemiol. 1998; 51(12):1235–41. PMID: 10086815

15. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN checklist for

assessing the methodological quality of studies on measurement properties of health status measure-

ment instruments: An international Delphi study. Qual Life Res. 2010; 19(4):539–49. doi: 10.1007/

s11136-010-9606-8 PMID: 20169472

16. Bartels B, de Groot JF, Terwee CB. The six-minute walk test in chronic pediatric conditions: A system-

atic review of measurement properties. Phys Ther [Internet]. 2013; 93(4):529–41. Available from: http://

www.scopus.com/inward/record.url?eid=2-s2.0-84875790049&partnerID=40&md5=

37dd8d9e497707459ca9f5a8951c54a4 doi: 10.2522/ptj.20120210 PMID: 23162042

17. Kolarova B, Janura M, Svoboda Z, Elfmark M. Limits of stability in persons with transtibial amputation

with respect to prosthetic alignment alterations. Arch Phys Med Rehabil [Internet]. Elsevier; 2013 Nov

[cited 2014 Oct 27]; 94(11):2234–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23774381

doi: 10.1016/j.apmr.2013.05.019 PMID: 23774381

18. Andres RO, Stimmel SK. Prosthetic alignment effects on gait symmetry: A case study. Clin Biomech.

1990; 5(2):88–96.

19. Kobayashi T, Orendurff MS, Boone DA. Dynamic alignment of transtibial prostheses through visualiza-

tion of socket reaction moments. Prosthet Orthot Int [Internet]. 2014 Aug 13 [cited 2014 Oct 26];

Online:1–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25121726

20. Chow DH., Holmes AD, Lee CKL, Sin SW. The effect of prosthesis alignment on the symmetry of gait in

subjects with unilateral transtibial amputation. Prosthet Orthot Int [Internet]. 2006 Aug [cited 2014 Oct

26]; 30(2):114–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16990222 doi: 10.1080/

03093640600568617 PMID: 16990222

21. Fiedler G, Slavens B., O’Connor KM, Smith RO, Hafner BJ. Effects of physical exertion on trans-tibial

prosthesis users’ ability to accommodate alignment perturbations. Prosthet Orthot Int [Internet]. 2014

Aug 19 [cited 2014 Oct 26];Online:1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25138114

22. Jia X, Wang R, Zhang M, Li X. Influence of prosthetic sagittal alignment on trans-tibial amputee gait and

compensating pattern: A case study. Tsinghua Sci Technol [Internet]. 2008 Oct; 13(5):581–6. Available

from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6074170
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