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Abstract 
Although most pituitary neuroendocrine tumors (PitNETs)/pituitary adenomas remain intrasellar, a significant proportion of tumors show 
parasellar invasive growth and 6% to 8% infiltrate the bone structures, thus affecting the prognosis. There is an unmet need to identify novel 
markers that can predict the parasellar growth of PitNETs. Furthermore, mechanisms that regulate bone invasiveness of PitNETs and factors 
related to tumor vascularization are largely unknown.

We used genome-wide mRNA analysis in a cohort of 77 patients with PitNETs of different types to explore the differences in gene expression 
patterns between invasive and noninvasive tumors with respect to the parasellar growth and regarding the rare phenomenon of bone 
invasiveness. Additionally, we studied the genes correlated to the contrast enhancement quotient, a novel radiological parameter of tumor 
vascularization.

Most of the genes differentially expressed related to the parasellar growth were genes involved in tumor invasiveness. Differentially expressed 
genes associated with bone invasiveness are involved in NF-κB pathway and antitumoral immune response. Lack of clear clustering regarding the 
parasellar and bone invasiveness may be explained by the influence of the cell lineage-related genes in this heterogeneous cohort of PitNETs.

Our transcriptomics analysis revealed differences in the molecular fingerprints between invasive, including bone invasive, and noninvasive 
PitNETs, although without clear clustering. The contrast enhancement quotient emerged as a radiological parameter of tumor vascularization, 
correlating with several angiogenesis-related genes. Several of the top genes related to the PitNET invasiveness and vascularization have 
potential prognostic and therapeutic application requiring further research.
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Pituitary neuroendocrine tumors (PitNETs), traditionally 
termed pituitary adenomas, constitute more than 15% of all 
surgically resected intracranial neoplasms [1], with a preva-
lence of more than 90 clinically diagnosed tumors per 
100 000 [2]. The PitNETs are currently classified based on 
the pituitary cell lineages determined by immunohistochemical 
expression of adenohypophysial hormones and pituitary-specific 
transcription factors [3]. PitNETs can behave as nonfunctioning, 
ie, silent tumors, or functioning, manifesting clinically due to in-
creased hormone levels in the blood. The designation pituitary 
adenoma implicates a benign clinical course, which characterizes 

most PitNETs. However, PitNETs may have a highly variable 
impact on health due to an expansion of intracranial tumor 
mass, hormonal hypersecretion, or adenohypophysial failure. 
Nonfunctioning PitNETs, in general, are larger and more inva-
sive than the functioning ones [4].

Although the majority of tumors remain intrasellar, be-
tween approximately 20% and 40% of surgically resected tu-
mors show local invasive growth [5], and up to 15% are 
designated as “giant adenomas” with a maximum diameter 
≥40 mm [6]. A small subset of patients, probably 0.3% to 
2% of the surgically treated patients [7, 8], have aggressive 
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tumors, as defined by the European Society of Endocrinology 
guidelines for management of aggressive and malignant pitu-
itary tumors [9]. The terms aggressive and invasive should not 
be used interchangeably, as aggressive PitNETs, in addition to 
signs of invasiveness, show unusually rapid tumor growth 
and/or fail to respond to standard surgical, radio-, and/or 
pharmacological therapy. Metastatic PitNETs or pituitary 
carcinomas constitute 0.1% to 0.6% [3, 10] of the surgically 
resected anterior pituitary neoplasms. They are defined solely 
based on metastatic spread within or outside the central ner-
vous system [3].

Invasiveness of PitNETs has mainly been evaluated by as-
sessing the parasellar growth and the tumor’s relation to the 
anatomical structures in the cavernous sinus (CS) [11], as 
the CS ingrowth is a considerable limiting factor for complete-
ness of surgery [12]. Biopsy of the medial wall of the CS with a 
histopathological examination is considered the gold standard 
for assessment of invasiveness, but biopsies cannot be routine-
ly performed due to the high risk of complications [13]. 
Therefore, a widely accepted preoperative method for the as-
sessment of tumor invasion is based on the radiological ap-
pearance of the tumor. The Knosp grading system, based on 
magnetic resonance imaging (MRI), is used to indirectly assess 
the parasellar tumor growth and the tumor’s relation to the in-
trasinusoidal part of the internal carotid artery [11]. The 
Knosp grading system defines 5 grades of parasellar growth 
(0-4), with tumor grades 3 and 4 considered invasive. The in-
traoperative endoscopic technique allows for direct visualiza-
tion with a panoramic view of the integrity of the medial wall 
of the CS and thus is highly accurate and superior to MRI in 
terms of assessment of PitNET invasiveness. Hence, the 
Knosp grading system has been reevaluated by intraoperative 
endoscopy, revealing a pronounced heterogeneity within 
grade 3 tumors and justifying the subdivision of Knosp grade 
3 into 3A (invasion of the superior CS compartments) and 3B 
(invasion of the inferior CS compartments) [13]. Although 
this subdivision allows for a more reliable preoperative as-
sessment of invasiveness, with grade 3B tumors showing a 
higher fraction of invasive tumors compared to 3A tumors 
(70.6% vs 26.5%, respectively) [13], there is still a need 
for improved precision for prognostic stratification of pa-
tients. So far, no agreement has been reached regarding 
what radiological criteria should be used for undoubtful 
proof of invasiveness [12].

Approximately 6% to 8% of all PitNETs infiltrate the bone 
structures [14], and only a few scientific reports address this 
phenomenon [14, 15]. Bone invasion is not incorporated 
into the preoperative radiological grading systems for tumor 
invasiveness. Hence, the prognostic significance of bone inva-
sion is unclear. Molecular mechanisms underlying the bone 
invasiveness of PitNETs are also largely unknown.

Angiogenesis, the formation of new blood vessels, is crucial 
for tumor development and metastasis [16]. Unlike most solid 
tumors, PitNETs are less vascularized compared to normal pi-
tuitary tissue. Even invasive, aggressive, or malignant PitNETs 
do not demonstrate a significant increase in vascularity, with 
the exception of some rare secondary deposits of metastatic 
PitNETs [16]. The genetic background of low vascular density 
in PitNETs is unclear.

Transcriptome profiling based on massive parallel sequen-
cing of mRNA is used to define specific gene expression signa-
tures and has successfully been exploited by the Human 

Protein Atlas (www.proteinatlas.org) to map expression pat-
terns in human cells and normal and tumor tissues [17].

Recent transcriptomics studies using genome-wide mRNA 
sequencing have demonstrated that the overall gene expression 
pattern in PitNETs is aligned with the current PitNET classifi-
cation [18-23]. Studies with particular emphasis on identifying 
transcriptomic signatures underlying invasive PitNETs have 
been conducted in recent years, revealing genes involved in di-
verse signaling pathways [20, 24-27]. However, results are not 
always concordant, and the complex genetic and transcriptom-
ic landscape of PitNETs showing different growth patterns and 
grades of invasiveness has not yet been fully characterized. 
There is, thus, an urgent and unmet need to identify novel 
markers that can predict invasive growth of PitNETs.

In the present study, we extended our well-characterized co-
hort of 51 PitNETs of different histological and secretory 
types with an additional 26 cases to obtain a higher proportion 
of invasive (Knosp grades 3 and 4) tumors. Genome-wide 
mRNA analysis was applied to investigate the differences in 
gene expression between invasive and noninvasive PitNETs. 
Comparisons were based on the traditionally accepted criterion 
of parasellar invasiveness and also on a criterion of bone inva-
siveness. We also aimed to explore the expression of genes that 
correlated with the contrast enhancement quotient, a param-
eter of tumor vascularization.

Material and Methods
Study Cohort and Tissue Samples
We extended our previously reported cohort of 51 well- 
characterized PitNETs [19] to include a comparable number 
of invasive (Knosp 3 and 4) and noninvasive (Knosp 0, 1, 
and 2) tumors. In brief, PitNET tissue samples were obtained 
from 77 adult patients who underwent transsphenoidal sur-
gery at Uppsala University Hospital between 2014 and 
2021. Fresh tumor tissue samples from all patients were frozen 
in liquid nitrogen, stored at −80 °C, and used for RNA extrac-
tion. The remaining tumor tissue was formalin fixed, paraffin 
embedded, and used for routine diagnostics. Tumors were clas-
sified clinically, based on the endocrine symptoms and the 
laboratory hormone tests. Histopathological classification 
was based on the immunohistochemical expression of anterior 
pituitary hormones and pituitary-specific transcription factors 
according to the current World Health Organization classifica-
tion of pituitary tumors [3]: FSH (Agilent cat. no. M3504, 
RRID:AB_2079146), LH (Agilent cat. no. M3502, RRID: 
AB_2135325), TSH (Leica Biosystems cat. no. NCL-TSH-R2, 
RRID:AB_564033), ACTH (Agilent cat. no. M3501, RRID:AB_ 
2166039), GH (Agilent cat. no. A0570, RRID:AB_2617170), 
prolactin (Agilent cat. no. A0569, RRID:AB_2893308), alpha- 
subunit of the glycoprotein hormones (Thermo Fisher Scientific 
cat. no. MA1-25038, RRID:AB_779817), pituitary-specific 
positive transcription factor 1 (Novus cat. no. NBP1-92273, 
RRID:AB_11030310), steroidogenic factor 1 (Abcam cat. 
no. ab217317, RRID:AB_2920891), and pituitary-restricted 
transcription factor (Atlas Antibodies cat. no. AMAb91409, 
RRID:AB_2716678). Distribution of the clinical and histo-
logical tumor types in the study cohort is presented in Table 1.

The Swedish Ethical Review Authority approved the study 
protocol (Dnr 2018/053).

Fresh frozen PitNETs tissue samples were partly obtained 
through the U-CAN project (www.u-can.uu.se) [28].
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Radiological Evaluation
Pituitary MRI, taken on the last examination before the first 
surgery, was reviewed for all the patients. The following var-
iables were evaluated: tumor size and volume, parasellar and 
bone invasion, as well as the contrast enhancement quotient 
(CEQ). Tumor size, volume, and the degree of parasellar inva-
sion were assessed using the same criteria as in our previous 
project [19]. Briefly, the tumor size was measured in 3 orthog-
onal directions (height, width, and depth) on T1 weighted im-
ages after contrast medium administration; tumor volume was 
calculated as follows: volume = (width × height × depth)/2. 
Modified Knosp classification [13] was used to evaluate the 
degree of parasellar invasiveness in grades 0 to 4. Tumors 
were considered bone-invasive if they showed MRI signs of in-
filtration into the clivus, posterior clinoid process, or sphenoid 
floor.

To compare the differentially expressed genes with respect 
to tumor invasiveness, 2 ways for grouping the tumors were 
applied: (1) Knosp grades 0 to 2 tumors considered as non-
invasive (NI-PitNETs) vs Knosp grade 4 tumors considered 
as invasive (I-PitNETs), irrespective of their bone-invasiveness 
status; Knosp grade 3 cases were excluded to achieve a clear 
separation between the invasive and noninvasive tumors; 
and (2) bone invasive (bone-I-PitNETs) vs bone noninvasive 
(bone-NI-PitNETs) tumors, irrespective of the invasiveness 
into the cavernous sinus, in the entire cohort of 77 patients.

The contrast enhancement quotient was used to quantify 
the upload of contrast, which reflects the tumor vasculariza-
tion and also the permeability across the vessel wall. As the 

MRI signal cannot be compared between patients and differ-
ent sequence types, a ratio between the signal without contrast 
and the signal in the same area after contrast administration 
was calculated. This ratio, ie, contrast enhancement quotient, 
was considered a proxy for the degree of tumor vasculariza-
tion. To explore genes with a significant correlation with the 
CEQ, a Spearman correlation analysis was performed.

Overview of the PitNET cohort, including all radiological 
parameters, is provided in Supplementary Table S1 [29].

Transcriptomics
The transcriptomic profiling was based on the Human Protein 
Atlas pipeline, and data analysis was performed using strat-
egies previously described [17].

Hematoxylin–eosin stained cryosections confirmed that all 
specimens from the extended cohort contained representative 
tumor tissue. Total RNA from the 26 new cases was extracted 
according to the same protocol that was used for the primary 
cohort [19]. In short, 10 micrometers thick sections were cut 
from the fresh frozen specimens, and total RNA was extracted 
using a RNeasy Mini Kit (Quiagen, Hilden, Germany). 
Automated electrophoresis system Agilent 2100 Bioanalyzer 
system (Agilent Biotechnologies, Palo Alto, CA, USA) with 
the RNA 6000 Nano LabChip Kit was used to analyze the 
quality of the RNA samples. RNA sequencing was performed 
on the Illumina NovaSeq 6000 instrument.

Quality score and the percentage of reads cut-offs were set 
at 30% and 75%, respectively. The cut-off for the number of 

Table 1. Immunohistochemical and clinical features of the PitNETs

TF n Functioning 
status

n IHC subtype Clinical 
classification

Comment

SF1 29 NF 29 Gonadotroph NF-PitNET
PIT1 25 NF 3 Somatotroph 1 NF-PitNET

Somato-lactotroph 1
only Pit-1 positive 1

F 22 Somatotroph 3 14 Acromegaly 2 SG-GH tumors were mixed 
PitNET-gangliocytomasDG 

SG
2 
1

Somato-lactotroph 11
DG 
SG 
NG

2 
8 
1

Lactotroph 4 HyperPRL
Thyrotroph 1 HyperTSH
Plurihormonal 
GH + PRL + TSH

2 Acromegaly 
+ 

HyperTSH

1

HyperPRL 1
Gonadotroph 1 HyperFSH Paradoxical PIT1 expression and not SF1

TPIT 19 NF 13 Corticotroph NF-PitNET One Crooke cell tumor
F 6 Cushing disease

Double 
PitNET

1 NF 1 Gonadotroph + lactotroph NF-PitNET

Triple 
Pit-NET

1 F 1 Gonadotroph + GH + ACTH Acromegaly

Null cell 2 NF 2 NF-PitNET Clustered with SF1 respectively TPIT tumors based 
on mRNA expression [19]

Total 77 77

Abbreviations: DG, densely granulated; F, functioning; IHC, immunohistochemistry; NF, non-functioning; NF-PitNET: non-functioning pituitary neuroendocrine 
tumor; NG, no granulation; PIT1, pituitary transcription factor 1; PitNET, pituitary neuroenocrine tumor; PRL, prolactin; SF1, steroidogenic factor 1; SG, sparsely 
granulated; TF, transcription factor; TPIT, T-box family member 19 (TBX19).
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reads was set at 10 million reads. All samples have passed 
these quality control limits. To obtain quantification scores 
for all human genes and transcripts, transcript expression lev-
els were calculated as transcript per million (TPM) by map-
ping processed reads to the human reference genome 
GRCh37/hg19 ref and with gene models based on Ensembl 
(v92) using Kallisto (v.0.43.1). Next, the gene expression lev-
els were calculated by summing up all the TPM values of all 
alternatively spliced protein coding transcripts of the corre-
sponding gene for a total number of 19 670 protein-coding 
genes. The average TPM values are used to estimate the 
gene expression level. All TPM values were trimmed mean 
of M-values normalized between all the samples. The expres-
sion level cut-off is set at 1 TPM, and 13 348 genes expressed 
this cut-off or higher in all samples. The full TPM data matrix 
is shown in Supplementary Table S2 [29].

Immunohistochemistry
Additional immunohistochemistry was performed on the se-
lected tumors belonging to the different categories (invasive 
vs noninvasive, bone invasive vs bone noninvasive, and low 
vs high CEQ) to explore the expression of some of the differ-
entially expressed genes on the protein level (JADE1, Atlas 
Antibodies cat. no. HPA020016, RRID:AB_1855292; 
PAPPA2, Atlas Antibodies cat. no. HPA018412, RRID: 
AB_1854962; and VDAC1, Atlas Antibodies cat. no. 
HPA030780, RRID:AB_2673608). The immunohistochemis-
try and digitalization of the stained tissue slides were per-
formed using a standardized protocol and workflow, as 
described previously [30, 31].

An overview of the antibodies used to classify PitNETs and 
validate transcriptomics results for the selected genes is pro-
vided in Supplementary Table S3 [29].

Statistical Analysis
Data analysis and visualization were performed using R (ver-
sion 4.0.0). Pearson’s Chi-squared test or Fisher’s exact test 
was used for categorical variables of PitNETs patients de-
pendent on the theoretical frequency. Wilcoxon rank-sum 
test was used for continuous variables. The DESeq2 R pack-
age was used for differential analysis based on the mRNA 
raw counts for gene expression analysis. Clustering in heat-
maps and dendrograms based on Spearman correlation were 
created by first calculating a correlation matrix of 
Spearman’s ρ between all the samples. Dendrograms showing 
the gene expression in heatmaps have been clustered using the 
Ward2 algorithm implementation of Ward’s minimum vari-
ance method implemented as “Ward.D2” in the hclust func-
tion in the R package stats. A false discovery rate of less 
than 0.05 is considered significant (adjusted P-value is per-
formed with the Benjamini–Hochberg method).

Results
Clinical, Histological, and Radiological Features 
of PitNETs with Respect to Invasiveness
Seventy-seven PitNETs of various histological and secretory 
types were analyzed (Table 1), showing the following distribu-
tion across Knosp grades: 48 cases (62%) were Knosp grades 
0 to 2 tumors, 17 (22%) cases belonged to Knosp grade 3, and 
12 (16%) were Knosp grade 4 tumors. To assess the differen-
tially expressed genes (DEGs) between the invasive and the 

noninvasive tumors, Knosp grade 3 tumors were excluded, 
leaving 48 noninvasive PitNETs (Knosp grade 0–2 tumors) 
and 12 clearly invasive PitNETs (Knosp grade 4). CEQ could 
only be calculated for 70 patients. In the remaining 7 cases, 
there was either no measurable solid tumor component or 
no comparable sequences before and after contrast agent ad-
ministration. All other parameters were assessed on the entire 
cohort of 77 cases, of which 17 (22%) were bone-I-PitNETs. 
Most cases were macroadenomas (84%). Maximal tumor 
diameter and volume were significantly larger in invasive 
(I-PitNETs) and bone-I-PitNETs compared to the noninvasive 
counterparts.

No significant differences were detected between I-PitNETs 
vs NI-PitNETs, and bone-I-PitNETs vs bone-NI-PitNETs re-
garding sex, age, endocrine status, and immunohistochemical 
tumor types. Similarly, there were no significant differences 
between I-PitNETs vs NI-PitNETs and bone-I-PitNETs vs 
bone-NI-PitNETs regarding the contrast enhancement quo-
tient. Clinical, histological, and radiological features of the tu-
mors with respect to invasiveness are presented in Table 2.

Molecular Features of PitNETs with Respect to the 
Invasiveness and CEQ

Transcriptome profiling
The proportion of viable tumor cells in cryosections stained 
with hematoxylin–eosin, which correlates with the amount 
of isolated RNA exceeded 80% for all cases, except 1 case 
with 75% and 1 case having 60% tumor cells.

Normalized mRNA levels determined for each of the 77 
samples, calculated as TPM values, were analyzed; further-
more, 13 348 presumed protein-coding genes were expressed 
in all PitNETs when applying a cut-off value of 1 TPM. 
Global expression profiles of the 77 tumors were compared 
using hierarchical clustering. Overall, 3 main clusters were re-
vealed, corresponding well to the expected categories of tumors 
based on the 3 main transcription factors (steroidogenic factor 
1, pituitary-restricted transcription factor, and pituitary- 
specific positive transcription factor 1) with only a few inter-
mingled samples (Fig. 1).

Gene expression patterns regarding the parasellar 
invasiveness of PitNETs
Differential expression analyses between I-PitNETs (Knosp 
grade 4) and NI-PitNETs (Knosp grade 0–2) were performed 
and revealed 21 significant differentially expressed genes, as 
shown in Supplementary Table S4 [29]. Most of these DEGs 
(SERPINA1, LRRC8C, RAMP3, AVPR1A, TRIM71, 
SDK2, NPHP3-ACAD11, JADE1, FBXO11, MGA, C7, 
and ZYG11A) were upregulated, and 9 genes (FOXL2NB, 
CGA, GIPR, CHRNA5, CDH12, PLAC9, FOXP2, SFRP4, 
and KIAA1614) were downregulated in I-PitNETs.

Most of the genes differentially expressed between the inva-
sive and the noninvasive groups were genes with established 
roles in tumor biology, often related to invasiveness. Several 
of these genes, such as SFRP4, SERPINA1, FOXP2, GIPR, 
and FBXO11, are recognized as crucial in PitNETs pathogen-
esis. However, a few upregulated (NPHP3-ACAD11, SDK2, 
and LRRC8C) and downregulated (FOXL2NB and 
KIAA1614) genes in I-PitNETs are poorly characterized or 
have only suggested roles in tumor biology. The expression 
levels of 13 top differentially expressed genes based on the 
log fold are shown in Fig. 2.
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Global expression profiles of 12 I-PitNETs and 48 
NI-PitNETs were compared using hierarchical clustering. 
Results revealed that the 2 groups were not separated into dis-
tinct clusters based on the overall gene expression (Fig. 1).

Gene expression patterns in regard to bone invasiveness of 
PitNETs
To investigate the gene expression pattern in the bone- 
I-PitNETs, differential expression analyses were conducted 
between bone-I-PitNETs and bone-NI-PitNETs. The analyses 
revealed 7 DEGs (TDRD12, PAPPA2, AKR1B10, OR7C1, 
GNLY, ZNF831, and POMC) (Supplementary Table S5) [29], 

all except TDRD12 with well-known functions in tumor biology. 
Interestingly, all these genes, except TDRD12, were downregu-
lated in the bone-I-PitNETs in our cohort (Fig. 3). Several of 
the genes play a role in the NF-κB pathway and antitumoral im-
mune response, ie, in processes related to bone destruction. 
Similar to the parasellar invasiveness, the comparison of tumors 
with bone invasiveness did not reveal clear clustering (Fig. 1).

Contrast enhancement quotient in PitNETs
As the CEQ on the MRI reflects tumor vascularization, we 
aimed to explore genes that correlate with this parameter. 
Our results revealed that the expression of 2127 genes varied 

Table 2. Clinical and radiological features of PitNETs with respect to invasiveness

Parasellar invasion (Knosp 0-2 vs 4)

Variable n NI-PitNETs, n = 48a I-PitNETs, n = 12a P-value

Sex (%) 60 1.000
Female 20 (42) 5 (42)
Male 28 (58) 7 (58)

Ageb 60 52.5 (35.0, 64.0) 67.0 (43.3, 69.3) .147
Size (mm) 60 24 (18.5, 30.8) 36 (28.0, 39.3) .002
Volume (cm3) 60 4.2 (1.8, 7.9) 12,9 (5.2, 18.7) .008
CEQ 53 1.62 (1.41, 1.86) 1,44 (1.31, 1.78) .195
NF vs F (%) .602

NF 28 (58.3) 6 (50)
F 20 (41.7) 6 (50)

TFsc (%) .608
SF1 16 (33.3) 4 (33.3)
PIT1 17 (35.4) 6 (50)
TPIT 15 (31.3) 2 (16.7)

Bone invasion

Variable n Bone-NI-PitNETs, n= 60a Bone-I-PitNETs, n = 17a P-value

Sex (%) 77 .930
Female 24 (40) 7 (41)
Male 36 (60) 10 (59)

Ageb 77 54 (35, 67) 67 (55, 70) .043
Size (mm) 77 26 (20, 30) 34 (25, 38) .020
Volume (cm3) 77 4.7 (2.1, 9.2) 8.2 (5.5, 13.5) .011
CEQ 70 1.62 (1.4, 1.8) 1.61 (1.4, 2.1) .584
NF vs F (%) .173

NF 35 (58.3) 13 (76.5)
F 25 (41.7) 4 (23.5)

TFsc (%) .319
SF1 21 (35) 10 (58.8)
PIT1 22 (36.7) 4 (23.5)
TPIT 17 (28.3) 3 (17.6)

Abbreviations: CEQ, contrast enhancement quotient; F, functioning PitNETs; I-PitNET, noninvasive pituitary neuroendocrine tumors; NF, nonfunctioning PitNETs; 
NI-PitNET, noninvasive pituitary neuroendocrine tumors; PIT1, pituitary-specific positive transcription factor 1; PitNET, pituitary neuroenocrine tumor; TF, transcription 
factor. 
A double PitNET (ID50) grouped with SF1 corresponding to the dominant tumor component. A triple PitNET (ID51) grouped with PIT1 as the patient has acromegaly. 
Statistically significant values (P < .05) are written in bold. 
an (%); median (interquartile range). 
bAge at first surgery. 
cTwo null-cell PitNETs (ID47 and 49) were classified as TPIT, respectively, SF1 based on mRNA expression [19].
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significantly with changes in the CEQ (adjusted P-value < .05) 
(Supplementary Table S6) [29].

Top 5 genes positively correlated with CEQ were VDAC1, 
NPIPB11, CNIH3, TBKBP1, and TUSC, whereas top 5 nega-
tively correlated genes were ENOX2, THAP1, ZNF398, 
TBC1D8B, and PEX12; the majority of those genes have a 
well-established role in tumor biology. A few of the top genes 
that correlated with the CEQ are targetable genes involved in 
mitochondrial functioning and mTOR signaling; among 
them, VDAC1 has a crucial role in angiogenesis.

Correlation patterns for the top 5 positively and negatively 
correlated genes are shown in Fig. 4, and an overview of the 
selected differentially expressed genes regarding the parasellar 
and bone invasiveness as well as the CEQ is provided in 
Table 3.

A more general overview of genes relevant for this study 
with details regarding expression levels in various subgroups 
of the PitNET cohort, normal pituitary gland, and other nor-
mal tissues as well as information regarding protein class and 
expression category is shown in Supplementary Table S7 [29]. 
The supplemental data has been extracted and summarized 
from the Human Protein Atlas (www.proteinatlas.org) [17].

Examples of differentially expressed genes at the protein 
level between tumors representing different categories regarding 
invasiveness (JADE1) and bone invasiveness (PAPPA2), as well 
as a gene correlated with CEQ (VDAC1) are illustrated in Fig. 5.

Furthermore, a thorough comparison of the DEGs and top 
correlated genes in our cohort to the cell lineage and/or 
functioning status related genes depicted in the recent studies 
[18-22, 27] is shown in Supplementary Table S8 [29].

Discussion
In the present study, we aimed to explore differences in 
gene expression patterns between the invasive and non-
invasive PitNETs with respect to parasellar growth but 
also regarding the rare phenomenon of bone invasiveness 
in a well-characterized cohort of 77 tumors representing 
different subtypes of PitNETs. Our findings revealed differ-
ences in the molecular signatures between the invasive, in-
cluding bone invasive, and the non invasive PitNETs that 
could facilitate prediction of the invasive behavior in 
PitNET. Genes that correlated with the contrast enhance-
ment quotient, proxy for tumor vascularization, were dis-
closed. Several among the differentially expressed genes 
between the invasive and the noninvasive tumors and genes 
implicated in tumor vascularization are potential thera-
peutic targets.

Studies aiming to identify the genetic basis of invasiveness in 
PitNETs have been conducted in recent years [24-27], usually 
exploring exclusively nonfunctioning PitNETs, which are pri-
marily of the gonadotroph type and less frequently of the 

Figure 1. Overview of the expression profiles of the protein-coding genes in the human PitNETs. The heatmap shows the pairwise Spearman correlation 
between the global gene expression profiles for the 77 pituitary tumor tissues analyzed. Abbreviations: F-PitNET, functioning pituitary neuroendocrine 
tumor; NF-PitNET: nonfunctioning pituitary neuroendocrine tumor; PitNET, pituitary neuroenocrine tumor.
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corticotroph type. Very few studies have addressed the import-
ant phenomenon of bone invasiveness in PitNETs [14, 15].

In our heterogeneous cohort composed of PitNETs of dif-
ferent types, we found that most of the DEGs between the in-
vasive and the noninvasive tumors exemplify crucial genes 
involved in general mechanisms of tumor biology and related 
to invasiveness, a few with established roles in pituitary biol-
ogy and PitNETs.

SFRP4 gene, a well-known tumor suppressor and WNT sig-
naling antagonist involved in the process of epithelial- 
mesenchymal transition, was significantly downregulated in 
our cohort of I-PitNETs. Downregulation of the SFRP4 
gene has previously been described as essential in PitNETs 
tumorigenesis [49] and associated with acquisition of the in-
vasive phenotype in nonfunctioning PitNETs [61], suggesting 
a potential role of SFRP4 as a predictive biomarker of inva-
siveness and recurrence/progression in gonadotroph tumors.

SERPINA1, the gene involved in angiogenesis, tumor inva-
sion, and metastasis [32], was upregulated in the I-PitNETs in 
our cohort. In line with our findings, SERPINA1 is reported in 
the literature as being overexpressed in the invasive null cell 
PitNETs, which mainly belong to gonadotroph tumors [33].

Significant downregulation of the SFRP4 and overexpres-
sion of SERPINA1 in the I-PitNETs in our heterogeneous 

cohort comprising different PitNETs subtypes indicates that 
these genes influence tumor invasiveness, not only in the non-
functioning PitNETs as previously suggested but also in the 
PitNETs in general.

FOXP2, downregulated in the I-PitNETs in our cohort, has 
been suggested as a novel transcription factor in normal pitu-
itary, enriched in gonadotroph tumors [47], and also de-
scribed to have an essential role in cancer initiation and 
progression [48]. However, as far as we know, the impact of 
FOXP2 expression on the invasiveness of PitNETs has yet 
to be studied, and our study is the first to report an association 
between FOXP2 downregulation and PitNET invasiveness.

An aberrant activation of GIPR has been described in sev-
eral endocrine and neuroendocrine tumors, including a subset 
of GNAS1wt somatotroph tumors. The gene has been sug-
gested as a potential diagnostic marker and a radiation ther-
apy agent for neuroendocrine tumors [43]. In our study 
cohort, GIPR was downregulated in I-PitNETs, which is in 
line with the majority of reported GIPR-positive somato-
trophs that are smaller noninvasive tumors with better re-
sponses to medical treatment (reviewed in [43]). According 
to the literature, other PitNETs subtypes, apart from 
GNAS1wt somatotroph tumors, do not exhibit aberrant 
GIPR activation. Our report of GIPR downregulation in 

Figure 2. Gene expression patterns of the top differentially expressed genes related to invasiveness. (A) Barplots with samples colored according to their 
invasiveness status. Color intensity is correlated with the tumor size in mm. (B) Violin plots with samples colored according to their invasiveness status.
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I-PitNETs of different types suggests a role of GIPR in the in-
vasiveness of PitNETs in general and its potential as a diagnos-
tic and radiation therapeutic agent for invasive PitNETs.

Several well-known tumor-promoting genes, such as 
RAMP3, FBXO11, ZYG11A, and AVPR1A, suggested as 
therapeutic targets and with established function in tumor 
proliferation, migration, invasion, and metastasis [34-37], 
were overexpressed in the I-PitNETs. Further research is 
needed to decode the exact roles of these oncogenes in patho-
genesis and invasiveness of PitNETs as well as its potential 
predictive, prognostic, or therapeutic application.

A few genes (JADE1, TRIM71, and MGA) described in the 
literature as tumor suppressors [38-40] were upregulated in 
the I-PitNETs. Moreover, a few genes reported as cancer pro-
motors (CHRNA5 and CDH12) [44, 45] were downregulated 
in the I-PitNETs. Seemingly contradictory findings for these 
genes reported across studies suggest context-dependent 
mechanisms of action and encourage further research.

Only a few studies addressed the phenomenon of bone inva-
siveness in a subset of PitNETs [14, 15]. Thus, mechanisms 
that regulate the invasion of PitNETs into the bone structures 
still need to be determined.

Figure 3. Gene expression patterns of the top differentially expressed genes related to bone invasion. (A) Barplots with samples colored according to 
their bone invasiveness status. Color intensity is correlated with the tumor size. (B) Violin plots with samples colored according to their invasiveness 
status.
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It seems that tumor cells do not directly destroy bone; ra-
ther, they stimulate differentiation and maturation of osteo-
clasts, the process mediated by immune cells [14]. The 
NF-κB pathway is crucial in the generation of proinflamma-
tory cytokines, which can lead to the stimulation of osteo-
clasts and the promotion of bone destruction [62]. Indeed, 4 
out of the 7 DEGs related to bone invasiveness in our study 
were genes with the function in antitumoral immune response 
(ZNF831, OR7C1, PAPPA2, and GNLY) [51-54], while 1 
gene, AKR1B10, was involved in the NF-Κb pathway [50]. 
All these 5 genes were downregulated in the bone-I-PitNETs, 
supporting the hypothesis that alterations in the immune mech-
anisms may play a role in bone invasiveness of PitNETs. 
Interestingly, the role of PAPPA2 in silencing of PitNETs has 
been previously suggested, with higher expression of this gene 
in functioning corticotroph tumor compared to nonfunctioning 
ones [27]. No differences in the expression of GNLY on intra-
tumoral immune cells have been reported between functioning 
and nonfunctioning corticotroph tumors [27].

POMC, encoding the ACTH precursor pro-opiomelanocor-
tin, was downregulated in the bone-I-PitNETs. Proopiomelano- 
cortin (POMC) is expected to be overexpressed in corticotroph 
tumors, which probably influenced the differential expression of 
this gene in our cohort, as corticotroph tumors were underrepre-
sented among the bone-invasive tumors.

With the exception of POMC, PAPPA2, and GNLY, none 
of the genes differentially expressed in the bone-I-PitNETs vs 
bone-NI-PitNETs in our study was previously described in the 
context of pituitary tumors. This indicates a need for further 
research to decipher their function in bone invasiveness of 
PitNETs and their potential use as biomarkers.

The PitNETs in our cohort failed to cluster in compact 
groups with respect to parasellar and bone invasiveness. 
One possible explanation for the lack of clustering could be 
the impact of the variety of histological and secretory types 
represented in the cohort, with the strong influence of the cell 
lineage-related genes. A recent transcriptomic study exploring 

invasiveness in a more compact cohort of nonfunctioning 
PitNETs, applying the same criterion for invasiveness (Knosp 
grade 0–2 vs 4), showed tight clustering into invasive respect-
ively noninvasive tumors [25]. However, Bao et al also demon-
strated transcriptome heterogeneity between corticotroph and 
gonadotroph tumors, pointing out the potential impact of tumor 
subtypes on the expression of invasiveness-related genes [25].

The CEQ quantifies the upload of the contrast medium on 
MRI and, as such, may be considered as a parameter of tumor 
vascularization. In our study, the CEQ correlated with several 
genes having critical roles in angiogenesis.

Among the top 5 positively correlated genes, VDAC1 and 
TUSC2 both have well-known roles in mitochondrial func-
tion, calcium regulation, and mTOR signaling [55, 56]; 
CNIH3 is reported as a protooncogene with a potential diag-
nostic and therapeutic role [57], and TBKBP1 has an estab-
lished role in tumor growth promotion and tumor-mediated 
immunosuppression [58]. The mitochondrial voltage- 
dependent anion channel 1 (VDAC1) protein is directly in-
volved in angiogenesis with a crucial role in the proliferation 
of endothelial cells [55]. Overexpression of tumor suppressor 
candidate 2 (TUSC2) downregulates mTOR signaling and de-
creases PDL-1 expression allowing for more effective use of 
PD-1 blockers [56]. Both genes are promising therapeutic tar-
gets as VDAC1 can be targeted by the antifungal drug itracon-
azole [55], and the TUSC2-based drug in combination with an 
anti-PD-1 therapy is currently being tested in a clinical trial for 
patients with non–small-cell lung carcinoma [56] (https:// 
clinicaltrials.gov/ct2/show/NCT05062980).

Regarding the genes negatively correlated with CEQ, 
ENOX2 (tNOX) overexpression seems to be associated 
with a poor prognosis of cancers. Its lower expression in be-
nign PitNETs is not surprising as ENOX2 downregulation 
is detected in slow-proliferating tumors [59].

Several among the top 5 genes positively and negatively cor-
related with CEQ (NPIPB11, PEX12, ZNF398, and THAP1) 
were genes sparsely or not at all described in tumor biology.

Figure 4. Top correlation patterns. Scatter plot showing top correlation trends between gene expression and contrast enhancement quotient.
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To affirm that the genes identified in our cohort are the in-
dicators of invasion rather than cell lineage-related, we 

performed a thorough comparison of the DEGs and top corre-
lated genes in our cohort to the cell lineage and/or functioning 
status related genes depicted in the recent studies [18-22, 27], 
as shown in Supplementary Table S8 [29]. Not surprisingly, 
the comparisons revealed some overlapped genes. However, 
besides POMC which was expectedly overexpressed in corti-
cotroph tumors no other clear link to the cell-lineage related 
genes was found.

Our study demonstrated that several genes with a known 
role in tumor growth and progression are dysregulated in in-
vasive PitNETs. Some of the genes were previously described 
in association with pituitary tumors (SFRP4, GIPR, 
SERPINA1, and FOXP2), whereas others do not have any 
known role in pituitary tumor biology (RAMP3, FBXO11, 
and ZYG11A). Invasion of PitNETs into bone seems to be 
regulated primarily by genes involved in immune modulation 
and anti-tumoral immune response (ZNF831, OR7C1, 
PAPPA2, and GNLY). As expected, some of the differentially 
expressed genes between the invasive, including bone- 
invasive, and the non-invasive PitNETs are involved in the 
process of epithelial-mesenchymal transition (SFRP4 and 
AKR1B10), previously shown to be activated in larger and 
more invasive PitNETs [63-65]. Genes involved in angiogen-
esis correlate with contrast enhancement quotient, making 
this novel radiological measurement a potential radiological 
parameter of tumor vascularization. Further research is war-
ranted to explore the potential utility of this novel parameter 
in the radiological diagnostics and prognosis of pituitary tu-
mors. Importantly, we identified several potential therapeutic 
targets among the genes seemingly involved in the mechanisms 
of invasiveness, bone invasiveness, and tumor vascularization 
(GIPR, RAMP3, FBXO11, ZYG11A, OR7C1, VDAC1, and 
TUSC2).

There are a few limitations of the present study. The sample 
and feature coverage related to the chosen PTM cut-off value 
should be considered for the generalizability of the findings. 
Additionally, excluding noncoding RNAs and other function-
al elements might also be limiting. Indeed, excluding these el-
ements may impact the comprehensive understanding of the 
regulatory network involved in PitNETs that are not included 
in the present work. Furthermore, given the limiting size of the 
retrieved DEG signatures, comprehensive functional analyses 
were limited. Indeed, when applied to gene signatures with a 
limited number of genes, enrichment functional analyses 
face challenges related to statistical power, increased suscepti-
bility to multiple testing issues, and potential overfitting in 
biological representations. Instead, we opted for a more cura-
ted analysis approach to overcome, to some extent, these lim-
itations. Our aim was to prioritize the interpretability and 
relevance of findings.

The clearly invasive PitNETs (Knosp 4) and bone-I-PitNETs 
were represented with fewer cases compared to the noninvasive 
and bone-NI-PitNETs. Therefore, studies including a larger 
number of clearly invasive tumors are warranted.

Preoperative computed tomography imaging is a more ac-
curate method than MRI to assess cortical bone destruction 
and can thus aid in the evaluation of possible bone invasion. 
However, computed tomography is not a routine workup 
for sellar tumors.

Posttranscriptional modifications such as alternative RNA 
splicing impact protein burden in a cell and can influence inva-
sive features of PitNETs. However, we have not addressed 
these aspects in our study.

Table 3. Overview of the selected genes differentially expressed 
between PitNETs in regard to invasiveness and contrast 
enhancement quotient

Gene Function

Upregulated in 
I-PitNETs

SERPINA1 Involved in angiogenesis, tumor 
invasion, and metastasis [32] 

Overexpressed in invasive null cell   
PitNETs [33]

RAMP3 Function in tumor proliferation, 
migration, invasion, and 
metastasis [34-37] 

Suggested as therapeutic targets

FBXO11
ZYG11A
AVPR1A
JADE1 Tumor suppressors [38-40]
TRIM71
MGA
C7 Related to the maintenance of 

stemness [41]
Downregulated in 

I-PitNETs
CGA Tumor suppressors or oncogenes, 

depending on the cancer type 
and signaling pathway [42]

GIPR Aberrant activation in several 
endocrine and neuroendocrine 
tumors, including subset of 
GNAS1wt somatotroph tumors 
[43]

CHRNA5 Cancer promotors [44, 45]
CDH12
PLAC9 Tumor suppressor [46]
FOXP2 Novel transcription factor in 

normal pituitary, enriched in 
gonadotroph tumors [47] 

Essential role in cancer initiation   
and progression [48]

SFRP4 Tumor suppressor gene and WNT 
signaling antagonist 

Essential in PitNETs   
tumorigenesis [49]

Upregulated in 
bone-I-PitNETs

TDRD12 Probable ATP-binding RNA 
helicase required during 
spermatogenesis [17]

Downregulated in 
bone-I-PitNETs

AKR1B10 Involved in the NF-κb pathway 
[50]

ZNF831 Function in antitumoral immune 
response [51-54]OR7C1

PAPPA2
GNLY
POMC Encoding the ACTH precursor 

pro-opiomelanocortin
Top genes positively 

correlated with 
CEQ

VDAC1 Roles in mitochondrial function, 
calcium regulation, and mTOR 
signaling; promising therapeutic 
targets [55, 56]

TUSC

CNIH3 Protooncogene with a potential 
diagnostic and therapeutic role 
[57]

TBKBP1 Role in tumor growth promotion 
and tumor-mediated 
immunosuppression [58]

Top genes negatively 
correlated with 
CEQ

ENOX2 Overexpression associated with a 
poor prognosis of cancers [59]

TBC1D8B GTPase-activating protein  
Promotor of apoptosis [60]

Abbreviations: bone-I-PitNETs, bone invasive pituitary neuroenocrine tumor; 
CEQ, contrast enhancement quotient; I-PitNETs, invasive pituitary 
neuroenocrine tumor (parasellar invasiveness); PitNET, pituitary neuroenocrine 
tumor.
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We used a contrast enhancement quotient between the en-
hanced and nonenhanced images to minimize the influence 
of differences in the MRI sequence parameter settings. 
However, a residual effect of technical differences, eg, using 
spin echo or gradient echo sequences, cannot be excluded.

In conclusion, our transcriptomics data, based on a well- 
characterized cohort of PitNETs of different histological types 
and growth patterns, reveal both known and novel genes 
impacting the parasellar and bone invasiveness of PitNETs, al-
though without clear clustering. Several of the genes differen-
tially expressed between invasive, including bone-invasive, 
and noninvasive PitNETs represent potential prognostic 
markers and therapeutic targets. The contrast enhancement 
quotient emerges as a radiological parameter of tumor vascu-
larization, correlating with several angiogenesis-related genes. 
The interplay of many factors needs to be considered and 
further research conducted to elucidate the exact roles of 
the reported genes in the biology of pituitary neuroendo-
crine tumors and their potential prognostic and therapeutic 
benefits.
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