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Abstract

Our understanding of the firing behaviour of motoneuron (MN) pools during human voluntary

muscle contractions is currently limited to electrophysiological findings from animal experi-

ments extrapolated to humans, mathematical models of MN pools not validated for human

data, and experimental results obtained from decomposition of electromyographical (EMG)

signals. These approaches are limited in accuracy or provide information on only small parti-

tions of the MN population. Here, we propose a method based on the combination of high-

density EMG (HDEMG) data and realistic modelling for predicting the behaviour of entire

pools of motoneurons in humans. The method builds on a physiologically realistic model of

a MN pool which predicts, from the experimental spike trains of a smaller number of individ-

ual MNs identified from decomposed HDEMG signals, the unknown recruitment and firing

activity of the remaining unidentified MNs in the complete MN pool. The MN pool model is

described as a cohort of single-compartment leaky fire-and-integrate (LIF) models of MNs

scaled by a physiologically realistic distribution of MN electrophysiological properties and

driven by a spinal synaptic input, both derived from decomposed HDEMG data. The MN

spike trains and effective neural drive to muscle, predicted with this method, have been suc-

cessfully validated experimentally. A representative application of the method in MN-driven

neuromuscular modelling is also presented. The proposed approach provides a validated

tool for neuroscientists, experimentalists, and modelers to infer the firing activity of MNs that

cannot be observed experimentally, investigate the neuromechanics of human MN pools,

support future experimental investigations, and advance neuromuscular modelling for inves-

tigating the neural strategies controlling human voluntary contractions.
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Author summary

Our experimental understanding of the firing behaviour of motoneuron (MN) pools dur-

ing human voluntary muscle contractions is currently limited to the observation of small

samples of active MNs obtained from EMG decomposition. EMG decomposition there-

fore provides an important but incomplete description of the role of individual MNs in

the firing activity of the complete MN pool, which limits our understanding of the neural

strategies of the whole MN pool and of how the firing activity of each MN contributes to

the neural drive to muscle. Here, we combine decomposed high-density EMG (HDEMG)

data and a physiologically realistic model of MN population to predict the unknown

recruitment and firing activity of the remaining unidentified MNs in the complete MN

pool. In brief, an experimental estimation of the synaptic current is input to a cohort of

MN models, which are calibrated using the available decomposed HDEMG data, and pre-

dict the MN spike trains fired by the entire MN population. This novel approach is experi-

mentally validated and applied to muscle force prediction from neuromuscular

modelling.

Introduction

During voluntary muscle contractions, pools of spinal alpha-motoneurons (MNs) convert the

synaptic input they receive into a neural command that drives the contractile activity of the

innervated muscle fibres, determining limb motion. Identifying the recruitment and firing

dynamics of MNs is fundamental for understanding the neural strategies controlling human

voluntary motion, with applications in sport sciences [1–3], and neurological and musculo-

skeletal rehabilitation [4–8]. Determining the MN-specific contributions to the MN popula-

tion activity also allows more realistic control of neuromuscular models [9–12], investigation

of muscle neuromechanics [13,14], prediction of limb motion from MN-specific behaviour

[15], or improvement in human-machine interfacing and neuroprosthetics [16,17].

Our understanding of MN pool firing behaviour during human voluntary tasks is however

currently limited. While the MN membrane afterhyperpolarization and axonal conduction

velocity can be inferred from indirect specialized techniques [18,19], most of the other electro-

chemical MN membrane properties and mechanisms that define the MN recruitment and dis-

charge behaviour cannot be directly observed in humans in vivo. Analysis of commonly

adopted bipolar surface EMG recordings, which often lump the motor unit (MU) trains of

action potentials into a single signal assimilated as the neural drive to muscle, cannot advance

our understanding of the MN pool activity at the level of single MNs. Our experimental knowl-

edge on the remaining MN membrane properties in mammals is therefore obtained from in

vitro and in situ experiments on animals [20]. The scalability of these mechanisms to humans

is debated [21] due to a systematic inter-species variance in the MN electrophysiological prop-

erties in mammals [22]. Decomposition of high-density EMG (HDEMG) or intramuscular

EMG (iEMG) signals [23,24] allows the in vivo decoding in human muscles of the firing activ-

ity of individual active motoneurons during voluntary contractions and provide a direct win-

dow on the internal dynamics of MN pools. Specifically, the non-invasive EMG approach to

MN decoding has recently advanced our physiological understanding of the neurophysiology

of human MU pools and of the interplay between the central nervous system and the muscle

contractile machinery [25,26]

Yet, the activity of all the MNs constituting the complete innervating MN population of a

muscle cannot be identified with this technique. High-yield decomposition typically detects at
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most 30-40 MNs [27], while MU pools typically contain hundreds of MUs in muscles of the

hindlimb [20]. The small sample of recorded MNs is besides not representative of the continu-

ous distribution of the MN electrophysiological properties in the complete MN pool with a

bias towards the identification of mainly high-threshold MUs. The samples of spike trains

obtained from signal decomposition therefore provide a limited description of the role of indi-

vidual MNs in the firing activity of the complete MN pool.

To allow the investigation and description of specific neurophysiological mechanisms of

the complete MN population, some studies have developed mathematical frameworks and

computational models of pools of individual MNs. These MN pool models have provided rele-

vant insights for interpreting experimental data [28,29], investigating the MN pool properties

and neuromechanics [30–32], neuromuscular mechanisms [12,33], and the interplay between

muscle machinery and spinal inputs [34]. However, none of these MN pool models have been

tested with experimental input data, instead either receiving artificial gaussian noise [32], sinu-

soidal [31] or ramp [29] inputs, inputs from interneurons [30] or feedback systems [28]. These

MN pool models have therefore never been tested in real conditions of voluntary muscle con-

traction. The forward predictions of MN spike trains or neural drive to muscle obtained in

these studies were consequently not or indirectly validated against experimental recordings.

The MN-specific recruitment and firing dynamics of these MN pool models are usually

described with comprehensive or phenomenological models of MNs. The biophysical

approaches [30–33], which rely on a population of compartmental Hodgkin-Huxley-type MN

models provide a comprehensive description of the microscopic MN-specific membrane

mechanisms of the MN pool and can capture complex nonlinear MN dynamics [35]. However,

these models are computationally expensive and remain generic, involving numerous

electrophysiological channel-related parameters for which adequate values are difficult to

obtain in mammalian experiments [36,37] and must be indirectly calibrated or extrapolated

from animal measurements in human models [38]. On the other hand, phenomenological

models of MNs [10,28,39] provide a simpler description of the MN pool dynamics and rely on

a few parameters that can be calibrated or inferred in mammals including humans. They are

inspired from the Fuglevand’s formalism [29], where the output MN firing frequency is the

gaussian-randomized linear response to the synaptic drive with a MN-specific gain. However,

these phenomenological models cannot account for the MN-specific nonlinear mechanisms

that dominate the MN pool behaviour [20,35,40,41]. MN leaky integrate-and-fire (LIF) mod-

els, the parameters of which can be defined by MN membrane electrophysiological properties

for which mathematical relationships are available [42], are an acceptable trade-off between

Hodgkin-Huxley-type and Fuglevand-type MN models with intermediate computational cost

and complexity, and accurate descriptions of the MN macroscopic discharge behaviour [43]

without detailing the MN’s underlying neurophysiology [44]. While repeatedly used for the

modelling and the investigation of individual MN neural dynamics [45–47], MN LIF models

are however not commonly used for the description of MN pools.

To the authors’ knowledge there is no systematic method to record the firing activity of all

the MNs in a MN pool, or to estimate from a sample of experimental MN spike trains obtained

from signal decomposition the firing behaviour of MNs that are not recorded in the MN pool.

There is no mathematical model of a MN pool that (1) was tested with experimental neural

inputs and investigated the neuromechanics of voluntary human muscle contraction, (2)

involves a cohort of MN models that relies on MN-specific profiles of inter-related MN

electrophysiological properties, (3) is described by a physiologically-realistic distribution of

MN properties that is consistent with available experimental data. This limits our understand-

ing of the neural strategies of the whole MN pool and of how the firing activity of each MN

contributes to the neural drive to muscle.
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In this study, a novel four-step approach is designed to predict, from the neural information

of Nr MN spike trains obtained from HDEMG signal decomposition, the recruitment and fir-

ing dynamics of the N−Nr MNs that were not identified experimentally in the investigated

pool of N MNs. The model of the MN pool was built upon a cohort of N single-compartment

LIF models of MNs. The LIF parameters are derived from the available HDEMG data, are

MN-specific, and account for the inter-relations existing between mammalian MN properties

[42]. The distribution of N MN input resistances hence obtained defines the recruitment

dynamics of the MN pool. The MN pool model is driven by a common synaptic current,

which is estimated from the available experimental data as the filtered cumulative summation

of the Nr identified spike trains. The MN-specific LIF models phenomenologically transform

this synaptic current into accurate discharge patterns for the Nr MNs experimentally identified

and predict the MN firing dynamics of the N−Nr unidentified MNs. The blind predictions of

the spike trains of the Nr identified MNs and the effective neural drive to the muscle, computed

from the firing activity of the complete pool of N virtual MNs, are both successfully validated

against available experimental data.

Neuroscientists can benefit from this proposed approach for inferring the neural activity of

MNs that cannot be observed experimentally and for investigating the neuromechanics of MN

populations. Experimenters can use this approach for better understanding their experimental

dataset of Nr identified discharging MNs. Moreover, this approach can be used by modelers to

design and control realistic neuromuscular models, useful for investigating the neural strate-

gies in muscle voluntary contractions. In this study, we provide an example for this application

by using the simulated discharge patterns of the complete MN pool as inputs to Hill-type mod-

els of muscle units to predict muscle force.

Methods

Overall approach

The spike trains spsimj ðtÞ elicited by the entire pool of N MNs were inferred from a sample of Nr

experimentally identified spike trains spexpi ðtÞ with a 4-step approach displayed in Fig 1. The Nr

experimentally-identified MNs were allocated to the entire MN pool according to their

recorded force recruitment thresholds Fth
i (step 1). The common synaptic input to the MN

pool was estimated from the experimental spike trains spexpi ðtÞ of the Nr MNs (step 2) and was

linearly scaled for simplicity to the total postsynaptic membrane current I(t) responsible for

spike generation. A cohort of Nr single-compartment leaky-and-fire (LIF) models of MNs, the

electrophysiological parameters of which were mathematically determined by the unique MN

size parameter Si, transformed the input I(t) to simulate the experimental spike trains spexpi ðtÞ
after calibration of the Si parameter (step 3). The distribution of the N MN sizes S(j) in the

entire MN pool, which was extrapolated by regression from the Nr calibrated Si quantities,

scaled the electrophysiological parameters of a cohort of N LIF models. The N calibrated LIF

models predicted from I(t) the spike trains spsimj ðtÞ of action potentials elicited by the entire

pool of N virtual MNs.

The following assumptions were made. (1) The MU pool is idealized as a collection of N
independent MUs that receive a common synaptic input and possibly MU-specific indepen-

dent noise. (2) In a pool of N MUs, N MNs innervate N muscle units (mUs). (3) In our nota-

tion, the pool of N MUs is ranked from j = 1 to j = N, with increasing recruitment threshold.

For the N MNs to be recruited in increasing MN and mU size and recruitment thresholds

according to Henneman’s size principle [20,48–53], the distribution of morphometric,
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threshold and force properties in the MN pool follows

8j; k 2 ½1;N�; ðj < kÞ¼)ðSj < Sk()Ithj < Ithk()IRj < IRk()Fth
j < Fth

k()f maxiso;j < f maxiso;k Þ

where S is the MN surface area, Ith the MN current threshold for recruitment, IR the MU

innervation ratio defining the MU size, Fth is the MU force recruitment threshold, and f maxiso is

the MU maximum isometric force. (4) The MN-specific electrophysiological properties are

mathematically defined by the MN size S [42]. This extends the Henneman’s size principle to:

8j; k 2 ½1;N�; ðj < kÞ¼)ðSj < Sk()Cj < Ck()Rj > Rk()tj > tkÞ

Where C is the MN membrane capacitance, R the MN input resistance and τ the MN mem-

brane time constant.

Experimental data

The four sets of experimental data used in this study, named as reported in the first column of

Table 1, provide the time-histories of recorded MN spike trains spexpi ðtÞ and whole muscle

force trace F(t) (left panel in Fig 1), and were obtained from the studies [26,27,54,55], as open-

source supplementary material and personal communication, respectively. In these studies,

the HDEMG signals were recorded with a sampling rate fs = 2048Hz from the Tibialis Anterior

(TA) and Gastrocnemius Medialis (GM) human muscles during trapezoidal isometric con-

tractions. As displayed in Fig 2, the trapezoidal force trajectories are described in this study by

Fig 1. Four-step workflow predicting the spike trains spsimj ðtÞ of the entire pool of N MNs (right figure) from the experimental sample of Nr MN spike trains

spexpi ðtÞ (left figure). Step (1): according to their experimental force thresholds Fth
i , each MN, ranked from i = 1 to i = Nr following increasing recruitment

thresholds, was assigned the Nth
i location in the complete pool of MNs (i!Ni mapping). Step (2): the current input I(t) common to the MN pool was derived

from the Nr spike trains spexpi ðtÞ. Step (3): using I(t) as input, the size parameter Si of a cohort of Nr leaky-and-fire (LIF) MN models was calibrated by

minimizing the error between predicted and experimental filtered spike trains. From the calibrated Si and the MN i!Ni mapping, the distribution of MN sizes

Sj in the entire pool of virtual MNs was obtained by regression. Step (4): the Sj distribution scaled a cohort of N LIF models which predicted the MN-specific

spike trains spsimj ðtÞ of the entire pool of MNs (right). The approach was validated by comparing experimental and predicted spike trains (Validation 1) and by

comparing normalized experimental force trace FðtÞ (Left figure, green trace) with normalized effective neural drive (Validation 2). In both figures, the MN

spike trains are ordered from bottom to top in the order of increasing force recruitment thresholds.

https://doi.org/10.1371/journal.pcbi.1010556.g001

PLOS COMPUTATIONAL BIOLOGY Estimation of the firing behaviour of a complete motoneuron pool

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010556 September 29, 2022 5 / 39

https://doi.org/10.1371/journal.pcbi.1010556.g001
https://doi.org/10.1371/journal.pcbi.1010556


the ttr0!5
times reported in Table 1, as a zero force in [ttr0; ttr1], a ramp of linearly increasing

force in [ttr1; ttr2], a plateau of constant force in [ttr2; ttr3], a ramp of linearly decreasing force in

[ttr3; ttr4], and a zero force in [ttr4; ttr5].

The HDEMG signals were decomposed with blind-source separation techniques and Nr

MN spike trains spexpi ðtÞ were identified. In this study, the experimental Nr MNs were ranked

from i = 1 to i = Nr in the order of increasing recorded force recruitment thresholds Fth
i , i.e.

8i 2 ½1;Nr�; Fth
i < Fthiþ1

. The sample time of the kth firing event of the ith identified MN is

noted as ftki , and the binary spike train of the ith identified MN was mathematically defined as:

spexpi ðt ¼ ftki Þ ¼ 1

spexpi ðt 6¼ ftki Þ ¼ 0
ðEq 1Þ

(

The train of instantaneous discharge frequency IDFi(t) of the ith identified MN was com-

puted between firing times ftki and ftkþ1
i as:

IDFi t ¼ ftki
� �

¼
1

ftkþ1
i � ftki

IDFiðt 6¼ ftiÞ ¼ 0

ðEq 2Þ

8
><

>:

The IDFs were moving-average filtered by convolution with a Hanning window of length

400ms [56], yielding the continuous filtered instantaneous discharge frequencies (FIDFs) for

all Nr identified MNs.

Approximation of the TA and GM MU pool size

The typical number N of MUs was estimated for the TA muscle from cadaveric studies [57],

statistical methods [58], decomposed-enhanced spike-triggered-averaging (DESTA)

approaches [59–64], and adapted multiple point stimulation methods [65] in 20-80-year-old

human subjects. Because of method-specific limitations [66], results across methods varied

substantially, with estimates for N of, respectively, 445, 194, 190, 188 and 300 MUs for the TA

muscle. DESTA methods systematically underestimate the innervation ratio due to the limited

muscle volume covered by the surface electrodes. Cadaveric approaches rely on samples of

small size and arbitrarily distinguish alpha from gamma MNs. Twitch torque measurements

are an indirect method for estimating N. Accounting for these limitations, we estimated the

potentially conservative NTA = 400 MUs in a typical adult TA muscle. Assuming 200,000 fibres

in the TA muscle [67,68], NTA = 400 yields a mean of 500 fibres per TA MU, consistently with

previous findings [68]. In two cadaveric studies [57,69], the estimate for the GM was NGM =

550 MUs, which is consistent with NTA = 400 as the GM muscle volume is typically larger than

TA’s [70]. A sensitivity analysis on the performance of the method presented in Fig 1 upon

variations on the value of NTA was included in this study.

Table 1. The four experimental datasets processed in this study. Nr spike trains are identified per dataset during trapezoidal contractions of the Tibialis Anterior (TA)

or Gastrocnemius Medialis (GM) muscles. The trapezoidal force trace is described by times ttri in seconds up to a dataset-specific level of maximum voluntary contraction

(%MVC).

Dataset Muscle %MVC ttr0 ttr1 ttr2 ttr3 ttr4 ttr5 Nr Reference paper

DTA35 TA 35 0 2.2 10.6 20.5 30 30 32 [26,27]

HTA35 TA 35 0 2.1 10.5 20.5 30 33 21 [54,55]

HTA50 TA 50 0 1.6 12 21.8 34.5 35 14

HGM30 GM 30 0 3.1 9.1 28 33.5 107 27

https://doi.org/10.1371/journal.pcbi.1010556.t001
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Step (1): MN mapping

In the first step of the approach overviewed in Fig 1, the Nr experimentally identified MNs

were allocated to the entire pool of N MNs according to their recorded force recruitment

thresholds Fth
i . Three studies measured in the human TA muscle in vivo the force recruitment

thresholds Fth of MUs, given as a percentage of the maximum voluntary contraction (%MVC)

force, for 528 [64], 256 [71], and 302 [72] MUs. Other studies investigated TA MU pools but

reported small population sizes [73] and/or did not report the recruitment thresholds [74–76].

We digitized the scatter plot in Fig 3 in [64] using the online tool WebPlotDigitizer [77].

The normalized MU population was partitioned into 10%-ranges of the values of Fth (in %

MVC), as reported in [71,72]. The distributions obtained from these three studies were aver-

aged. The normalized frequency distribution by 10%MVC-ranges of the Fth quantities hence

obtained was mapped to a pool of N MUs, providing a step function relating each jth MU in

the MU population to its 10%-range in Fth. This step function was least-squares fitted by a lin-

ear-exponential trendline (Eq 3) providing a continuous frequency distribution of TA MU

recruitment thresholds in a MU pool that reproduces the available literature data.

Fth jð Þ ¼ k1 � k2 �
j
N
þ D

j
Nð Þ

k3

F

� �

; j 2 ½½1;N�� ðEq 3Þ

Simpler trendlines, such as Fth jð Þ ¼ k1 � D
j
Nð Þ

k3

F [29], returned fits of lower r2 values. Accord-

ing to the three studies and to [20], a ΔF = 120-fold range in Fth was set for the TA muscle,

yielding Fth(N) = 90%MVC = ΔF�Fth(1), with Fth(1) = 0.75%MVC. Finally, the equation

Fth Nið Þ ¼ k1 � k2 �
Ni
N þ D

Ni
Nð Þ

k3

F

� �

¼ Fth
i was solved for the variable Ni for all Nr identified MUs

for which the experimental threshold Fth
i was recorded. The Nr identified MUs were thus

Fig 2. Definition of times ttri that describe the trapezoidal shape of the muscle isometric contraction.

https://doi.org/10.1371/journal.pcbi.1010556.g002
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assigned the Nth
i locations of the complete pool of N MUs ranked in order of increasing Fth:

i 2 ½½1;Nr�� ! Ni 2 ½½1;N��

When considering a 100-ms electromechanical delay between MN recruitment time and

onset of muscle unit force, the mapping i 2 ½½1;Nr�� ! Ni 2 ½½1;N�� did not substantially

change. It was therefore simplified that a MN and its innervated muscle unit were recruited at

the same time, and the i 2 ½½1;Nr�� ! Ni 2 ½½1;N��mapping derived for muscle units was

extrapolated to MNs.

Considering that typically less than 30 MUs (5% of the GM MU pool) can be currently

identified by HDEMG decomposition in GM muscles [27], and that the few papers identifying

GM MUs with intramuscular electrodes either did not report the MU Fth [78–80] or identified

less than 24 MUs up to 100% MVC [81,82], a GM-specific Fth(j) distribution could not be

obtained from the literature for the GM muscle. The Fth(j) distribution obtained for the TA

muscle was therefore used for the simulations performed with the GM muscle, which is accept-

able as an initial approximation based on visual comparison to the scattered data provided in

these studies.

Step ð2Þ: Current input IðtÞ
In the second step of the approach in Fig 1, the common synaptic input to the MN pool was

first estimated from the experimental data. The cumulative spike train (CST) was obtained as

the temporal binary summation of the Nr experimental spike trains spexpi ðtÞ.

CST ¼
X

i
spexpi ðtÞ ðEq 4Þ

The effective neural drive (eND) to the muscle was estimated by low-pass filtering the CST

in the bandwidth [0; 10]Hz relevant for force generation [47]. As the pool of MNs filters the

MN-specific independent synaptic noise received by the individual MNs and linearly transmits

the common synaptic input (CSI) to the MN pool [31,83], the CSI was equalled to the eND in

arbitrary units:

CSIðtÞ ¼ k � eNDðtÞ ðEq 5Þ

The common synaptic control (CSC) signal was obtained by low pass filtering the CSI in [0;

4]Hz.
This approach, which estimates the CSI from the Nr experimental spike trains is only valid

if the sample of Nr MNs is ‘large enough’ and ‘representative enough’ of the complete MN pool

for the linearity properties of the population of Nr MNs to apply [83]. To assess if this approxi-

mation holds with the Nr MNs obtained experimentally, the following two validations were

performed. (1) The coherence coherNr
2
2 0; 1½ �, averaged in [1; 10]Hz, was calculated between

two cumulative spike trains CSTNr
2
;1

and CSTNr
2
;2

computed from two complementary random

subsets of
Nr
2

MNs. This was repeated 20 times for random permutations of complementary

subsets of
Nr
2

MNs, and the coherNr
2

values were average yielding coherNr
2
;mean 2 0; 1½ �. The coher-

ence coherNr between the complete experimental sample of Nr MNs and a virtual sample of Nr

non-identified MNs was finally estimated by reporting the pair
Nr
2

; coherNr
2
;mean

� �
similarly to

Fig 2A in [47]. (2) The time-histories of the normalized force FðtÞ and common synaptic con-

trol CSC, which should superimpose if the linearity properties apply (see Fig 6 in [83]), were

compared with calculation of the normalized root-mean-square error (nRMSE) and coefficient

of determination r2. If coherNr > 0:7, r2>0.7 and nRMSE<30%, it was assumed that the sample
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of Nr MNs was large and representative enough of the MN pool for the linearity properties to

apply, and the eND was confidently assimilated as the CSI to the MN pool in arbitrary units. It

must be noted that if coherNr < 1, the linearity properties do not fully apply for the sample of

Nr MNs, and the CSI computed from the Nr MNs is expected to relate to the true CSI with a

coherence close but less than coherNr .
The CSI hence obtained reflects the net excitatory synaptic influx common to the MN pop-

ulation, which triggers the opening of voltage-dependent dendritic channels and the activation

of intrinsic membrane currents, such as persistent inward currents (PICs), which contribute to

the total dendritic membrane current I(t) responsible for spike generation. As the single-com-

partment LIF model considered in this study does not describe the dendritic activity, the PIC-

related nonlinearity in the CSI−I transformation was excluded from the model and I(t) was

simplified to be linearly related to CSI with a constant gain G across the MN pool. To avoid

confusion, I(t) is referred as ‘current input’ in the following. The limitations of this simplifica-

tion are investigated in the Limitations Section (Limitation 3). To identify G, it must be noted

that the CSI, which was computed from a subset of the MN pool, does not capture the firing

activity of the MNs that are recruited before the smallest identified Nth
1

MN, which is recruited

at time ft1N1
. It non-physiologically yields CSIðt < ft1N1

Þ ¼ 0. Accounting for this experimental

limitation, I(t) was defined to remain null until the first identified MN starts firing at ft1N1
, and

to non-continuously reach IthN1
at t ¼ ft1N1

:

I tð Þ ¼
0 if t < ft1N1

IthN1
þ G � CSIðtÞelse

with G ¼
IthNr � IthN1

CSIðft1NrÞ � CSIðft1N1
Þ

ðEq 6Þ

(

In (Eq 6), the rheobase currents of the first and last identified MNs IthN1
and IthNr were esti-

mated from a typical distribution of rheobase in a MN pool Ith jð Þ ¼ k1 � D
j
Nð Þ

k3

I , obtained as for

the distribution of Fth, from normalized experimental data from populations of hindlimb

alpha-MNs in adult rats and cats in vivo [84–92]. It is worth noting that the experimental Ith

were obtained by injecting current pulses directly into the soma of identified MNs, thus

bypassing the dendritic activity and most of the aforementioned PIC-generated nonlinear

mechanisms [40]. A ΔI = 9.1-fold range in MN rheobase in [3.9; 35.5]nA was taken [21,42],

while a larger ΔI is also consistent with the literature ([42], Table 4) and larger values of Ith can

be expected for humans [21].

Step (3): LIF model – parameter tuning and distribution of

electrophysiological properties in the MN pool

In the third step of the approach in Fig 1, single-compartment LIF MN models with current

synapses are calibrated to mimic the discharge behaviour of the Nr experimentally identified

MNs.

MN LIF model: description

A variant of the LIF MN model was chosen in this study for its relative mathematical simplicity

and low computational cost and its adequacy in mimicking the firing behaviour of MNs. The

LIF model described in (Eq 7) describes the discharge behaviour of a MN of rheobase Ith and

input resistance R as a capacitor charging with a time constant τ and instantaneously discharg-

ing at time ft when the membrane voltage Vm meets the voltage threshold Vth, after which Vm

is reset and maintained to the membrane resting potential Vrest for a time duration called
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‘inert period’ IP in this study. For simplicity without loss of generalisation, the relative voltage

threshold was defined as ΔVth = Vth−Vrest>0, and Vrest was set to 0.

The model is described by the following set of equations:

t
dVm

dt
¼ R � I tð Þ � Vm

t ¼ RC

VmðftÞ ¼ DVth

limt!ftþ Vm ¼ 0

8t 2 ½ft; ft þ IP�;Vm ¼ 0

ðEq 7Þ

8
>>>>>>>>><

>>>>>>>>>:

The differential equation was solved with a time step dt�0.001s as:

Vmð0Þ ¼ 0

8n 2 N�;Vm nT½ � ¼ e
�

T
tVm ðn � 1ÞT½ � þ R

T
t
� I nTð Þ

ðEq 8Þ

8
><

>:

This model includes 5 electrophysiological parameters: R, C, τ, ΔVth and IP. The passive

parameters R and C were mathematically related to the MN surface area S as R ¼ kR
S2:43 and C =

Cm�S after an extensive meta-analysis of published experimental data on hindlimb alpha-MNs

in adult cats in vivo [42], that sets the constant value of Cm to 1.3μF�cm2, supports the equality

τ = RC and the validity of Ohm’s law in MNs as Ith ¼ 2:7�10� 2

R ¼
DVth
R , setting the constant value

ΔVth = 27mV in this study. The model was thus reduced to the MN size parameter S and to the

IP parameter.

MN LIF model: the IP parameter

Single-compartment LIF models with no active conductances receiving current inputs can

predict non-physiologically large values of MN firing frequency (FF) because of a linear FF-I

gain at large but physiological current inputs I(t) [44]. The saturation in the FF-I relation typi-

cally observed in the mammalian motor unit firing patterns is primarily mediated by the volt-

age-dependent activity of the PIC-generating dendritic channels [40], that was overlooked in

the CSI−I transformation in Step (2), and which decreases the driving force of the synaptic cur-

rent flow as the dendritic membrane depolarizes. While a physiological modelling of this satu-

ration could be achieved with a LIF model with conductance synapses, as discussed in

Limitation 3 in the Limitations section, this nonlinear behaviour could also be captured in a

simple approach by tuning the phenomenological IP parameter in (Eq 7). Considering a con-

stant supra-threshold current I�Ith input to a LIF MN, the steady-state firing frequency FF

predicted by the LIF model is:

FF Ið Þ ¼
1

IP � RC ln 1 �
DVth
RI

� �,
I�Ith

FF Ið Þ �
1

IPþ C�DVth
I

ðEq 9Þ

As I and C typically vary over a 10-fold and 2.4-fold range respectively [42], the FF pre-

dicted by the LIF model is dominantly determined by the value of IP as the input current

increasingly overcomes the MN current threshold: FF I � Ithð Þ � 1

IP.

In the previous phenomenological models of MNs [9,10,29], a maximum firing rate FFmax

was defined and a non-derivable transition from FF(I) to constant FFmax was set for increasing

values of I(t). Here, IP was integrated to the dynamics of the LIF model and was derived from
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experimental data to be MN-specific in the following manner. For each of the Nr identified

MNs, the time-course of the MN instantaneous discharge frequencies (IDFs) was first

smoothed, as performed in [55], with a sixth-order polynomial trendline (IDFtrend) to neglect

any unexplained random noise in the analysis. The mean M of the trendline values during the

plateau of force ½tr2 ; tr3 � was then obtained. If 9t 2 ½tr1 ; tr2 � 1�; IDFtrendðtÞ > 0:9M, i.e. if the

MN reached during the ramp of I(t) in ½tr1 ; tr2 � 1� an IDF larger than 90% of the IDF reached

one second before the plateau of force, the MN was identified to ‘saturate’. Its IP parameter

was set to IP ¼ 1

maxðIDFtrendÞ
, which constrains the MN maximum firing frequency for high input

currents to FFmax � 1

IP ¼ maxðIDFtrendÞ. A power trendline IP(j) = a�jb was finally fitted to the

pairs ðNi; IPNiÞ of saturating MNs and the IPNi values of the non-saturating MNs were pre-

dicted from this trendline. To account for the residual variation in FF observed to remain at

high I(t) due to random electrophysiological mechanisms, the IP parameter was randomized

at each firing time, taking the value IP+o, where o was randomly obtained from a normal

gaussian distribution of IP
10

standard deviation.

MN LIF model: MN size parameter calibration

The remaining unknown parameter - the MN size S - defines the recruitment and firing

dynamics of the LIF model. The size Si of the ith identified MN was calibrated by minimizing

over the time range ttr0 ;
ttr2þttr3

2

h i
(Table 1) the cost function J(Si) computed as the root-mean-

square difference between experimental FIDFexpi ðtÞ and LIF-predicted FIDFsimi ðtÞ filtered

instantaneous discharge frequencies:

J Sið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dt
ttr2 þ ttr3

2
� tr0

�
X

ttr2 þ ttr3
2

tk¼tr0
ðFIDFsimi ðtkÞ � FIDFexpi ðtkÞÞ

2

v
u
u
u
u
t

minSi JðSiÞ; i 2 ½½1;Nr��

ðEq 10Þ

8
>>>>><

>>>>>:

To assess how well the calibrated LIF models can replicate the available experimental data,

the normalized RMS error (nRMSE) (%) and coefficient of determination r2 between

FIDFexpi ðtÞ and FIDFsimi ðtÞ, and the error in seconds between experimental and predicted

recruitment times Dft1i ¼ ft1;simi � ft1;expi were computed for the Nr MNs. Finally, a power trend-

line in (Eq 11) was fitted to the pairs ðNi; SNiÞ, and the continuous distribution of MN sizes in

the entire pool of N MNs was obtained.

S jð Þ ¼ k1 � D
j
Nð Þ

k3

S ðEq 11Þ

ΔS = 2.4 was taken in [42]. The S(j) distribution defines the continuous distribution of the

MN-specific electrophysiological properties across the MN pool ([42], Table 4).

MN LIF model: parameter identification during the derecruitment phase

The time-range ½tr3 ; tr5 � over which the MNs are being derecruited was not considered in the S
calibration in (Eq 10) because the MN’s current-voltage relation presents a hysteresis triggered

by long-lasting PICs, as discussed in [40,93,94]. This hysteresis, which leads MNs to be

derecruited at lower current threshold than at recruitment, can be phenomenologically inter-

preted in the scope of a single-compartment LIF model with no active conductance as an

increase in the ‘apparent’ MN resistance R during derecruitment to a new value Rd. To
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determine Rd, a linear trendline Idth ¼ kdthth � I
th (kdthth < 1) was fitted to the association of experi-

mental MN recruitment Ith and recruitment Idth current thresholds for the Nr recruited MNs,

and the distribution of MN input resistance R ¼ kR
S2:43 was increased over the derecruitment

time range ½tr3 ; tr5 � to:

Rd ¼
kdR
S2:43

with kdR ¼
kR
kdthth

> kR ðEq 12Þ

As reviewed in [20,40], the current-voltage hysteresis also explains the typically lower MN

discharge rate observed at derecruitment than at recruitment. For purely modelling perspec-

tives, this phenomenon was phenomenologically captured by increasing over the time-range

½tr3 ; tr5 � the value of the Cm property, which is the main parameter influencing the precited MN

FF in (Eq 7) for current inputs close to Ith. The simulated FIDFsimi traces were iteratively simu-

lated for the Nr MNs over the time-range ½tr3 ; tr5 � with the Nr Si−IPi−calibrated LIF models

obtained from Step (3), for 0.1μF�cm2 incremental changes in the value of the membrane spe-

cific capacitance Cm. The FIDFsimi results were compared to the FIDFexpi traces with nRMSE and

r2 values. The ‘apparent’ Cm value returning the lowest output for (Eq 13) was retained and

was renamed Cd
m.

J Cmð Þ ¼
nRMSE

100
� r2

2
ðEq 13Þ

In the following, the individual spike trains spsimi ðtÞ were predicted with Cm over the ½tr0 ; tr3 ½
time range and Cd

m over the ½tr3 ; tr5 � time range.

It must be noted that, although this approach can accurately capture the observed MN non-

linear input-output behaviour and is coherent with the modelling constraints imposed by the

LIF formulation in (Eq 7), as the Cm and R parameters mainly affect the discharge and recruit-

ment properties of the LIF model respectively in this model, the R and Cm parameters are pas-

sive MN properties which remain independent from the MN synaptic and membrane activity

in actual MNs, while the R-to-Rd and Cm-to-Cd
m transformations are merely phenomenological

interpretations of complex neurophysiological mechanisms, and do not provide any insights

into the working principles underlying MN recruitment. This limitation is further discussed in

Limitation 3.

Step (4): Simulating the MN pool firing behaviour

The firing behaviour of the complete MN pool, i.e. the MN-specific spike trains spj(t) of the N
virtual MNs constituting the MN pool, was predicted with a cohort of N LIF models receiving

the common synaptic current I(t) as input. The inert period IPj and MN size Sj parameters

scaling each LIF model were obtained from the distributions IP(j) and S(j) previously derived

at Step (3).

Validation

Validation 1. We assessed whether the Nr experimental spike trains spexpi ðtÞ were accu-

rately predicted by this 4-step approach (Fig 1). Steps (2) and (3) (Fig 1) were iteratively

repeated with samples of Nr−1 spike trains, where one of the experimentally recorded MNs

was not considered. At each ith iteration of the validation, the ith identified spike train spexpi ðtÞ
was not used in the derivation of the synaptic current I(t) (step 2) and in the reconstruction of

the MN size and IP distributions S(j) and IP(j) in the MN pool (step 3). As in Step (4), the
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FIDFsimi of the ith MN was finally predicted with a LIF model, which was scaled with the param-

eters S(Ni) and IP(Ni) predicted from the S(j) and IP(j) distributions. For validation, FIDFsimi
was compared to the experimental FIDFexpi with calculation of Dft1i , r2 and nRMSE values. This

validation was iteratively performed for all the Nr identified MN spike trains.

Validation 2. We assessed whether the N MN spike trains spsimj ðtÞ, predicted in Step 4 for

the entire MN pool from the Nr identified trains spexpi ðtÞ, accurately predicted the effective neu-

ral drive (eNDN) to the muscle. The eNDN was computed as the ½0; 4�Hz low-pass filtered

cumulative spike train of the N predicted spike trains, CSTN ¼
PN

j¼1
spsimj ðtÞ. As suggested for

isometric contractions [83], the normalized eNDN was compared for validation against the

normalized experimental force trace FðtÞ with calculation of the nRMSE and r2 metrics. FðtÞ
was also compared with nRMSE and r2 to the normalized effective neural drive eNDNr

com-

puted directly from the Nr experimentally identified MN spike trains. The added value of the

presented workflow (Steps 1 to 4) in predicting the neural drive to muscle was finally assessed

by comparing the (nRMSE, r2) pairs obtained for the eNDNr
and eNDN traces. Considering the

uncertainty on the value of N in the literature, as previously discussed, the performance of the

method with reconstructed populations of N ¼ fNr; 100; 200; 300; 400gMNs was investi-

gated. This sensitivity analysis provides different scaling factors N for the normalized MN

mapping (Step 1) and IP and SMN parameter distributions (Step 3) and constrains the number

of firing MNs involved in the computation of eNDN (Step 4).

Application to MN-driven muscle modelling

The N MN-specific spike trains spsimj ðtÞ predicted in step (4) were input to a phenomenological

muscle model to predict the whole muscle force trace FsimN in a forward simulation of muscle

voluntary isometric contraction. As displayed in Fig 3, the muscle model was built as N in-par-

allel Hill-type models which were driven by the simulated spike trains spsimj ðtÞ and replicated

the excitation-contraction coupling dynamics and the contraction dynamics of the N MUs

constituting the whole muscle. In brief, the binary spike train spsimj ðtÞ triggered for each jth MU

the trains of nerve and muscle fibre action potentials that drove the transients of calcium ion

Ca2+ and Ca2+-troponin complex concentrations in the MU sarcoplasm, yielding in a last step

the time-history of the MU active state aj(t). The MU contraction dynamics were reduced to a

normalized force-length relationship that scaled nonlinearly with the MU active state [95] and

transformed aj(t) into a normalized MU force trace fjðtÞ. The experiments being performed at

Fig 3. MN-driven neuromuscular model. The N in-parallel Hill-type models take as inputs the N spike trains spsim
j ðtÞ predicted in steps (1-4) and output the

predicted whole muscle force trace Fsim
m ðtÞ. The MU-specific active states aj(t) are obtained from the excitation-contraction coupling dynamics adapted from

[98] and extended to model the concentration of the Calcium-troponin system. The MU normalized forces f j ðtÞ are computed by the MU contractile elements

(CEi) at MU optimal length and are scaled with values of MU maximum isometric forces fmax
iso;j to yield the MU force traces fj(t). The predicted whole muscle

force is taken as Fsim
N ðtÞ ¼

P
jf jðtÞ.

https://doi.org/10.1371/journal.pcbi.1010556.g003
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constant ankle joint (100˚, 90˚ being ankle perpendicular to tibia) and muscle-tendon length,

it was simplified, lacking additional experimental insights, that tendon and fascicle length both

remained constant during the whole contractile event at optimal MU length lopt;j ¼ 1. The

dynamics of the passive muscle tissues and of the tendon and the fascicle force-velocity rela-

tionships were therefore neglected. Finally, the MU-specific forces fj(t) were derived with a

typical muscle-specific distribution across the MU pool of the MU isometric tetanic forces

f maxiso ðjÞ [64,71,74]. The whole muscle force was obtained as the linear summation of the MU

forces Fsim
N ðtÞ ¼

P
jfjðtÞ.

To validate FsimN ðtÞ, the experimental muscle force Fexp(t) was first approximated from the

experimental force trace F(t), which was recorded at the foot with a force transducer [26]. The

transducer-ankle joint and ankle joint-tibialis anterior moment arms L1 and L2 were estimated

using OpenSim [96] and a generic lower limb model [97]. Using the model muscle maximum

isometric forces, it was then inferred the ratio q of transducer force F(t) that was taken at MVC

by the non-TA muscles spanning the ankle joint in MVC conditions. The experimental muscle

force was estimated as Fexp tð Þ ¼ 1 � qð Þ �
L1

L2
� F tð Þ and was compared with calculation of nor-

malized maximum error ðnMEÞ; nRMSE and r2 values against the muscle force Fsim
N ðtÞ pre-

dicted by the MN-driven muscle model from the N neural inputs.

The whole muscle force Fsim
Nr
ðtÞ was also predicted using the Nr experimental spike trains

spexpi ðtÞ as inputs to the same muscle model of Nr in-parallel Hill-type models (Fig 3). In this

case, each normalized MU force trace fjðtÞ was scaled with the same f maxiso ðjÞ distribution, how-

ever assuming the Nr MNs to be evenly spread in the MN pool. Fsim
Nr
ðtÞ was similarly compared

to Fexp(t) with calculation of nME, nRMSE and r2 values. To assess the added value of the step

(1-4) approach in the modelling of MN-driven muscle models, the (nME, nRMSE, r2) values

obtained for the predicted FsimNr ðtÞ and Fsim
N ðtÞ were compared.

Results

Experimental data

As reported in Table 1, the experimental datasets DTA35 and HTA35 respectively identified 32

and 21 spike trains spexpi ðtÞ from the trapezoidal isometric TA muscle contraction up to 35%

MVC, HTA50 identified 14 spexpi ðtÞ up to 50%MVC, and HGM30 identified 27 spexpi ðtÞ from the

GM muscle up to 30%MVC. The Nr = 32 MN spike trains, identified in this dataset across the

complete TA pool of N = 400 MNs, are represented in Fig 4A in the order of increasing force

recruitment thresholds Fthi . The Nr MNs were globally derecruited at relatively lower force

thresholds (Fig 4B) and generally discharged at a relatively lower firing rate (Fig 4C) at dere-

cruitment than at recruitment.

Step (1): MN mapping

The Nr = 32 MNs identified in the dataset DTA35 were allocated to the entire pool of N = 400

MNs according to their recruitment thresholds Fthi (%MVC). The typical TA-specific fre-

quency distribution of the MN force recruitment thresholds Fth, which was obtained from the

literature and reported in the bar plot in Fig 5A, was approximated (Fig 5B) by the continuous

relationship:

Fth jð Þ ¼ 0:50 � 58:12 �
j
N
þ D

j
Nð Þ

1:83

F

� �

; j 2 ½½1;N�� ðEq 14Þ
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With this distribution, 231 TA MNs, i.e. 58% of the MN pool is recruited below 20%MVC,

which is consistent with previous conclusions [20].

From the Fth(j) distribution, the Nr identified MNs were mapped to the complete MN pool

(blue crosses in Fig 5B) according to their recorded force recruitment thresholds Fthi (ordinates

in Fig 4B). As shown in Fig 5C, the Nr MNs identified experimentally were not homogeneously

spread in the entire MN pool ranked in the order of increasing force recruitment thresholds,

as two MNs fell in the first quarter of the MN pool, 5 in the second quarter, 18 in the third

quarter and 5 in the fourth quarter. Such observation was similarly made in the three other

experimental datasets, where no MN was identified in the first quarter and in the first half of

the MN pool in the datasets HGM30 and HTA50 respectively (second column of Table 2). In all

four datasets, mostly high-thresholds MNs were identified experimentally.

Step (2): Common current input I(t)
To approximate the common synaptic input CSI(t) to the MN pool, the CST and the eND to

the MN pool were obtained in Fig 6 from the Nr MN spike trains identified experimentally

using (Eq 4) and (Eq 5). After 20 random permutations of
Nr
2

complementary populations of

MNs, an average coherence of coherNr
2
;mean ¼ 0:56 was obtained between

Nr
2

-sized CSTs of the

DTA35 dataset. From Fig 2 in [47], a coherence of coherNr ¼ 0:8 is therefore expected between

the CST in Fig 6A and a typical CST obtained with another virtual group of Nr = 32 MNs, and

by extension with the true CST obtained with the complete MN pool. The normalized eND
and force traces (black and green curves respectively in Fig 6B) compared with r2 = 0.92 and

nRMSE = 20.0% for the DTA35 dataset. With this approach, we obtained coherNr > 0:7, r2>0.7

and nRMSE<30% for all four datasets, with the exception of HGM30 for which coherNr < 0:7

(third column of Table 2). For the TA datasets, the sample of Nr identified MNs was therefore

concluded to be sufficiently representative of the complete MN pool for its linearity property

to apply, and the eND (red curve in Fig 6B for the dataset DTA35) in the bandwidth [0,10]Hz
was confidently identified to be the common synaptic input (CSI) to the MN pool. As observed

in Fig 6B, a non-negligible discrepancy, which partially explains why coherNr 6¼ 1, was however

systematically obtained between the eND and force traces in the regions low forces, where

mostly small low-threshold MNs are recruited. As discussed in the Discussion Section, this dis-

crepancy reflects the undersampling of small MUs identified from decomposed HDEMG sig-

nals and a bias towards mainly identifying the large high-threshold units which are recruited

Fig 4. Experimental data obtained from HDEMG signal decomposition in the dataset DTA35. (A) Time-histories of the transducer force trace in %MVC

(green curve) and of the Nr = 32 MN spike trains identified from HDEMG decomposition and ranked from bottom to top in the order of increasing force

recruitment thresholds Fth. (B) Association between force recruitment and derecruitment threshold, fitted by a linear trendline y = 0.9�x (r2 = 0.85). Identity is

displayed as a black dotted line. (C) Time-histories of the MN instantaneous discharge frequencies (IDFs, blue dots) smoothed by convolution with a Hanning

window of length 400ms (red curve) and with a sixth-order polynomial trendline (green curve) of the lowest-threshold identified (1st) MN.

https://doi.org/10.1371/journal.pcbi.1010556.g004
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Fig 5. Distribution of force recruitment thresholds Fth in the human Tibialis Anterior (TA) muscle and mapping of the Nr identified MNs to the complete MN

pool. (A) Typical partition obtained from the literature of the TA MN pool in 10% increments in normalized Fth. (B) Equivalent Fth stepwise distribution (black

dots) in a TA pool of N = 400 MNs, approximated by the continuous relationship Fth(j) (red curve). The mapping (blue crosses) of the Nr = 32 MNs identified

in the dataset DTA35 was obtained from the recorded Fth
i (Fig 4B). (C) Nr = 32 MNs (red dots) of unknown properties (Left) are mapped (Right) to the

complete MN pool from the Fth(j) distribution, represented by the blue dots of increasing sizes. The MNs represented here are numbered from left to right and

bottom to top from j = 1 to 400.

https://doi.org/10.1371/journal.pcbi.1010556.g005

Table 2. Intermediary results obtained for the datasets DTA35, HTA35, HTA50 and HGM30 from the three first

steps of the approach. For each dataset are reported (1) the locations in the complete pool of N MNs of the lowest-

(N1) and highest-threshold (NNr
) MNs identified experimentally, (2) the coherNr

value between the experimental and

virtual cumulative spike trains (CST), and the coefficients defining the distributions in the complete MN pool of (3)

the inert period (IP) parameter and of (4) the MN size (S). For the TA and GM muscles, N = 400 and N = 550

respectively.

Identified population CST IP(j)[s] = a�jb S jð Þ m2½ � ¼ Smin � Δ
j
Nð Þ

c

S

Dataset Nr i!Ni coherNr a b Smin[m2] c

DTA35 32 9-313 0.80 0.04 0.06 1:49 � 10� 7 1.47

HTA35 21 72-313 0.71 0.04 0.05 1:73 � 10� 7 2.76

HTA50 14 233-346 0.71 0.0006 0.80 1:35 � 10� 7 0.85

HGM30 27 162-412 0.65 0.03 0.20 1:20 � 10� 7 0.57

https://doi.org/10.1371/journal.pcbi.1010556.t002
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close to the plateau of force. From Fig 2 in [47], it is worth noting that the computed CSI in Fig

6B (red curve) accounts for 60% of the variance of the true synaptic input, which is linearly

transmitted by the MN pool, while the remaining variance is the MN-specific synaptic noise,

which is assumed to be filtered by the MN pool and is neglected in the computation of the

eND in this workflow.

As discussed in the Methods section, the normalized CSI (red curve in Fig 6B) was simpli-

fied to be linearly related to the total dendritic membrane current I(t). To do so, the scaling

factor was determined with a typical distribution of the MN membrane rheobase Ith(j) in a cat

MN pool, which was obtained (Fig 7A) from the literature [85,87,88,90,91,99–101] as:

Ith jð Þ ¼ 3:9 � 10� 9 � D
j
Nð Þ

1:18

I ; j 2 ½½1;N�� ðEq 15Þ

Using (Eq 6), the time-history of the current input I(t) was obtained (Fig 7B):

IðtÞ ¼
0 if t < ft1N1

3:9 � 10� 9 þ 6:0 � 10� 8 � CSIðtÞ else
ðEq 16Þ

(

Fig 6. Neural drive to the muscle derived from the Nr identified MN spike trains in the dataset DTA35. (A) Cumulative spike train (CST)

computed by temporal binary summation of the Nr identified MN spike trains. (B) Effective neural drive – Upon applicability of the linearity

properties of subsets of the MN pool, the effective neural drive is assimilated as the synaptic input to the MN pool. The normalized common

synaptic input (red), control (black) and noise (blue) are obtained from low-pass filtering the CST in the bandwidths relevant for muscle

force generation. The normalized experimental force trace (green curve) is displayed for visual purposes.

https://doi.org/10.1371/journal.pcbi.1010556.g006

Fig 7. (A) Typical distribution of MN current recruitment threshold Ith (Ni) in a cat MN pool according to the literature. (B) Current

input I(t), taken as a non-continuous linear transformation of the common synaptic input (red curve in Fig 6B) for the dataset DTA35.

https://doi.org/10.1371/journal.pcbi.1010556.g007
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Step (3): LIF model – MN size calibration and distribution

Because of the modelling choices made for our MN LIF model, the MN inert period (IP) and

the MN size S parameters entirely define the LIF-predictions of the MN firing behaviour. The

IPi parameters of the Nr MNs in the dataset DTA35 (Fig 8) were obtained from the maximum

firing frequency of the 20 MNs identified to ‘saturate’, from which the distribution of IP values

in the entire pool of N MNs was obtained: IP(j)[s] = 0.04�j0.05. With this approach, the maxi-

mum firing rate assigned to the first recruited and unidentified MN is 1

IP1
¼ 1

0:04s ¼ 25Hz. The

IP distributions obtained with this approach for the three other datasets are reported in the

fourth column of Table 2 and yielded physiological approximations of the maximum firing

rate for the unidentified lowest -threshold MN for all datasets, with the exception of the dataset

HTA50, which lacks the information of too large a fraction of the MN pool for accurate extrap-

olations to be performed.

The size parameter Si of the Nr LIF models was calibrated using the minimization function

in (Eq 14) so that the LIF-predicted filtered discharge frequencies FDIFsimi ðtÞ of the Nr MNs

replicated the experimental FDIFexpi ðtÞ, displayed in Fig 9A and 9B (blue curves). As shown in

Fig 9C, the recruitment time ft1 of three quarters of the Nr identified MNs was predicted with

an error less than 250ms. The calibrated LIF models were also able to accurately mimic the fir-

ing behaviour of the 27 lowest-threshold MNs as experimental and LIF-predicted FIDF traces

compared with r2>0.8 and nRMSE<15% (Fig 9D and 9E). The scaled LIF models reproduced

the firing behaviour of the five highest-threshold MNs (Ni>300) with moderate accuracy, with

Fig 8. MN Inert Periods (IPs) in ms obtained from the experimental measurements of IDFs in dataset DTA35. The twenty lowest-

threshold MNs are observed to ‘saturate’ as described in the Methods and their IP (black crosses) is calculated as the inverse of the

maximum of the trendline fitting the time-histories of their instantaneous firing frequency. The IPs of the 12 highest-threshold MNs

(red dots) are obtained by trendline extrapolation.

https://doi.org/10.1371/journal.pcbi.1010556.g008
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Δft1 and nRMSE values up to -1.5s and 18.2%. Despite modelling limitations discussed in the

Discussion section, the global results in Fig 9 confirm that the two-parameters calibrated LIF

models can accurately reproduce the firing and recruitment behaviour of the Nr experimental

MNs. It must be noted that the Δft1 and r2 metrics were not included in the calibration proce-

dure and the (Δft1, r2) values reported in Fig 9 were therefore blindly predicted.

The cloud of Nr pairs fNi; SNig of data points (black crosses in Fig 10A), obtained from MN

mapping (Fig 5B and 5C) and size calibration for the dataset DTA35, were least-squares fitted

(red curve in Fig 10A, r2 = 0.96) by the power relationship in (Eq 17), with ΔS = 2.4:

S jð Þ ¼ 1:49 � 10� 7 � D
j
Nð Þ

1:47

S ðEq 17Þ

As reported in the last column of Table 2, the minimum MN size (in m2) obtained by

extrapolation of this trendline was in the range [1.20, 1.73]�10−1mm2 for the datasets DTA35,

HTA35 and HGM30, with expected maximum MN size (in m2) in the range [2.88, 4.15]�

10−1mm2 which is consistent with typical cat data [42,102–107], even if slightly in the lower

range. The low value for the c coefficient observed in Table 2 for the TA50 and GM30 datasets

suggests that the typical skewness in MN size distribution reported in the literature [42] was

not captured for these two datasets, in which low-threshold MNs in the first quarter of the MN

population were not identified from HDEMG signals.

As displayed in Fig 9A and 9B, the phenomenological adjustment of the R and Cm parame-

ters described in (Eq 12) and (Eq 13) successfully captured the main effects of the hysteresis

mechanisms involved with MN derecruitment, where MNs discharge at lower rate and stop

Fig 9. Calibration of the MN size Si parameter. (A and B) Time-histories of the experimental (black) versus LIF-predicted (blue) filtered instantaneous

discharge frequencies (FIDFs) of the 2nt (A) and 16th (B) MNs identified in the DTA35 dataset after parameter calibration. (C) Absolute error Δft1 in seconds in

predicting the MN recruitment time with the calibrated LIF models. The accuracy of LIF-predicted FIDFs is assessed for each MN with calculation of the

nRMSE (D) and r2 (E) values. (C-E) The metrics are computed for the ½tr0 ; tr3 � time range only. The dashed lines represent the Δft12[−250; 250]ms, nRMSE2[0;

15]%MVC and r22[0.8, 1.0] intervals of interest respectively.

https://doi.org/10.1371/journal.pcbi.1010556.g009
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firing at lower current input than at recruitment. In all four datasets, J Cmð Þ ¼ nRMSE � r2
2

was par-

abolic for incremental values of Cm and a global minimum was found for Cd
m ¼ 2:0; 2:0; 1:6

and 2.2μF�cm2 for the datasets DTA35, HTA35, HTA50 and HGM30, respectively. These values

for the parameter Cd
m were retained for the final simulations (Step (4)) over the ½tr3 ; tr5 � time

range.

Step (4): Simulating the MN pool firing behaviour

As displayed in Fig 10B for the dataset DTA35, the S(j) distribution determined the MN-spe-

cific electrophysiological parameters (input resistance R and membrane capacitance C) of a

cohort of N = 400 LIF models, which predicted from I(t) the spike trains of the entire pool of N
MNs (Fig 10C). As displayed in the plot of smoothed FIDFs in Fig 10C, the output behaviour

of the reconstructed MN pool agrees with the Onion-skin scheme [108] where lower-threshold

MNs start discharging at higher frequencies and reach higher discharge rates than larger

recruited units.

Validation

The four-step approach summarized in Fig 1 is detailed in Fig 11 and was validated in two

ways.

Validation 1. The simulated spike trains were validated for the Nr MNs by comparing

experimental and LIF-predicted FIDFs, where the experimental information of the investi-

gated MN was removed from the experimental dataset and not used in the derivation of the IP
(j) and S(j) distributions of the synaptic current I(t). For the Nr MNs of each dataset, Fig 12

reports the absolute error Δft1 in predicting the MN recruitment time (1st row) and the com-

parison between experimental and LIF-predicted filtered instantaneous discharge frequencies

(FIDFs) with calculation of nRMSE (%) (2nd row) and r2 (3rd row) values over the ½tr0 ; tr5 � time

range. In all datasets, the recruitment time of 45-to-65% of the Nr identified MNs was pre-

dicted with an absolute error less than Δft1= 250ms. In all datasets, the LIF-predicted and

experimental FIDFs of more than 80% of the Nr MNs compared with nRMSE<20% and

r2>0.8, while 75% of the Nr MN experimental and predicted FIDFs compared with r2>0.8 in

the dataset HGM30. These results confirm that the four-step approach summarized in Fig 1 is

valid for all four datasets for blindly predicting the recruitment time and the firing behaviour

of the Nr MNs recorded experimentally. The identified MNs that are representative of a large

fraction of the complete MN pool, i.e. which are the only identified MN in the range

Ni �
N
10

;Ni þ
N
10

� �
of the entire MN pool, such as the 1st MN in the dataset DTA35 (Fig 5C), are

some of the MNs returning the highest Δft1 and nRMSE and lowest r2 values. As observed in

Fig 12, ignoring the spike trains spexpi ðtÞ of those ‘representative’ MNs in the derivation of I(t),
IP(j) and S(j) in steps (2) and (3) therefore affects the quality of the predictions more than

ignoring the information of MNs that are representative of a small fraction of the MN popula-

tion. In all datasets, nRMSE>20% and r2<0.8 was mainly obtained for the last-recruited MNs

(4th quarter of each plot in Fig 12) that exhibit recruitment thresholds close to the value of the

current input I(t) during the plateau of constant force in the time range ½ttr2 ; ttr3 �. In all datasets,

the predictions obtained for all other MNs that have intermediate recruitment thresholds and

are the most identified MNs in the datasets, were similar and the best among the pool of Nr

MNs.

Validation 2. The effective neural drive predicted by the 4-step approach summarized in

Fig 1 was validated by comparing for isometric contractions, the normalized eNDN (orange

traces in Fig 13) computed from the N predicted spike trains spsimj ðtÞ to the normalized force
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trace FðtÞ (green trace in Fig 13). The eNDN was accurately predicted for the datasets DTA35

and HTA35, with r2 = 0.97−0.98 and nRMSE<8% (Table 3). The results obtained from the

dataset HGM30 returned r2 = 0.89 and nRMSE = 18.2% (Table 3), accurately predicting the

eNDN for the positive ramp and first half of the plateau of force and then underestimating the

true neural drive (HGM30, Fig 13). The eNDN predicted for the dataset HTA50 returned results

Fig 10. Reconstruction of the firing behaviour and recruitment dynamics of the complete MN pool. (A) The Nr calibrated MN sizes (black crosses) are lest-

squares fitted by the power trendline S jð Þ m2½ � ¼ 1:49 � 10� 7 � D
j
Nð Þ

1:47

S , which reconstructs the distributions of MN sizes in the complete MN pool. (B) The S(j)
distribution determines the MN-specific R and C parameters of a cohort of N LIF models, which is driven by the current input I(t) and predicts (C) the spike

trains spsimj ðtÞ of the N virtual MNs constituting the complete MN pool. (D) The MN instantaneous discharge frequencies were computed from the simulated

the spike trains spsimj ðtÞ and were smoothed with a sixth-order polynomial [55]. One out of ten IDFs is displayed for clarity. The blue-to-red gradient for small-

to-large MNs shows that the output behaviour of the reconstructed MN population is in agreement with the Onion-Skin scheme.

https://doi.org/10.1371/journal.pcbi.1010556.g010
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of lower accuracy (r2 = 0.88 and nRMSE = 15.1%) compared to the three other datasets. A null

eND was predicted for one third of the simulation where a muscle force up to 20%MVC is gen-

erated, and the eND was overestimated for the rest of the (de)recruitment phase (HTA50,

orange trace, Fig 12). As detailed in the discussion, the latter is explained by an inadequate IP
(j) distribution (Table 2), due to a lack of experimental information in the dataset HTA50,

which returns non-physiological maximum firing rates for the low-thresholds MNs. Two data

points (16; 0.032) and (118; 0.037), obtained from the experimental data in the dataset DTA35

with a scaling factor of 35

50
applied to the IP values, were appended to the list of Nr data points

ðNi; IPNiÞ to describe the maximum firing behaviour of the first half of the MN pool for which

no MN was identified for the dataset HTA50 (Table 2). A new IP(j) distribution was obtained,

returning an improved estimation of the eNDN (HTA50, purple trace, Fig 12) with respectively

lower and higher nRMSE and r2 metrics (Table 3). With three times lower nRMSE and higher

r2 values for all four datasets (Table 3), the eNDN predicted from the 4-step approach (orange

dotted traces in Fig 13) was a more accurate representation of the real effective neural drive

than the eNDNr
(blue dotted traces in Fig 13) computed from the Nr experimental spike trains,

Fig 11. Detailed description of the 4-step workflow applied to the DTA35 dataset. The firing activity of a fraction of the MN pool is obtained from

decomposed HDEMG signals. These Nr = 32 experimental spike trains provide an estimate of the effective neural drive to muscle and explain most of the MN

pool behaviour (coherence = 0.8). From a mapping of the Nr identified MNs to the complete MN pool (Step (1)), literature knowledge on the typical distibution

of Ith in a mammalian MN pool, and using the linearity properties of the population of Nr MNs, the current input I(t) is estimated (Step (2)). I(t) is input to Nr
LIF models of MN to derive, after a one-parameter calibration step minimizing the error between experimental and LIF-predicted FIDFs, the distribution of

MN sizes across the complete MN pool (Step (3)). The distribution of MN sizes, which entirely describes the distribution of MN-specific electrophysiological

parameters across the MN pool, scales a cohort of N = 400 LIF models which transforms I(t) into the simulated spike trains of the N MNs of the MN pool (Step

(4)). The effective neural drive to muscle is estimated from the N simulated spike trains.

https://doi.org/10.1371/journal.pcbi.1010556.g011
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especially in the phases of MN (de)recruitment where the real effective neural drive was under-

estimated by eNDNr
. The predicted eNDN also produced less noise than the eNDNr

trace during

the plateau of force. With r2>0.85 and nRMSE<20%, this four-step approach is valid for accu-

rately reconstructing the eND to a muscle produced by a collection of N simulated MN spike

trains, which were predicted from a sample of Nr experimental spike trains. It is worth noting

that the accuracy of the eNDN predictions, performed in Table 3 and Fig 13 for NTA = 400 and

NGM = 550 MNs as discussed in the Methods Section, was not sensitive to the size N of the

reconstructed MN population. For example, for the DTA35 dataset, the eNDN computed with

populations of N = {32, 100, 200, 300, 400} MNs systematically compared to the real effective

neural drive with r2 = 0.98, and respectively returned nRMSE = 7.7, 6.9, 6.5, 6.1 and 5.9%, with

slightly more accurate predictions of eNDN with an increasing N at low force during

derecruitment.

Application to MN-driven muscle modelling

Fig 14 reports for the datasets DTA35 and HTA35, for which the eNDN was the most accurately

predicted among the four datasets (Fig 13, Table 3), the time evolutions of the whole muscle

force F(t) recorded experimentally (green curve) and the whole muscle forces predicted with

the MN-driven muscle model described in Fig 3 using Nr experimental (FNrðtÞ, blue curves)

and N simulated (FN(t), red curves) spike trains as inputs. The muscle force trace FN(t)

Fig 12. Validation of the MN recruitment and firing behaviour predicted with the 4-step approach (Fig 1) for the Nr MNs experimentally identified in

the four datasets DTA35, HTA35, HTA50 and HGM30 described in Table 1. For the validation of each ith predicted MN spike train, the experimental

information of the ith identified MN was omitted when deriving the current input I(t) and the IP(j) and S(j) distributions (steps 2 and 3), from which the IPi
and Si parameters are obtained without bias for the ith MN. The spike train spsimi ðtÞ of the ith MN is then predicted with an IPi, Si-scaled LIF model receiving I(t)
as input. The absolute error in predicting the experimental recruitment time Dft1i ðsÞ is reported for each of the Nr MNs in the first row of the figure.

Experimental and filtered instantaneous discharge frequencies FIDFexp
i ðtÞ and FIDFsimi ðtÞ, computed from spexpi ðtÞ and spsimi ðtÞ are compared with calculation of

nRMSE (%) and r2 in the second and third rows of the figure. The dashed lines represent the Δft12[−250; 250]ms, nRMSE2[0; 15]%MVC and r22[0.8, 1.0]

intervals of interest respectively.

https://doi.org/10.1371/journal.pcbi.1010556.g012
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obtained from the N simulated spike trains derived in steps (1-4) compared with the experi-

mental force F(t) with r2 = 0.95 and nRMSE = 11% for the dataset DTA35 and r2 = 0.97 and

nRMSE = 11% for the dataset HTA35. These results validate the approach provided in this

study for predicting the whole muscle force as a collection of MU force contributions from the

Fig 13. For the 4 datasets, validation against the normalized force trace FðtÞ (green trace) of the normalized effective neural drive to

muscle (eNDN) produced by the complete MN pool (orange trace) and computed from the N MN spike trains spsim
j ðtÞ predicted with the

4-step approach. For comparison, the eNDNr
directly computed from the Nr identified MNs is also reported (blue dashed trace). For the

dataset HTA50, an additional prediction was performed (purple trace), where the IP(j) distribution obtained from step (3) was updated to

return physiological maximum firing rates for all N MNs.

https://doi.org/10.1371/journal.pcbi.1010556.g013

Table 3. For all four datasets, the r2 and nRMSE values obtained for the comparison of the time-histories of the

normalized experimental force trace against the effective neural drive (1) eNDNr
and (2) eNDN computed from the

spike trains of (1) the Nr identified MNs and (2) the N virtual MNs. The results for HTA50 (1) were obtained with

the standard approach, while those for HTA50 (2) were obtained with a revisited IP(j) distribution (see text).

Nr MNs (experimental) N MNs (simulated)

Dataset r2 nRMSE (%) r2 nRMSE (%)

DTA35 0.92 19.5 0.98 5.9

HTA35 0.85 26.8 0.97 7.9

HTA50 (1) 0.83 26.9 0.88 15.1

HTA50 (2) 0.92 10.6

HGM30 0.85 28.8 0.89 18.2

https://doi.org/10.1371/journal.pcbi.1010556.t003
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MN-specific contributions to the effective neural drive. The muscle force trace FN(t) obtained

from the N MN spike trains returned more accurate predictions than FNrðtÞ (r2 = 0.88 and

nRMSE = 27% for the dataset DTA35 and r2 = 0.79 and nRMSE = 33% for the dataset DTA35),

in which case the reconstruction of the MN pool in steps (1-4) was disregarded and the Nr

experimental spike trains were directly used as inputs to the muscle model in Fig 3.

Discussion

This study reports a novel four-step approach, summarized in Fig 1 and displayed in detail in

Fig 11, to reconstruct the recruitment and firing behaviour of a complete human pool of N
MNs from a sample of Nr experimental spike trains obtained from the decomposition of

HDEMG or intramuscular recordings during voluntary contractions. This approach can help

neuroscientists, experimentalists, and modelers to investigate MN pool neuromechanics, bet-

ter understand experimental datasets, and control more detailed neuromuscular models to

advance our understanding of the neural strategies taken by the human central nervous system

to control voluntary muscle contractions.

The three first steps of our approach identify from a sample of Nr experimental spike trains

a distribution of the MN electrophysiological properties across the MN pool. The Nr MN spike

trains are used to approximate the common synaptic input CSI(t) to the complete MN pool

(Fig 7). For simplicity, the CSI is linearly related to the post-synaptic total dendritic membrane

current I(t), which is input to a cohort of Nr single-compartment LIF models with current syn-

apses. The LIF firing behaviour is entirely described by the phenomenological MN Inert

Period parameter IPi, derived from the experimental data (Fig 8), and by the MN size Si
parameter to which all the MN electrophysiological properties are related, according to the

relations provided in [42]. After calibration of the Si parameter, the Nr LIF models accurately

mimic the filtered discharge behaviour and accurately predict the recruitment dynamics of the

Nr experimental MNs (Fig 9). The Nr MNs are allocated into the complete MN pool (Fig 5B

and 5C) according to their recorded force recruitment thresholds Fth
i (Fig 4B) and a typical

species- and muscle-specific Fth(j) distribution (Fig 5). From the previous findings, the contin-

uous distribution of MN sizes S(j) (Fig 10A) is derived for the complete pool of N MNs. S(j)
defines the electrophysiological properties [42] of the MNs constituting the complete MN

pool. The neural behaviour of the complete pool of N MNs is predicted in the 4th step with a

cohort of N Sj-IPj-scaled LIF models and the application of the current drive I(t) (Fig 10).

Validation of the approach

The approach was successfully validated both for individual MNs and for the complete pool of

N MNs. By blindly scaling the LIF models in steps (1-3) with permutations of Nr−1 input

experimental spike trains, the filtered discharge behaviour and the recruitment dynamics of

the Nr individual MNs were accurately predicted for the four investigated datasets (Fig 12).

The effective neural drive (eNDN) to muscle elicited by the complete pool of N MNs was also

accurately predicted by the 4-step approach for the HTA35, DTA35 and HGM30 datasets (Fig

13, Table 3). The latter result suggests that the recruitment dynamics and the normalized dis-

tribution of firing rates across the firing MN pool were accurately predicted for the non-identi-

fied population of N−Nr MNs. The accuracy of the eNDN predictions was not sensitive to the

size N of the reconstructed population, with acceptable eNDN predictions (nRMSE<20%,

r2>0.9) obtained with as few as ten distributed MNs. This suggests that the MN mapping (Step

1) and the derivation of the MN properties distribution (Step 3) in Figs 8 and 10A are the key

contributions for describing the complete MN pool behaviour from the input experimental

data.

PLOS COMPUTATIONAL BIOLOGY Estimation of the firing behaviour of a complete motoneuron pool

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010556 September 29, 2022 25 / 39

https://doi.org/10.1371/journal.pcbi.1010556


Despite the modelling limitations, discussed in [44] and in the Limitations Section, inherent

to single-compartment LIF models with current synapses and related to the phenomenological

IP, Cd and Rd parameters, the LIF models scaled following the methodology described in Step

(3) can capture the distribution of MN discharging characteristics across the MN population.

For example, the firing activity of the reconstructed MN population agrees with the onion-

skin scheme (Fig 10D), as expected for slow low-force trajectories in human muscle contrac-

tion. While the MN size parameter calibration (Fig 9) only relies on the minimization of the

root-mean square difference between experimental and predicted FIDFs, the normalized time-

history of the FIDFs (high r2 in Fig 12) and the MN recruitment times (low Δft1 values in Fig

12) of the Nr MNs are both accurately mimicked (Fig 9) and blindly predicted (Fig 12) for all

four datasets. Some realistic aspects of the MN neurophysiology are also maintained. For

example, the range of MN surface areas [0.15; 0.36]mm2 and input resistances [0.5; 4.1]MO
obtained from the S(j) distribution falls into the classic range of MN properties for cats

[21,42], which is consistent with the distribution of rheobase values used in Step (2) that was

obtained from cat data. The distribution of MN input resistance in the MN pool, obtained

from the calibrated sizes S(j), defines the individual MN rheobase thresholds and predicts that

80% of the human TA MU pool is recruited at 35%MVC (Fig 10C), which is consistent with

previous findings in the literature [20,64].

Benefits of the approach

Benefit 1 – Better understanding the MN pool firing behaviour inferred from decom-

posed HDEMG outputs. The workflow provides a method to better understand datasets of

Nr experimental spike trains obtained from signal decomposition. HDEMG decomposition

techniques commonly identify samples of few tens of MNs [27] at most, i.e. typically less than

10-25% of the MU pool. The mapping in Fig 5 and Fig 10A demonstrates that these Nr-sized

samples of MNs currently are not representative of the complete MN population, as supported

by the [0.65; 0.80] coherNr values in Table 2. EMG decomposition shows a bias towards under-

sampling small low-threshold MUs and identifying large high-threshold MUs because of their

larger electric signal amplitude detected by the HDEMG electrodes. Consequently, the CSTNr

Fig 14. Prediction of the experimental force trace F (t) (green curve) with the MN-driven muscle model described in Fig 3. FNr ðtÞ (blue curve) was

predicted with the Nr experimental spike trains input to the muscle model. FN(t) (red trace) was obtained from the cohort of N experimental spike trains

simulated by the four-step approach.

https://doi.org/10.1371/journal.pcbi.1010556.g014
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computed from the Nr identified MNs is not an accurate representation of the true muscle

neural drive (Fig 13, Table 3). The method in Fig 11 identifies credible values for some MN-

specific electrophysiological and morphometric properties, including MN membrane surface

area, input resistance, capacitance, rheobase and time constant, for the dataset of Nr experi-

mental MNs and for the N−Nr MNs that cannot be recorded. Using a realistic distribution of

these properties, the eNDN produced by the reconstructed MN population is accurately esti-

mated, insensitive to the value of N, because it includes the firing activity of the complete frac-

tion of the smaller MNs that were underrepresented in the experimental dataset, especially

during the force ramps in [t1; t2] and [t3; t4](Fig 2), where the eNDNr
can reach 70% normalized

maximum error. The eNDN besides includes the activity of the complete population of high-

threshold MNs, which reduces noise (orange vs blue trace in Fig 13) during the plateau of

force in [t2; t3]. The eNDN also filters the local non-physiological variations displayed by the

eNDNr
such as the decrease in eNDNr

in [10; 15]s in DTA35 and HTA35 (top plots in Fig 13), the

sudden rise and drop in eNDNr
at t = 10s and t = 23s in HTA50 (bottom left plot in Fig 13) or

the steeply decreasing eNDNr
from t = 28s in HGM30 (bottom right plot in Fig 13). Understand-

ing and accounting for these experimental limitations is important and has critical implica-

tions in HDEMG-driven neuromuscular modelling when the CSTNr
is input to a muscle

model [109,110].

The workflow also provides a method to support future experimental investigations. The

signal decomposition process can be refined and more MNs can be identified by iteratively

running this workflow and using the N−Nr simulated spike trains of the non-identified MNs

as a model for identifying more MNs from the recorded signals. The method moreover pro-

vides simple phenomenological two-parameter-scaled LIF models described in step (3) to

accurately replicate the recruitment and firing behaviour of the Nr identified MNs (Fig 9) for

further investigation.

Benefit 2 – Advances in MN pool modelling. This four-step approach advances the

state-of-the-art in MN pool modelling. As discussed in the introduction, using a sample of Nr

experimental MN spike trains permits for the first time in human MN pool modelling to (1)

estimate the true time-course of the common synaptic input to the MN pool, which cannot be

measured experimentally, (2) approximate with a one-parameter calibration, available

HDEMG data and knowledge from the literature, the MN-specific electrophysiological prop-

erties of all the MNs in the MN pool and a realistic distribution of these properties across the

pool, which could, to date, only be obtained in specialized experimental and MN pool model-

ling studies in animals [39], and (3) validate the forward predictions of MN spike trains and

effective neural drive to muscle to human experimental data. The pool of LIF models, the max-

imum firing frequency of which is obtained from the available experimental data, intrinsically

accounts for the onion-skin theory [108] (Fig 10D), and better replicates the MN membrane

dynamics of the MN pool than Fuglevand-type phenomenological models [10,29], where the

MN-specific firing rates are predicted as a linear function of the current input I(t). Moreover,

single-compartment current-input LIF models can credibly replicate most of the MN mem-

brane dynamics [43] and allowed accurate predictions of the MN pool behaviour (Figs 12 and

13), while they provide a simpler modelling approach and a more convenient framework for

MN electrophysiological parameter assignment in the MN pool than comprehensive Hodg-

kin-Huxley-type MN models [30,32,111,112]. This four-step approach demonstrated to be

robust to systematic differences in the input experimental datasets. For example, it accurately

predicted the individual MN firing behaviour of the Nr MNs for all four datasets (Fig 12)

despite the latter being obtained at different levels of muscle contractions, on different subjects

and muscles and in different experimental approaches. The approach accurately predicted the
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eNDN of both DTA35 and HTA35 datasets from Nr = 32 and 21 identified MNs respectively

(Table 3), suggesting that the method is not sensitive to the number Nr of identified MNs, pro-

viding that the Nr identified MNs and their properties are homogeneously spread in the MN

pool, as in datasets DTA35 and HTA35 where at least one MN is identified in the each 10%-

range of the rheobase domain. The accurate prediction of eNDN for the dataset HGM30 in the

time range [4.7; 7.2] s (Fig 13 bottom-right plot) also suggests that the quality of the predictions

is not sensitive to the hindlimb muscle investigated, providing that the Fth distribution is repre-

sentative of the investigated muscle.

Benefit 3 – Relevance for neuromuscular modelling. A MN-driven neuromuscular

model of in-parallel Hill-type actuators describing the MUs (Fig 3) is described in the Methods

section and is used to predict the experimental muscle isometric force (green trace in Fig 14)

from the Nr experimental or N reconstructed MN spike trains. The complete reconstruction of

the discharging MN population detailed in Fig 11 is a key step towards advancing the state-of-

the-art in neuromuscular modelling on several aspects.

Firstly, the neural input to the neuromuscular model in Fig 3 is a vector of experimental

spike trains that is a more easily interpretable and a more detailed description of the muscle

neural drive than the rectified-normalized-filtered envelopes of recorded bipolar EMGs

(bEMGs) [95,113,114] or the CSTNr
[109,110,115] typically used in single-input muscles mod-

els. Secondly, despite advanced multi-scale approaches in modelling whole muscles as a single

equivalent MUs [98,116–120], the multiple Hill-MU model in Fig 3 provides a more conve-

nient framework to model in detail the continuous distribution of the MU excitation-contrac-

tion and force properties in the MU pool. Thirdly, a few other multi-MU models were

proposed in the literature [9,10,12,39,98,121,122], some of which used the Fuglevand’s formal-

ism [29] to model the MN firing behaviour and recruitment dynamics of complete pools of N
MNs, which are intrinsic to the experimental spexpi ðtÞ, to predict whole muscle forces with col-

lections of N MU Hill-type [9,123] Hill-Huxley-type [10] or twitch-type [39] muscle models.

However, these studies lacked experimental neural control at the MN level and considered

artificial synaptic inputs to their model, the predicted force of which was indirectly validated

against results from other models and not against synchronously recorded experimental data,

as performed in Figs 12–14 in this study. Finally, Fig 14 demonstrates that the reconstruction

of the complete MN population described in this study (steps 1 to 4 in Fig 1) is a key step for

accurate MN-driven neuromuscular predictions of muscle force. The Nr-MU model, that

receives the Nr individual MN spike trains spexpi ðtÞ, intrinsically underestimates the whole mus-

cle activity when dominantly low-threshold MUs are recruited but are under-represented in

the experimental sample (Figs 5 and 13). The N-MU model, which receives as inputs the N
spike trains spsimj ðtÞ generated by the four-step approach, allows a more realistic assignment of

distributed MU properties (MU type and maximum isometric force) to the complete MU pop-

ulation, and returned more accurate force predictions than the Nr-MU model (Fig 14). It is

worth noting that the N-model did not require any parameter calibration except the MN size

in step 3. The detailed modelling of the distribution of the excitation-contraction properties of

the MUs makes the N-model more suitable for investigating the muscle neuromechanics than

typical EMG-driven models, the neural parameters of which do not have a direct physiological

correspondence and must be calibrated to match experimental joint torques [95,123,124].

Limitations of the approach and potential improvements

Despite the aforementioned good performance of the four-step workflow, the method presents

4 main limitations, for some of which potential improvements are proposed in the following.
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Limitation 1 – Model validation. The two validations of the approach (Figs 12 and 13)

present some limitations. The local validation in Fig 12 only ensures that the method accu-

rately estimates the MN firing behaviour for the fractions of the MN pool that were experi-

mentally identified. This local validation alone does not inform on the accuracy of the

predictions for the non-identified regions of the MN pool and must be coupled with a global

validation of the MN pool behaviour by validating the predicted eNDN. While the local valida-

tion was successful for the HTA50 dataset (Fig 12), where less than 30% of the active MN pool

is represented, it is inferred in Fig 13C that the individual MN firing rates were overestimated

for the first half of the non-recorded MN pool. This local validation would be self-sufficient for

experimental samples that contain a large and homogeneously spread population of identified

MNs, obtained from decomposed fine-wire intramuscular electrode and HDEMG grid signals.

The validation of the eNDN is performed in this study against an experimental force recorded

by a transducer (green traces in Fig 13), which accounts for the force-generating activity of

both the muscle of interest and the synergistic and antagonistic muscles crossing the ankle.

The experimental force trace measured in the TA datasets may be an acceptable validation

metric as the TA muscle is expected to explain most of the recorded ankle torque in dorsiflex-

ion. The TA muscle is indeed the main dorsiflexor muscle with a muscle volume and maxi-

mum isometric force larger than the flexor hallucis longus muscle, which moment arm is

besides not aligned with the dorsiflexion direction and mainly acts for ankle inversion. How-

ever, the gastrocnemius lateralis, soleus, and peroneus muscles acts synergistically with the

GM muscle for ankle plantarflexion and the experimental torque recorded in dataset HGM30

may not be representative of the GM muscle force-generation activity and may not be a suit-

able validation metric for eNDN. In Fig 13, the decreasing eNDN and eNDNr
(orange and blue

dotted traces) may accurately describe a gradually increasing sharing of the ankle torque

between synergistic muscles initially taken by the GM muscle, which the constant validation

trace does not capture. To answer such limitations, the predicted eNDN should be validated

against a direct measure of muscle force, which can be performed as in other recent studies

[13,14,116] with ultrasound measurements of the muscle fascicle or of the muscle tendon con-

currently obtained with (HD)EMG recordings of the muscle activity. Finally, these two valida-

tions do not provide any indication whether the parameters calibrated with a trapezoidal force

profile would generalize, for the same subject, to another force trajectory or a trapezoidal force

profile up to another force level and provide accurate predictions of the Nr experimental spike

trains and of the eNDN. To perform such validation, the parameter identification in Step 3 (Fig

1) would be overlooked. The Nnew
r spike trains identified from the HDEMG signals concur-

rently measured with the new force profile would be used to derive the new current input

Inew(t) (Step 2) to drive a cohort of N MN models (Step 4), the characteristics of which would

be defined by the IP and S distributions (Step 3) derived with the first contraction profile, to

predict the new effective neural drive eNDnew
N . The MN mapping (Step 1) would serve to iden-

tify the MNs in the reconstructed MN populations, the predicted MN spike trains of which

should be compared against the Nr identified spexpi ðtÞ. Performing this final validation step was

however impossible in this study because there exists, to the authors’ knowledge, no open-

source datasets of edited HDEMG signals recorded for the same subject for different force

profiles.

Limitation 2 – Sensitivity of the method to input HDEMG data. While the method pre-

dicts a list of simulated spike trains spsimj ðtÞ and a eNDN that more accurately describes the MN

pool behaviour than the experimental spexpi ðtÞ and eNDNr
, as discussed previously, the accuracy

of these predictions (Figs 12 and 13) remains sensitive to the distribution in the entire MN

pool of the Nr MNs identified experimentally, reported in the third column of Table 2. Because
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of the definition of the current input I(t), the eNDN onset is defined by the recruitment time

tf 1
N1

of the lowest-threshold MN N1 identified experimentally, as shown in Fig 13, while the

unknown firing behaviour for t < ft1N1
of the non-identified MNs of rheobase lower than IthN1

is

not captured. This is not an issue in samples of homogeneously distributed MNs like dataset

DTA35, where the 9th smallest MN (first 2% of the pool of threshold-increasing MNs) is identi-

fied (Fig 5BC), Table 2) and the eND obtained from the 15 first MNs is not predicted during

the short time range [2.1, 2.3]s, where the whole muscle builds only 1%MVC (top-left plot in

Fig 13). However in heterogeneous or incomplete samples like dataset HTA50, the lowest-

threshold (232nd, Table 2) identified MN identified is recruited at t ¼ tf 1
N1
¼ 6:1s and the

approach wrongly returns a zero muscle neural drive eND = 0 for the time period [1.6; 6.1]s
where the muscle actually builds 20%MVC during the ramp of contraction (bottom-left plot in

Fig 13). To tackle this issue, the normalized force trace, which is non-zero for t < ft1N1
and rep-

resentative of the CSI in this time region, could be scaled and used in lieu of the current defini-

tion of I(t). However, this approach, which may not be suitable for non-isometric conditions,

is not applicable in forward predictions of unknown whole muscle force from neural inputs.

Experimental samples of homogeneously distributed MNs are also required to derive realistic

S(j) and IP(j) distributions with the four-step approach. As observed in Fig 12, ignoring in the

derivation of I(t), IP(j) and S(j) the spike trains spexpi ðtÞ of the MNs that are representative of a

large subset of the MN pool affects the accuracy of the predicted recruitment and firing behav-

iour of the MNs falling in that subset (Fig 12). More specifically, the non-physiological distri-

bution IP(j)[s] = 5.6�10−4�j0.80 was fitted to the experimental data of the 14 high-threshold MNs

identified in dataset HTA50, where the neural information of the 60% smallest MNs of the MN

pool (Table 2) is lacking. Such IP(j) distribution overestimates the LIF-predicted maximum fir-

ing frequency of low-threshold MNs, which explains the overestimation of the eNDN in Fig 13

(bottom-left plot, orange curve). Non-physiological predictions can be avoided by adding arti-

ficial data points consistent with other experiments or with the literature in the rheobase

regions of the MN pool where no MNs were experimentally identified. For example, using an

IP(j) relationship consistent with a dataset of homogeneously distributed MNs (DTA35) con-

strained the predicted maximum firing rates to physiological values and returned more accu-

rate predictions of the eNDN (bottom-left plot, purple curve).

Limitation 3 – LIF MN modelling. The LIF MN model described from (Eq 7) to (Eq 13)

was shown, with credible sets of inter-related parameters SMN, R, C and τ after [42], to accu-

rately mimic (Fig 9) and blindly predict (Fig 12) most of the key phenomenological features of

the Nr firing MNs, including their FIDFs and time of first discharge, as well as nonlinear

behaviours such as firing rate saturation (Fig 8) and hysteresis (Fig 4B and 4C). However, this

MN model is mostly phenomenological and does not provide a realistic description of the

actual mechanisms underlying the dynamics of action potential firing for several reasons.

First, this single-compartment approach neglects the activity of the MN dendrites, which

account for more than 95% of the total MN surface area and gather most of the post-synaptic

receptors and MN PIC-generating channels responsible for the MN nonlinear input-output

functions [40]. The inherent difference in membrane voltage dynamics between the dendrites

and the soma, also partially mediated by hundred-fold differences in the value of passive

electrophysiological parameters such as R which increases with somatofugal distance [125] is

therefore neglected in this point model approach. Then, the nonlinear dendritic activity being

overlooked, the Common Synaptic Input CSI(t) in (Eq 5), which is the common net excitatory

synaptic influx, is non-physiologically assimilated with a constant gain to the post-synaptic

total dendritic membrane current I(t) that depolarizes the MN soma and is responsible for

spike generation. With this linear CSI−I scaling in (Eq 6), the approach neglects the realistic
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description of the voltage-driven dynamics of the PIC-generating channels that are responsible

for some important nonlinear mechanisms, such as firing rate saturation [41] and hysteresis in

the MN’s current-voltage relation [93,94], which dictate the nonlinear CSI−I transformation

[40]. In this study, the firing rate saturation, which in real MNs is due to a decrease in driving

force for synaptic current flow as the dendrites become more depolarized [41], is captured by

the phenomenological IP parameter. The observed hysteresis between the recruitment and

decruitment thresholds (Fig 4B) and in the current-firing rate relation between recruitment

and derecruitment phases (Fig 4C), explained by an hysteresis in the MN’s current-voltage

relation that arises from the activity of long-lasting PICs [20], are successfully but non-physio-

logically addressed by a tuning during derecruitment of the R and Cm parameters respectively,

although the values of the passive property R and of Cm, biological constant for the MN popu-

lation [126], should be independent from the MN activity [44]. For these reasons, even if the

distributions of the SMN, R, C and τ parameters at recruitment take values consistent with the

literature, as discussed, the MN LIF model described in (Eq 7) to (Eq 12) is not suitable for

investigating the neurophysiology and the neuromechanics of individual MNs. The phenome-

nological tuning of the IP, R and Cm parameters, although symptomatic of underlying nonlin-

ear mechanisms, does not provide any insight into the true MN neurophysiology. If a more

realistic MN model was considered in lieu of the LIF model, such as multiple-compartments

Hodgkin-Huxley-based approaches [127], the four-step workflow would be an adequate tool

for testing neurophysiological hypotheses and investigating some mechanisms and properties

of the complete MN pool that cannot be directly observed experimentally in conditions of

human voluntary contractions. A possible trade-off would be considering a single-compart-

ment LIF model with active conductances [44], in which case (Eq 7) is re-written as (Eq 18),

where gR ¼ 1

R is the constant MN passive conductance, E+>ΔVth is the constant reversal poten-

tial for excitatory channels, g(t, CSI) the time-varying total active excitatory synaptic conduc-

tance, and Ips(t, CSI, Vm) = g(t, CSI)�(E+−Vm) the post-synaptic total dendritic membrane

current induced by the synaptic drive CSI, the driving force of which is decreased by the term

(E+−Vm) when the dendritic membrane depolarizes, as discussed.

dVm

dt
¼

1

C
� gðt;CSIÞ � ðEþ � VmÞ � gR � Vm

� �
ðEq 18Þ

In the literature, g(t, CSI) = gmax�T(t, CSI) where gmax is the maximum active conductance

of the synapse and T(t, CSI) can be interpreted as the fraction of bound synaptic receptors [30]

or of opened ionic channels in the range [0; 1]or as a train of synaptic pulses [44]. Because set-

ting T(t, CSI) = CSI(t), with CSI(t) as defined in Fig 6B, does not meet the requirements in fir-

ing rate saturation for large CSI input, the saturation in dendritic ionic channel activation for

large CSI [41] must be accounted for and T(t, CSI) should be a nonlinear saturating function

of CSI. In this approach, the MN-specific hysteresis and firing rate behaviour could be

obtained with a tuning during recruitment and derecruitment and a distribution across the

MN pool of the gmax parameter and of the shape parameter of the S function based on the

experimental data. Although this approach more realistically describes the neurophysiological

mechanisms underlying the nonlinear MN behaviour during discharge events, it is more chal-

lenging to scale using the experimental information. Considering that this study focuses on the

phenomenological behaviour of individual MNs and on the overall activity of reconstructed

MN populations, the LIF model defined in (Eq 7) was judged an adequate trade-off between

accuracy and modelling complexity, considering the overall accurate predictions of the MN

firing behaviours (Fig 12) and its low computational cost, and no other modelling approaches

such as (Eq 18) were pursued.
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It must be noted that, whatever the MN modelling approach, the experimental drive to the

MN currently considered in the four-step method is the CSI, which disregards the MN-specific

synaptic noise SN(t), which is responsible for most of the inter-spike variability (ISV). Consid-

ering that the MN pool and the MU neuromechanical mechanisms are expected to filter the

MN-specific SN(t), this simplification is adequate for accurate predictions of the eNDN and of

the whole muscle force [83]. Sometimes modelled as a random Gaussian-like event [29], the

ISV can be obtained as the response to a SN(t) white noise added to the current definition of

the synaptic input as CSI(t)+SN(t). The relative proportion of CSI and SN in % of the variance

of the total synaptic current can be approximated from Fig 2A in [47]. Accounting for SN(t)
might improve the accuracy of the predicted firing behaviour of the largest MNs, for which the

largest Δft1 and nRMSE and lowest r2 values were obtained in Fig 12 for all four datasets, and

the firing behaviour and recruitment dynamics of which are dominantly dictated by random

fluctuations of SN(t).
Limitation 4 – Limited experimental data in the literature. The four-step approach is

constrained by the limited knowledge in the literature of the characteristics of the human MU

pool. Therefore, the LIF parameters and the MN rheobase distribution in the MN pool (Fig

7A) are tuned with typical cat data from various hindlimb muscles [42] while the experimental

MN spike trains were obtained from the human TA muscle. While the normalized mathemati-

cal relationships relating the MN electrophysiological parameters of the LIF model (R, C, τ,

ΔVth) can be extrapolated between mammals [42] and thus to humans, no experimental data is

yet available to scale these relationships to typical human data.

Also, the typical Fth(j) and Ith(j) threshold distributions, derived for mapping the Nr identi-

fied MNs to the complete MN pool (Fig 5) and for scaling the CSI to physiological values of I
(t) (Fig 7), were obtained from studies which relied on experimental samples of MN popula-

tions of small size. These source studies therefore did not ensure that the largest and lowest val-

ues were identified and reported, and that the identification process was not biased towards a

specific subset of the MN pool, such as larger MNs. In such cases, the true threshold distribu-

tions would be more skewed and spread over a larger range of values, as discussed in [42],

than the distributions reported in Figs 5 and 7. The Fth(j) distribution is besides muscle-spe-

cific [20] with large hindlimb muscles being for example recruited over a larger range of MVC

than hand muscles. However, enough data is reported in the literature to build the Fth(j) distri-

butions for the TA and first dorsal interossei human muscles only. For these limitations, the

two first steps of this approach could be made subject- species- and muscle-specific by calibrat-

ing the Fth(j) and Ith(j) described as the 3-parameter power functions defined in this study.

Conclusion. This study presents a four-step workflow (Figs 1 and 11) which predicts the

spiking activity of the discharging MNs that were not identified by decomposed HDEMG signals.

The method is driven by the common synaptic input, which is derived from the experimental

data, and reconstructs, after a calibration step, the distribution across the MN population of some

MN properties involved into the MN-specific recruitment and spiking behaviour of the discharg-

ing MNs (Figs 8 and 10A). The method blindly predicts the discharge behaviour of the Nr experi-

mentally identified MNs (Fig 12) and accurately predicts the muscle neural drive (Fig 13) after the

complete discharging MN population is reconstructed (Fig 10C and 10D). With direct application

in neuromuscular modelling (Fig 14), this method addresses the bias of HDEMG identification

towards high-threshold large units and is relevant for neuroscientists, modelers and experimenters

to investigate the MN pool dynamics during force generation.
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