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HAS2 is a member of the gene family encoding the hyaluronan synthase 2, which can
generate high-molecular-weight hyaluronan (HMW-HA). Our previous study identified
HAS2 as a candidate gene for increased susceptibility to adult asthma. However, whether
HAS2 dysfunction affects airway remodeling and steroid insensitivity is still limited.
Therefore, this study aimed to clarify the Has2 dysfunction, triggering severe airway
remodeling and steroid insensitivity in a murine model of asthma. Has2 heterozygous-
deficient (Has2+/−) mice and their wild-type littermates have been evaluated in a model of
chronic ovalbumin (OVA) sensitization and challenge. Mice present a higher sensitivity to
OVA and higher IL-17 release as well as eosinophilic infiltration. RNA sequencing
demonstrated the downregulation of EIF2 signaling pathways, TGF-b signaling
pathways, and heat shock proteins with Th17 bias in Has2+/−-OVA mice. The
combined treatment with anti-IL-17A antibody and dexamethasone reduces steroid
insensitivity in Has2+/−-OVA mice. Has2 attenuation worsens eosinophilic airway
inflammation, airway remodeling, and steroid insensitivity. These data highlight that
HAS2 and HMW-HA are important for controlling intractable eosinophilic airway
inflammation and remodeling and could potentially be exploited for their therapeutic
benefits in patients with asthma.

Keywords: ER stress response, HAS2, IL-17, TGF-b1, airway remodeling, asthma, mouse model
INTRODUCTION

Airway remodeling is an important feature of asthma characterized by goblet cell hyperplasia,
subepithelial collagen, and smooth muscle hyperplasia and is known to play a role in persistent airflow
obstruction (1). Because airway remodeling is minimally affected by current treatments, prevention of
accelerated airway remodeling is one of the important therapeutic targets of asthma (2). Our previous
genome-wide association study reported that hyaluronan synthase 2 gene (HAS2) is a novel candidate
gene for susceptibility to adult asthma (3). Hyaluronan (HA) is an integral component of the
extracellular matrix (4). HA synthases synthesize large HA polymers of various sizes. HAS1 and HAS2
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produce HA of larger molecular size (2 × 104 kDa), whereas HAS3
synthesizes small-sized HA (2 × 102 kDa) (4). Because high-
molecular-weight hyaluronan (HMW-HA) is thought to have an
anti-inflammatory function, HAS2 dysfunction was thought to
exacerbate asthma. Based on these backgrounds, mouse HAS2
gene (Has2) attenuation was recently reported to worsen acute
eosinophilic airway inflammation and increase airway
hyperresponsiveness (AHR) using Has2 heterozygous-deficient
(Has2+/−) mice (5). However, the severity of chronic
eosinophilic airway inflammation, airway remodeling, and
underlying pathogenesis in Has2+/− mice remains unclear. In
this study, the development of airway remodeling after repeated
allergen challenges inHas2+/−mice was analyzed to clarify the role
of Has2 in the pathogenesis of airway remodeling in asthma.
Has2+/− mice exhibit a more intense allergic eosinophilic airway
inflammatory reaction, severe goblet cell hyperplasia, and
increased IL-17 level with steroid insensitivity. IL-17 cytokines
have been implicated in asthma, and recent studies have suggested
activation of steroid-resistant IL-17 pathways in severe asthma
patients (6–8). This intractable eosinophilic airway inflammation
phenotype can be treated by combined treatment with
dexamethasone and anti-IL-17A Ab.
METHODS

Animals
Because Has2 homozygous deficient mice are embryonic lethal
with severe cardiac and vascular abnormality (9), 6- to 8-week-
old female Balb/c mice wild type (WT) and Has2 heterozygous
(Has+/−) were used in the experiments. Breeding sets of Has2+/−

mice (Jackson Laboratory, Bar Harbor, ME, USA) were
backcrossed to Balb/c background for at least eight generations
(5, 9). All animal studies were approved by the Institutional
Review Board of the University of Tsukuba (approval number:
19-159, 20-125, and 21-028).
Experimental Protocols
Mice were sensitized intraperitoneally with 100 µg of ovalbumin
(OVA; Sigma-Aldrich, St. Louis, MO, USA) adsorbed in 1.6 mg
of aluminum hydroxide on days 1 and 15. Starting on day 22,
mice were challenged intranasally with 10 µg of OVA for 5 days
each for eight consecutive weeks (Figure 1A). Control mice were
injected and challenged with saline. The steroid-treated group
received 1 mg/kg dexamethasone (Sigma Aldr ich)
intraperitoneally into OVA-stimulated WT (WT-OVA) mice
and that of Has2+/− (Has2+/−-OVA) mice at 24 and 2 h prior
to the final intranasal OVA challenge (Figure 6A). The
combined treatment group received anti-IL-17A monoclonal
antibody (100 mg/body, BioLegend, San Diego, CA, USA)
intraperitoneally into WT-OVA mice and Has2+/−-OVA at 24
and 2 h before final intranasal OVA challenge (Figure 6A).
Isotype IgG (BioLegend, San Diego, CA, USA) was used
as control.
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Quantitative Real-Time RT-PCR
Total RNA was extracted from the snap-frozen lung tissue using a
RNeasy® Mini Kit (QIAGEN, Hilden, Germany) according to the
protocol of the manufacturer. mRNA expression levels were
quantified by the 7500 FAST real-time PCR system (Thermo
Fisher Scientific, Waltham, MA, USA). The sequences for the
Has2+/− mice-specific TaqMan®-MGB probes and primers
(Thermo Fisher Scientific) were as follows: Has2F 5′-TGCTTG
ACCCTGCCTCATC-3′, Has2R 5′-CCCATGAATTCCTGA
TTGTACCA-3′, MGB probe 5′-TGTCCAGATTTTAAACAAG-
3′ (5). Mouse primers and probes were purchased pre-mixed from
Thermo Fisher Scientific: CD44 (Cd44; Mm01277163_m1), TLR4
(Tlr4; Mm00445273_m1), TGF-b1 (Tgfb1; Mm01178820_m1),
Hsp40 (Dnajb1 ; Mm00444519_m1), Hsp70 (Hspa1a ;
Mm01159846_s1), Herp (Herpud1; Mm00445600_m1), PERK
(Eif2ak3; Mm00438700_m1), ATF4 (Atf4; Mm00515325_g1),
and GAPDH (Gapdh; Mm99999915_g1). All mRNA levels were
normalized to GapdhmRNA levels.

HA Size Analysis
HA size was analyzed as previously described (5, 10). Briefly, right
whole lung tissues were digested by incubation in proteinase K
(MilliporeSigma, Burlington, MA, USA) at 1 mg/ml in 100 mM
ammonium acetate (1 ml/25 mg tissue weight). The samples were
then precipitated using ethanol after which nucleic acid digestion
followed by second ethanol precipitation was done. After digesting
half the samples with hyaluronidase, the samples were resuspended
in formamide and then run on agarose gel at a constant voltage.
Finally, the gel was stained with Stains-All (Sigma-Aldrich).

Bronchoalveolar Lavage Fluid
Cell Counting
Mouse lungs were lavaged using five repeated instillations of 0.6
ml of saline each through the tracheal cannula. The first 1.2 ml of
bronchoalveolar lavage fluid (BALF) was centrifuged, and the
supernatant was used for the measurements of various cytokines
and chemokines as described (5, 11). Centrifuged cells were
redissolved in the remaining BALF sample. Cells were counted
using a hemocytometer, and a differential cell count was
performed based on count of 300 cells, which morphologically
classified the cells based on staining with Diff-Quik
(Polysciences, Inc., Warrington, PA, USA), using standard
light microscopic techniques.

Lung Histology
Lung paraffin sections were stained with hematoxylin and eosin
(HE) staining to assess airway inflammatory cell infiltration, with
periodic acid Schiff (PAS) to demonstrate the presence of mucin
within goblet cells, and with Masson’s trichrome (MT) to
demonstrate the presence of extracellular matrix. The sections
were also stained immunohistochemically using anti-a-smooth
muscle actin (a-SMA) antibody (Cell Signaling Technology,
Danvers, MA, USA) to identify contractile elements.
Morphological analyses of MT and ⍺-SMA-stained regions and %
PAS positive cells were performed as described previously (12, 13).
January 2022 | Volume 12 | Article 770305
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Airway Hyperresponsiveness
to Methacholine
Airway hyperresponsiveness (AHR) to inhaled methacholine
(Sigma-Aldrich) in unrestrained mice was measured 24 h after
the last intranasal challenge by barometric plethysmography
using a whole-body plethysmograph (FinePointe RC System,
Buxco, Wilmington, NC, USA). AHR was measured as changes
Frontiers in Immunology | www.frontiersin.org 3
in airway resistance with increasing dose of methacholine (0–50
mg/ml) via a jet nebulizer (5).

Multiplex Cytokine Assay
Cytokines and chemokines in BAL fluids and lung homogenates
were measured using MILLIPLEX MAP Kit (MilliporeSigma)
according to the instructions of the manufacturer. Twice the
A

B

D

C

E

F

G

FIGURE 1 | Has2 attenuation downregulates the HMW-HA, HA-binding protein, and exacerbates airway inflammation in a chronic ovalbumin (OVA)-induced mouse
model of asthma. (A) Schematic illustration of the experimental design. (B) Levels of mRNA transcripts encoding Has2 (n = 6–9). (C) (Upper lane) HA size analysis
with hyaluronidase treatment. (Lower lane) Grayscale in the high-molecular-weight area. (D) Levels of mRNA transcripts encoding Cd44, Tlr4, and Tgfb1 (n = 9–10).
(E) Protein-adjusted levels of TGF-b1 in lung homogenates (n = 9–10). (F) Lung tissue HE staining. (G) BALF cytology of each indicated cell type (n = 13–14). All
samples are obtained 24 h after the final challenge with saline or OVA. Statistical significance was determined using the Mann–Whitney U test (B, D, E) or Tukey’s
multiple comparison test (G). **P < 0.01, ***P < 0.001 relative to the WT-saline control mice. Horizontal bars indicate direct statistical comparisons between WT and
Has2+/− mice. NS, not significant.
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recommended sample volume was used for BAL fluid testing as
described previously (5).

Enzyme-Linked Immunosorbent Assay
Quantification of OVA-specific IgE and IgG1 in serum was
performed using commercially available ELISA kits (Cayman
Chemical, Ann Arbor, MI, USA), whereas TGF-b1 and IL-17F in
lung homogenate were measured using ELISA kits (R&D
Systems, Minneapolis, MN, USA).

Lung RNA Extraction and RNA Sequencing
Total RNA was extracted from mouse lungs using the TRIzol®

reagent (Thermo Fisher Scientific) according to the instructions
of the manufacturer (n = 4–5, each group). The concentration
and purity of the RNA samples were determined by automated
optical density evaluation (OD260/OD280 ≥ 1.8 and OD260/OD230

≥ 1.8) using a NanoDrop spectrophotometer (Thermo Fisher
Scientific). RNA sequencing (RNA-seq) libraries were prepared
using a NEBNext rRNA Depletion Kit (New England Biolabs,
Ipswich, MA, USA) and an ENBNext Ultra Directional RNA
Library Prep Kit (New England Biolabs) according to the
instructions of the manufacturer using 500 ng of the total
RNA samples. Next, 2 × 36 base paired-end sequencing was
performed using a NextSeq 500 sequencer (Illumina, San Diego,
CA, USA) by Tsukuba i-Laboratory LLP (Tsukuba, Japan).
Sequences were mapped to the mm10 mouse genome and
quantified using CLC Genomics Workbench version 10.1.1
(QIAGEN). An adjusted P-value <0.01 (Benjamini–Hochberg
FDR method for multiple testing corrections) and relative
changes in transcription levels >1.2-fold were used as the cutoff
criterion (Supplemental Figure 1). The data are available under
GEO series accession number GSE181966.

Pathway Analysis of Differentially
Expressed Genes and
CIBERSORT Analysis
Identification of the unique differentially expressed genes
(DEGs) between WT-saline vs. WT-OVA and WT-saline vs.
Has2+/−-OVA was done by using Venny (v2.0; http://bioinfogp.
cnb.csic.es/tools/venny/index.html). Biological pathways
enriched in the data were identified with Ingenuity Pathway
Analysis (IPA) software (QIAGEN) using Fisher’s exact test (P <
0.05 indicates statistical significance). CIBERSORT analysis was
performed on RNA-seq data by using the analytical tool (https://
cibersort.stanford.edu/) (14). Previously published mouse
reference signature matrix, consisting of 511 distinguishing
genes for 25 immune cell types, was used as the reference
profile (15).

Statistical Analysis
Data are shown as means ± SEMs or individual dot plots with
means ± SEMs. Statistical significance between groups was
evaluated using Mann–Whitney U test or ANOVA with
Tukey’s multiple comparison test. P-values <0.05 were
considered statistically significant.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

The Expression Level of Has2 mRNA
and HMW-HA Is Reduced in Lung Tissues
of OVA-Challenged Has2+/− Mice
To establish the role of Has2 in chronic allergic airway
inflammation, mice were intranasally stimulated with OVA for
8 weeks (Figure 1A). Has2 mRNA expression was significantly
lower in the OVA-stimulated Has2+/− (Has2+/−-OVA) mice than
those in the OVA-stimulated WT (WT-OVA) mice (Figure 1B).
The genetic modulation of Has2 did not affect the expression of
Has2 mRNA in the saline control group (Figure 1B). Next, to
elucidate whether Has2 mRNA attenuation affects the HMW-
HA levels, HA size analysis was performed. Hyaluronidase-
sensitive HMW-HA band was less abundant in the lung
extracts of Has2+/−-OVA mice than in the lung tissues of WT-
OVA mice (Figure 1C). These results supported the hypothesis
that the expression level of Has2 mRNA in Has2+/− mice was
downregulated during chronic eosinophi l ic airway
inflammation, and Has2 dysfunction impaired the HMW-
HA production.

Has2 Attenuation Results in
the Downregulation of HA-Binding
Proteins and TGF-b1
CD44 and TLR4 are known as HA-binding proteins and
decreased CD44 downregulates the TGF-b (16). To determine
whether Has2 mRNA attenuation affects the expression of HA-
binding protein and downstream molecules, mRNA expression
levels of Cd44, Tlr4, and Tgfb1 were evaluated. After the OVA
stimulation, expression levels of Cd44, Tlr4, and Tgfb1 mRNA
were significantly lower in the lungs from Has2+/−-OVA mice
than those from WT-OVA mice (Figure 1D). TGF-b1 levels in
the lung homogenate were significantly lower in Has2+/−-OVA
mice than those in WT-OVA mice (Figure 1E). These results
supported the hypothesis that Has2 attenuation impaired the
expression of HA-binding protein and TGF-b signaling.

Has2 Attenuation Enhances OVA-Induced
Eosinophilic Airway Inflammation in Mice
Increased inflammatory cells were demonstrated after a repeated
OVA exposure, especially in the peribronchial and perivascular
areas of both Has2+/− mice and WT mice (Figure 1F). To clarify
the roles of Has2 attenuation in the development of OVA-
induced chronic airway inflammation, the number of
inflammatory cells in BALF was determined (Figure 1G). The
number of eosinophils was significantly higher in Has2+/−-OVA
mice than that in WT-OVA mice (Figure 1G). These results
indicate that Has2 attenuation worsens the OVA-induced
chronic airway inflammation.

Airway Goblet Cell Hyperplasia Is
Significantly Increased in Chronic
OVA-Stimulated Has2+/− Mice
We next evaluated the role of Has2 in goblet cell hyperplasia,
one of the characteristic features of airway remodeling, in WT
January 2022 | Volume 12 | Article 770305
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and Has2+/− mice after repeated challenges with OVA or saline.
Only a few epithelial cells were positive for PAS staining in the
airway of both mouse genotypes after the saline challenge
(Figure 2A, panel a). Morphometric analysis showed that %
PAS-positive mucus production cells were significantly
higher in Has2+/−-OVA mice airways than in WT-OVA mice
airways (Figure 2A, panel b). These results indicate that
Has2 attenuation induces goblet cell hyperplasia and
mucus hyperproduction.
Frontiers in Immunology | www.frontiersin.org 5
Parameters of Airway Fibrosis, Airway
Smooth Muscle Hyperplasia, and AHR
Are not Significantly Different Between
OVA-Stimulated WT and Has2+/− Mice
To further evaluate the characteristic features of airway
remodeling, mice lung sections were stained with MT staining
or immunohistochemically stained with anti-a-SMA antibody
(Figures 2B, C). Substantial subepithelial deposition of
extracellular matrix was strongly observed after repeated OVA
challenges in MT-stained lungs of both WT and Has2+/− mice
(Figure 2B, panel a). Morphometric analysis revealed that the
area percentage of extracellular matrix in the 20-mm region
beneath the epithelium was significantly higher after OVA
challenges as compared with saline challenges in both mouse
genotypes (Figure 2B, panel b). However, increased airway
fibrosis was not significantly different between the WT-OVA
and Has2+/−-OVA groups. We next evaluated the degree of
smooth muscle cell hypertrophy in the airways of both WT
and Has2+/− mice. Although thin smooth muscle cell layer that
was stained positive for anti-a-SMA antibody was observed in
the airways of both genotypes (Figure 2C, panel a), the levels of
airway smooth muscle hyperplasia were not significantly
different between the WT-OVA and Has2+/−-OVA groups
(Figure 2C, panel b). Furthermore, to determine whether the
attenuation of Has2 worsens airway hyperreactivity in chronic
OVA-stimulated conditions, airway resistance (RI) with an
increasing dose of methacholine was measured. Although RI
values were higher in both WT-OVA and Has2+/−-OVA mice
than the WT-saline mice in a methacholine dose-dependent
manner, RI values were not significantly different between the
WT-OVA and Has2+/−-OVA mice (Figure 2D).

OVA-Stimulated Has2+/− Mice
Demonstrate Increased IL-17 Level
To test the hypothesis that eosinophilic airway inflammation
increases in Has2+/− mice due to altered allergic cytokine and
chemokine responses, the levels of several inflammatory mediators
were measured in lung homogenate and BALF samples (Figure 3
and Supplemental Figures 2, 3). IL-17A levels in lung homogenate
were significantly higher in Has2+/−-OVA mice than that in WT-
OVAmice (Figure 3A, panel e). ELISA assay also revealed that IL-
17F was significantly higher in Has2+/−-OVA mice than that in
WT-OVA mice (Figure 3A, panel f). Interestingly, IL-9 and IL-13
were significantly lower in Has2+/−-OVA mice than those in WT-
OVA mice (Figures 3A, panels c, b, f). In BALF samples, only
MCP-1 and RANTES were significantly higher in Has2+/−-OVA
mice than those in WT-OVA mice (Supplemental Figure 3).
These results indicate Has2 attenuation induced severe
eosinophilic airway inflammation and mucus hypersecretion due
to increased IL-17.

Attenuation of Has2 Does not Affect
Serum Immunoglobulin Levels in
Chronic OVA-Stimulated Condition
To examine whether the Has2+/− mice displayed any other
evidence of enhanced systemic allergic response, serum OVA-
A

B

C

D

FIGURE 2 | Airway remodeling phenotype of Has2+/− mice after chronic OVA
stimulation. (A) Periodic acid Schiff (PAS) stain in WT and Has2+/− mice
(panel a). Percentage of PAS-positive cells in the airway epithelium of WT and
Has2+/− mice (panel b, n = 8–9). (B) Masson’s trichrome stain in WT and
Has2+/− mice (panel a). Percentage of trichrome staining area in the 20-mm
region beneath the epithelium in the airways of WT and Has2+/− mice (panel
b, n = 8–9). (C) Alpha smooth muscle actin (⍺-SMA) stain in WT and Has2+/−

mice (panel a). Percentage of ⍺-SMA staining area in the 20-mm region
beneath the epithelium in the airways of WT and Has2+/− mice (panel b, n =
5). (D) Airway hyperresponsiveness to methacholine in WT and Has2+/− mice
(n = 5–9). All samples are obtained 24 h after the final challenge with saline or
OVA. Statistical significance is determined using Tukey’s multiple comparison
test (A–C, panel b) or two-way ANOVA (D). **P < 0.01, ***P < 0.001 relative
to the WT-saline mice. Horizontal bars indicate direct statistical comparisons
between WT-OVA and Has2+/−-OVA mice. NS, not significant.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sherpa et al. Has2 Regulates Steroid-Insensitive Airway Remodeling
specific IgE and IgG1 were measured. Chronic OVA challenge
significantly increased the serum OVA-specific IgE and IgG1
levels in both Has2+/− and WT mice as compared with the saline
control mice, respectively (Supplemental Figure 4). When the
levels of these antibodies were directly compared between WT-
OVA and Has2+/−-OVA mice, no significant differences were
observed (Supplemental Figure 4), indicating that Has2
attenuation did not cause systemic allergic responses.

Attenuation of Has2 Impairs TGF-b
and Endoplasmic Reticulum Stress
Response-Related Signaling
To understand gene expression changes after a chronic OVA
challenge in WT and Has2+/− mice, RNA-seq was performed.
Seven genes were found to have significantly different expressions
between the lungs of WT-OVA mice and Has2+/−-OVA mice
(Figure 4A). Gene ontology analyses identified a significant
biological process, such as “protein processing in the
Frontiers in Immunology | www.frontiersin.org 6
endoplasmic reticulum (ER)” and “regulation of proteolysis” by
three downregulated genes (Figure 4B). Although a significant
attenuation of Spink5 was thought to be involved in childhood
asthma through the interaction with TSLP in Has2+/−-OVA mice
(17), the expression levels of Tslp were not significantly different
between WT-OVA and Has2+/−-OVA mice. Next, we focused our
analysis on specifically altered genes in WT-OVA and Has2+/−

-OVA mice as compared with WT-saline mice (Figure 4C). A
total of 515 genes were uniquely altered in WT-OVA mice (WT-
OVA unique genes, Figure 4C), whereas 307 genes were uniquely
altered in Has2+/−-OVA mice (Has2+/−-OVA unique genes,
Figure 4C). Pathway analysis revealed that the “EIF2 signaling”
pathway was the most significantly activated pathway in WT-
OVA unique genes (Figure 4D, upper panel, and Supplemental
Table 1). Conversely, “TGF-b signaling” was significantly
inhibited in Has2+/−-OVA unique genes. Pathways, such as
“Wnt/b-catenin signaling” and “PCP pathway”, were
significantly inhibited in both WT-OVA unique genes and
A

B

FIGURE 3 | Effects of Has2 attenuation on various cytokine and chemokine levels in lung homogenate. (A) Protein-adjusted levels of the indicated Th1/Th2- and
Th17-related cytokines in lung homogenates (n = 9–10). (B) Protein-adjusted levels of inflammatory cytokines and chemokines in lung homogenates (n = 9–10). All
samples are obtained 24 h after the final challenge with saline or OVA. Statistical significance was determined using Tukey’s multiple comparison test. *P < 0.05,
**P < 0.01, and ***P < 0.001 relative to WT-saline mice. Horizontal bars indicate direct statistical comparisons between WT-OVA and Has2+/−-OVA mice.
January 2022 | Volume 12 | Article 770305

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sherpa et al. Has2 Regulates Steroid-Insensitive Airway Remodeling
Has2+/−-OVA unique genes (Figure 4D, lower panel, and
Supplemental Table 2). EIF2 signaling is known as one of the
major ER stress responses. A comparison of DEGs revealed that
not only EIF2 signaling-related genes in WT-OVA mice but also
significant changes of heat shock protein (Hsp)-related genes, such
as Hspa1a (Hsp70) and Dnajb1 (Hsp40), were found in the genes
of Has2+/−-OVA mice (Figure 4E). To account for the striking
cytokine changes in the lungs between WT-OVA and Has2+/
−-OVA, CIBERSORT analysis was performed. In this analysis, %
Treg cell was significantly decreased in Has2+/−-OVA mice
Frontiers in Immunology | www.frontiersin.org 7
(Figure 5A). Conversely, we observed an increasing trend of %Th17
population in Has2+/−-OVA mice (Figure 5A). Thus, the Treg/Th17
ratio significantly decreased in Has2+/−-OVA mice after repeated
allergen challenges (Figure 5B). These results indicate that
Th17 bias occurs in Has2+/−-OVA under these conditions.
Furthermore, quantitative reverse transcription-polymerase
chain reaction was performed to confirm these DEG changes.
Hspa1a, Dnajb1, and Herpud1 mRNA expression levels
were significantly lower in the lungs of Has2+/−-OVA mice
(Figure 5C). However, gene expression of Eif2ak3 and Atf4,
A D

B

C

E

FIGURE 4 | DEG analysis between the lungs from WT-saline, WT-OVA, and Has2+/−-OVA mice. (A) Heatmap of DEGs between the lungs of WT-OVA and Has2+/−-OVA
mice (n = 5, cutoff: adjusted P < 0.01; log2 fold change > 1.2). Hierarchical clustering was performed based on the mean log2 fold change. Gene symbols in red are
associated with endoplasmic reticulum stress response. (B) Significant biological process terms detected by GO analysis from WT-OVA and Has2+/−-OVA mice.
(C) Identification of the unique DEGs between WT-saline vs. WT-OVA and WT-saline vs. Has2+/−-OVA using the Venn diagram. (D) Top 10 significant terms detected by
pathway analysis in WT-OVA unique (upper panel) and Has2+/−-OVA unique genes (lower panel). (E) DEG P-value correlation plot between WT-saline vs. WT-OVA and
WT-saline vs. Has2+/−-OVA. DEGs, differentially expressed genes.
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known to be important in the EIF2 signaling pathway, was not
significantly different between the two groups.

Has2 Attenuation Induces Steroid
Resistance but Anti-IL-17A Ab Effective
Intractable Airway Inflammation
Increased IL-17A level is known to mediate the development of
neutrophilic airway inflammation via corticosteroid resistance. To
clarify the effects of Has2 attenuation on steroid-resistant
phenotype in Has2+/− mice, Dexa was administered to both WT-
OVA and Has2+/−-OVA mice (Figure 6A). The number of total
cells and macrophages in BALF decreased in both Dexa-treated
WT-OVA (WT-OVA-Dexa) and Has2+/−-OVA (Has2+/−-OVA-
Dexa) mice as compared with Dexa-untreated mice (Figure 6B).
However, a significant increase in the number of neutrophils
remained in BALF of Has2+/−-OVA-Dexa mice than that of
WT-OVA-Dexa mice (Figure 6B). These results indicate that
Has2 attenuation induces a steroid-insensitive airway
inflammation phenotype. To confirm whether increased IL-17
level induces steroid resistance in phenotypes of Has2+/−-OVA-
Dexa mice, anti-IL-17A-neutralizing antibodies were administered
to both WT-OVA-Dexa and Has2+/−-OVA-Dexa mice
(Figure 6A). Treatment with anti-IL-17A significantly attenuated
macrophages and neutrophil counts in the lungs ofHas2+/−-OVA-
Dexa mice than those of isotype control Ab-treatedHas2+/−-OVA-
Frontiers in Immunology | www.frontiersin.org 8
Dexa mice (Figure 6C). Conversely, anti-IL-17A treatment did not
demonstrate an additional attenuation of neutrophil counts in the
lungs of WT-OVA-Dexa mice than that of isotype control Ab-
treated WT-OVA-Dexa mice (Figure 6C). Collectively, these
results indicate that IL-17 is required to drive steroid resistance
intractable to asthma development in Has2+/− mice.
DISCUSSION

This study found several novel findings. First, the results confirm
and extend the findings of Yatagai et al. by showing insufficient
mRNA expression of Has2 in the lungs of Has2+/− mice
(Figure 1B) and decreased HMW-HA in Has2+/− mice lung
after chronic OVA stimulation (Figure 1C) (3). Although our
previous study on acute OVA stimulation reported a significant
decrease of Has2 mRNA level in the lungs of Has2+/− mice,
HMW-HA levels were increased in both WT and Has2+/− mice
that might be affected by Has1 at the early phase of OVA
stimulation (5, 18, 19). In this study, a significant attenuation
of both Has2 mRNA expression and HMW-HA levels was
observed in the lungs of Has2+/− mice after a chronic OVA
stimulation. This finding was consistent with our hypothesis that
Has2 heterozygous deficiency results in the attenuation of Has2
expression and HMW-HA, which have anti-inflammatory
January 2022 | Volume 12 | Article 77030
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C
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FIGURE 5 | Has2 attenuation induces Th17/Treg imbalance and attenuation of ER stress response-related molecules. Semiquantitative evaluation of immune cell
infiltrates (A) and Treg/Th17 ratio (B) after the OVA stimulation as determined by CIBERSORT analysis on whole-lung RNA-seq data (n = 5). (C) Levels of mRNA
transcripts encoding Dnajb1, Hspa1a, Herpud1, Eif2ak3, and Atf4 (n = 9–10). All samples are obtained 24 h after the final challenge with OVA. Statistical significance
was determined using the Mann–Whitney U test. Horizontal bars indicate direct statistical comparisons between WT and Has2+/− mice. NS, not significant.
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activity, during chronic eosinophilic airway inflammation. CD44
and TLR4 are known as HA-binding proteins, and a decrease of
CD44 downregulates TGF-b (16, 20–22). As we previously
found, a significant downregulation of Cd44, Tlr4, and Tgfb1
mRNA levels was also observed in the lungs of Has2+/−-OVA
mice (Figure 1D) (5). Furthermore, we found a significant
decrease of lung TGF-b levels in Has2+/−-OVA mice
(Figure 1E). Collectively, our results suggest that Has2 gene
abnormalities cause downregulation of Has2 mRNA expression,
HMW-HA, and HA-binding protein levels during chronic
eosinophilic airway inflammation. Thus, these Has2 genetic
abnormalities impair hyaluronic-acid-induced homeostasis in
the asthmatic mouse airway.

Second, this study firstly demonstrated that attenuation of
Has2 mRNA affects the severity of pulmonary eosinophilic
inflammation and distinctive phenotype airway remodeling
using Has2+/− mice. Has2+/− mice showed an increased
number of BALF eosinophils after an OVA stimulation
(Figure 1G). Severe goblet cell hyperplasia was also observed
in Has2+/−-OVA mice (Figure 2A). However, no changes in
subepithelial fibrosis, airway smooth muscle hypertrophy, and
AHR were observed (Figures 2B–D). In the cytokine and
chemokine analyses, not only a significant decrease of TGF-b
levels in the Has2+/−-OVA mice lung but also increased IL-17
levels were observed (Figure 3A). However, no significant
increases were observed in Th2-type cytokines and airway
epithelium-related cytokine levels in the lung homogenates nor
Frontiers in Immunology | www.frontiersin.org 9
in serum OVA-specific immunoglobulin levels in Has2+/−-OVA
mice (Figure 3 and Supplemental Figures 2–4). IL-17 is known
to enhance airway eosinophilia, AHR, and mucus hypersecretion
(23–25). Furthermore, TGF-b has a protective role for airway
inflammation and AHR (26, 27), but worsens the airway fibrosis
and airway muscle hyperplasia (28). Collectively, these results
suggested that Has2 attenuation induced distinctive phenotype
of OVA-induced airway remodeling by mediating IL-17 and
TGF-b signaling.

RNA-seq analysis provided further pathophysiological
insights into enhanced eosinophilic airway inflammation when
Has2 expression was attenuated. Although only seven DEGs
were identified between WT-OVA and Has2+/−-OVA mice,
Dnajb1, Hspa1a, and Herpud1 were related to the ER stress
response and Hsp (Figures 4A, E). Pathway analysis revealed
that “EIF2 signaling” was the most significant activated pathway
in WT-OVA unique genes, whereas “TGF-b signaling” was
significantly inhibited in Has2+/−-OVA unique genes
(Figure 4D). EIF2 signaling is one of the major ER stress
sensor pathways associated with unfolded protein response
(UPR). A previous study reported that EIF2 signaling was
downregulated in patients with childhood asthma (29).
Moreover, pathways associated with ER stress and UPR play a
role in modulating inflammatory and immune responses in the
development of severe asthma (30). Furthermore, administration
of the ER stress inhibitor decreased the IL-17 expression (31).
These results suggest that impaired ER stress response might be
A

B

C

FIGURE 6 | Combined treatment with dexamethasone and anti-IL-17A Ab is effective for steroid-insensitive airway inflammation in Has2+/− mice. (A) Schematic
illustration of the experimental design for steroid insensitivity and neutralization experiment. (B) BALF cytology of each indicated cell type after the dexamethasone
treatment from WT-OVA mice and Has2+/−-OVA mice (n = 8–11). (C) BALF cytology of each indicated cell type after a combined treatment with dexamethasone and
anti-IL-17A Ab from WT-OVA and Has2+/−-OVA mice (n = 7–11). All samples are obtained 24 h after the final challenge with OVA. Statistical significance was
determined using the Mann–Whitney U test. *P < 0.05 and **P < 0.01 relative to WT-OVA-Dexa mice. Horizontal bars indicate direct statistical comparisons between
WT-OVA and Has2+/−-OVA mice. Dexa, dexamethasone; i.p., intraperitoneal injection; NS, not significant.
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implicated in Has2-dysfunction-induced asthma. Interestingly,
in CIBERSORT analysis, Th17/Treg balance was significantly
Th17 biased in Has2+/−-OVA mice than that in WT-OVA mice
(Figures 5A, B). A recent study revealed that TGF-b regulates
iTreg and Th17 cell differentiation by both Smad3- and TAK1-
dependent pathways in OVA-induced airway inflammation (32).
Conversely, evidence suggests the involvement of Hsp, including
Hsp70, in the development of psoriasis, characterized by
impaired immunological cell function with altered Th17/Treg
balance, autoreactive T cells, and dysregulation of keratinocyte
proliferation (33, 34). Furthermore, Dnajb1 controls the
substrate targeting HSP70 (35), and Dnajb1 overexpression
downregulates Th17 differentiation in mouse spleen
lymphocytes (36). In this study, we found a significant
decrease of TGF-b, Hspa1a, and Dnajb1 mRNA expressions in
the lungs of Has2+/−-OVA mice (Figure 5C). These decreases
may induce the development of a Th17-dominant phenotype.

Although the role of IL-17 in asthma is unclear, IL-17 is
thought to be related to asthma severity (37, 38), exacerbations
(39, 40), and steroid insensitivity (6–8, 37, 41), particularly in
neutrophilic asthma (6). In our previous acute OVA-induced
eosinophilic airway model, we also observed more severe lung
neutrophilia with IL-17A signaling modification in OVA-
stimulated Has2+/− mice (5). However, both neutrophils were
similarly elevated in this study. The most likely reason was that
both groups were saturated with neutrophil-inducing stimuli due
to the daily stimulation of OVA. The present study revealed that
OVA-induced airway inflammation in Has2+/−-OVA mice was
resistant to steroid treatment (Figure 6B). Notably, this
refractory airway inflammation was relieved by combined
therapy with steroid and anti-IL-17A antibodies (Figure 6C).
Recent literature reported that combined administration of anti-
IL-17A Ab and corticosteroid significantly attenuated steroid-
insensitive airway inflammation, AHR, and body weight loss
(42). Furthermore, Pathinayake et al. reported that heightened
ER stress is associated with severe eosinophilic and neutrophilic
inflammation in asthma and ER stress genes displayed a
significant correlation with classic Th2 genes and Th17 (IL-
17F/CXCL1) genes (43). These results indicate that both anti-IL-
17A and anti-IL-17F antibodies are potential candidates for the
treatment of refractory asthma with ER stress response
abnormalities. The reason for the neutrophil increase in WT-
OVAmice treated with steroid and isotype control Ab (Rat IgG1,
k) is unknown but could be due to induced non-specific
inflammation by the isotype Ab itself.

Several potential shortcomings of the current work should be
addressed. For instance, the airway glycan ligand that acts on
CD44 or ER stress response may be reduced in Has2+/− mice.
However, this reduction has not been confirmed. The deletion of
Has2 might affect these mice in other ways. Future experiments
are needed, for example, to determine whether the Has2 genetic
deletion directly affects inflammatory cells and whether the
supply of HAS2 enzyme, HMW-HA, and Hsp into the airway
abrogates the lung eosinophilia. Moreover, the evaluation of ER
stress and Hsp responses in each tissue and cell was insufficient;
therefore, detailed tissue- or cell-specific examination, such as
Frontiers in Immunology | www.frontiersin.org 10
single-cell RNA-seq analysis, will be needed. In addition, to
clarify the efficacy of treatment, it is necessary to study the
effect of anti-IL-17A antibody alone, but this has not been done.

Nevertheless, the fact that Has2+/−mice have more severe
airway remodeling, steroid insensitivity, and fewer HMW-HA in
their airways strongly suggests that reduced levels ofHas2 impair
extracellular matrix homeostasis for controlling chronic airway
eosinophilia. Furthermore, disorders associated with reduced
HAS2 function in the lungs might manifest intractable airway
inflammation and remodeling with the Th17 bias. These data
also support the notion that HAS2 and HMW-HA are important
for controlling steroid-resistant eosinophilic airway
inflammation and remodeling and could potentially be
exploited for therapeutic benefits.
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