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A B S T R A C T   

Drastic and continuous decline in cane yields has become a major threat to sustainable sugarcane 
production in Ethiopia. Among the causes for the decline are the inefficient and ineffective system 
of monitoring sugarcane plantations. Adopting satellite-based crop monitoring through the 
Landviewer platform may circumvent this problem. However, the reliability of vegetation indexes 
calculated by the platform is unknown and thus requires evaluation. Accordingly, we tested the 
accuracy of selected Landviewer Calculated Vegetation Indexes (LCVIs) on three major sugarcane 
varieties and two cropping types. The goodness-of-fit of the sigmoid curve to the LCVIs profile of 
sugarcane was evaluated. The correlations between LCVIs and yield components, LCVIs and 
fractional green canopy cover (FGCC), as well as the time-serious Normalized Difference Vege
tation Index (NDVI) and yields, were also analysed. We found that the goodness-of-fit of the 
sigmoid curve was significant (p < 0.001), with 84%–95% accuracy in all the indexes. The ma
jority of LCVIs showed significant (p < 0.05) relationships with yield components and FGCC. The 
time-series NDVI also demonstrated a significant relationship with cane yield (R2 = 0.73–0.85) at 
the age of 10 months and above. The accuracy level of LCVIs varies with varieties and crop types, 
but the Normalized Difference Phenology Index (NDPI), Soil Adjusted Vegetation Index (SAVI), 
and NDVI were identified as the most consistent and effective LCVIs for sugarcane monitoring. 
Therefore, the accuracy of LCVIs was dependable and can be used effectively in monitoring 
sugarcane plantations to tackle the problem of continuous decline in the yield of the crop.   

1. Introduction 

Among the three other most productive crops in the world, namely, rice, wheat, and maize, sugarcane ranks first in crop tonnage 
and fourth in plant calories of the human diet [1]. Currently, about 26.5 million hectares of sugarcane are grown in 105 countries, with 
a total production of around 1.745 billion tons [2]. Brazil and India are the world’s major producers of sugarcane, with annual outputs 
of approximately 769 million and 348 million metric tons, respectively [3,4]. African countries produce only 5% of the total global 
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sugar production, of which 80% is contributed by sub-Saharan African countries [4,5]. The leading sugarcane-producing countries in 
Africa are South Africa, Sudan, Swaziland, Zambia, Mauritius, and Kenya, accounting for more than 50% of the total production in the 
continent. 

In Ethiopia, commercial sugarcane production started in 1951, during which a concession of 5000 ha of land was granted to the 
Dutch company United N.V. Handles Vereeniging Amsterdam (HVA) [6]. Considering the vast potential of the country [7–10], the 
Ethiopian government has made a large-scale investment since 2010 to expand the existing sugarcane plantations and establish new 
ones. Accordingly, it was planned to develop 400,000 ha of new sugarcane plantations [11], of which 102,000 ha have already been 
realized [12]. Upon accomplishing the plan, the sugar industry is expected to play a significant role in reducing poverty and ensuring 
the country’s food security. 

Despite such efforts, the continuous decline in yields of sugarcane has posed a severe threat to sustainable production of the crop in 
the country [13–15]. For instance, the cane yield at the Wonji-Shoa Sugarcane Plantation (WSSP) has declined by 48% over the last 70 
years [15]. Thus, tackling the problem of such a continuous yield decline is a timely strategic issue of significance for the country. 

One of the possible causes of the decline in sugarcane yield is the use of conventional methods of plantation monitoring. Such 
methods are inefficient and ineffective for sugarcane monitoring due to the canopy structure of the plant, which makes plantation 
fields extremely dense and difficult to navigate through, as well as the dangers posed to humans by various beasts and vermin 
inhabiting plantation fields, such as poisonous snakes, scorpions, spiders, etc. [16,17]. For instance, the number of corneal injuries 
caused by sugarcane leaves in India is 37% compared to wheat leaves, which is only 10.6% [17]. These situations prompted the In
ternational Labour Office (ILO) [18] to issue major ‘Safety and Health Hazards’ in accidents related to sugarcane field monitoring and 
management. Moreover, the hostile environmental conditions and the remote areas where the crop is often grown make the moni
toring activity perilous, costly, and time-consuming [19,20]. As a result, it is difficult to timely detect and address the problems caused 
by various abiotic and biotic stresses on sugarcane plant. 

To overcome these problems, alternative mechanisms for monitoring and detecting crop stress should be envisaged. In this regard, 
satellite-based crop monitoring offers the best opportunity since it enables plantation personnel to safely, effectively, and efficiently 
monitor crop health [21] and thus facilitates early intervention and management of potential problems before they spread widely [22]. 
As stated by Polivova and Brook [23], crop stresses detected in advance permit rapid adjustments in cropping system calendars and 
thus prevent yield penalties that may occur. 

The benefit of satellite-based crop monitoring is being practically reaped in developed countries [22,24,25], whereas it has not yet 
been exploited in African countries [25,26]. Although a few studies have been conducted thus far in Ethiopia, the implementation of 

Fig. 1. Map of the study area.  
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the satellite-based crop monitoring system is negligible due to several constraints. For instance, the model developed on satellite-based 
estimation of yield for WSSP [27] could not be practically implemented by plantation personnel. This is because remote sensing data 
are big data and therefore require extensive computing capabilities and advanced skills [28], which cannot be found in African 
countries due to lack of resources and strategic frameworks [26,29]. 

Recently, a company named EOS-Data Analytics (https://eos.com) developed a simple and user-friendly satellite platform called 
Landviewer. Landviewer is a tool that analyses earth images and real-time observations via a browser [30]. Unlike conventional 
methods, Landviewer does not require downloading, processing and analysing an image manually [31]. Instead, it can directly search, 
process, and retrieve valuable insights from satellite images on the fly. All the images are stored and analysed on the Amazon cloud 
platform [30], and hence, operating the software does not require special skills and facilities. Therefore, this is an excellent opportunity 
for developing countries such as Ethiopia to leverage the vast potential of satellite-based crop monitoring and management systems. 
However, there have been no prior scientific studies conducted on the reliability of spectral vegetation indexes calculated by the 
Landviewer platform in the country. 

Therefore, evaluating the relationship between ground truth data and different spectral vegetation indexes calculated by this 
platform is of paramount importance for exploiting the potential of satellite-based crop monitoring, which can make a significant 
contribution to alleviating the problem of declining yields of sugarcane in Ethiopia. As such, we aimed to evaluate selected vegetation 
indexes calculated by the Landviewer platform for monitoring sugarcane plantations and identify the most effective indexes in the 
central part of the country. Thus, we hypothesized that LCVIs are directly correlated with the sigmoid growth curve, yield components, 
Fractional Green Canopy Cover (FGCC), and final yield of sugarcane and enable us to monitor the performance of sugarcane 
plantations. 

2. Material and methods 

2.1. Description of study site 

The study was conducted during the cropping seasons of 2020/2021 and 2021/2022 at Wonji-Shoa Sugarcane Estate, which is also 
called the Wonji-Shoa Sugar Factory, central Ethiopia. The site is located between 8◦19′54″N–8◦27′15″N and 39◦12′34″E− 39◦19′21″E in 
Oromia Regional State, Adama District, 110 km southeast of Addis Ababa (Fig. 1). The altitude of the site ranges from 1540 to 1650 m 
above sea level, and the rainfall distribution is bimodal with erratic pattern. The mean annual long-year (1981–2021) rainfall is about 
767 mm. Furthermore, the mean minimum and maximum temperatures are 14.7 ◦C and 27.4 ◦C, respectively, which are suitable for 
sugarcane production. The topography of the site is fairly flat and uniform (slope ranging from 0.02 to 0.05%) [13]. The Awash River, 
the sole perennial river in the Awash Basin, crosses the plain, dividing the plantation into west and east banks. 

The Wonji-Shoa Sugar Estate was established in 1951 as a result of an agreement signed between the Dutch Company (H.V. 
Amsterdam) and the Ethiopian government. In 1954, the Wonji Sugar Factory launched sugar production, ushering an era of domestic 
sugar manufacturing in the history of Ethiopia. Currently, the sugarcane plantation covers around 11000 ha [12]. Wonji has an 
estimated population of 100000, of which 10678 are employees of the Sugar Factory [32,33]. 

The geology of the WSSP is a product of volcanic activity and rift tectonics, as it is located in Ethiopia’s main rift valley region. 
Basalts, silicics, tuffs, ash flows, trachytes, and other volcanic rocks dominate the site’s geological units. The age of the lacustrine rift 
material is congruent with the age of the Wonji volcanics, which mostly consist of volcano-clastic deposits and tuffs with silts, clays, 
and diatomites. Alluvial deposits are also widespread in some areas of the plantation [13]. 

According to the FAO soil classification, the major soil types in the WSSP area include Fluvisols, Andosols, and Leptosols [34], 
which are composed of a complex of grey cracking clays and semiarid brown soils in topographic depressions. They are classified as 
‘light’ (coarse textured) or ‘heavy’ (clayey black kinds) based on texture [35]. The African Soil Atlas [36] spatial distribution reveals 

Table 1 
Morphological descriptions of the major sugarcane varieties grown at Wonji-Shoa Sugarcane Plantation.  

SN Characters N14 NCo334 B52298 

1 Leaf carriage Erect Semi-drooping Erect 
2 Leaf sheath spines Dense Glabrous Sparse 
3 Leaf sheath clasping Tight Tight Tight 
4 Leaf colour Dark green Green Green 
5 Ligule shape at Crescent Crescent Crescent Crescent 
6 Auricle shape at leaf sheath margin Deltoid Deltoid and sloppy Deltoid 
7 Lodging resistance Tolerant Moderately tolerant Tolerant 
8 Growth ring colour Light green Dull green Light green 
9 Leaf blade length (cm) (Fully expanded green leaf) 188 173 192 
10 Leaf width (at the widest portion of the lamina) (cm) 4.47 4.32 5.58 
11 Leaf colour Dark Green Green Green 
12 Leaf sheath colour Green Green Green 
13 Leaf sheath spines Present Absent Present 
14 Leaf sheath waxiness Medium Light Light 
15 Dewlap colour Dull green Green Green 

Source: Khan et al. [38]. 
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that Silandic Andosols (clayey black types) are the prevalent soil in WSSP. 
In WSSP, three major sugarcane varieties that cover 71% of the plantation have been grown: N14 (39%), NCo334 (20%), and 

B52298 (12%) [37]. Twenty minor varieties make up the remaining 29% of the plantation. The morphological descriptions of the 
varieties are illustrated in Table 1. 

2.2. Satellite data 

This study used the Sentinel-2 multispectral instrument (Sentinel-2) satellite since it has the best spatial (10–60 m) and temporal (5 
days) resolutions of the freely available satellites. Furthermore, this satellite has 13 spectral bands (Table 2), including the red edge 
band, which is essential to detect the chlorophyll content of plants [28]. 

As part of the European Copernicus Programme, Sentinel-2 carries out a number of Earth observation missions, including agri
cultural monitoring [28]. It is a constellation of two twin satellites (Sentinel-2A and Sentinel-2B, which started operation in 2015 and 
2017, respectively) and carries all multispectral instruments and acquires optical imagery from all over the globe. In this study, we 
used Sentinel-2A [39] since the average channel reflectance of Sentinel-2A MSI is greater than that of Sentinel-2B MSI over most 
channels [40]. 

Although the Sentinel-2 satellite enables more frequent and high-resolution observations of agricultural fields, it has been affected 
by cloud cover [21]. Furthermore, the view angle of Sentinel-2 is ±10.3◦ from the nadir view when acquiring observations, resulting in 
non-Lambertian surface directional reflectance effects [41]. 

2.3. Landviewer platform 

Landviewer, a digital satellite-driven tool, was developed by a California-based company called EOS Data Analytics (EOSDA). The 
service enables on-the-fly satellite data searching, visualization, and processing by utilizing the platform’s 10+ indexes or adding an 
index of interest. The software provides free access to medium-resolution images obtained from 10 satellites and, as a result, functions 
as a catalogue of satellite imagery acquired from various sensors. Users can also buy high- and extremely high-resolution imagery, as 
well as search and download images of any area [42]. 

In Landviewer (Fig. 2), image processing is executed on-the-fly, and the results of the primary analysis are instantly visualized on 
the screen. Unlike the conventional method, selection of the required date, location and sensor type is very easy due to an intuitive 
interface [30]. To use the platform, online registration is a prerequisite. Once registered, users can access up to 10 images per day for 
free, with the option to subscribe if more images are required. 

2.4. Vegetation indexes 

Vegetation indexes (VIs) are spectral transformations greater than or equal to two bands that are intended to increase the 
contribution of vegetation features and enable valid spatial and temporal inter-comparisons of terrestrial photosynthetic activity and 
alterations of canopy structure [43]. They can be used to track seasonal, inter-annual, and long-term changes in vegetation structural, 
phenological, and biophysical aspects. In this study, ten VIs, which have been extensively used in studies of vegetation properties [42, 
44,45] were selected. The description of each VI and their corresponding equations (where NIR is near infrared, while B, R, G, and RE 
are blue, red, green and red-edge band reflectance, respectively) are described below. 

2.4.1. Enhanced normalized difference vegetation index (ENDVI) 
To provide a more sensitive result, the ENDVI compares green and blue light in addition to NIR light. This isolates plant health 

Table 2 
Spectral bands for the Sentinel-2 sensors.  

Band Number Sentinel-2A Sentinel-2B Spatial resolution (m) 

Central wavelength (nm) Bandwidth (nm) Central wavelength (nm) Bandwidth (nm) 

1 442.7 20 442.3 20 60 
2 492.7 65 492.3 65 10 
3 559.8 35 558.9 35 10 
4 664.6 30 664.9 31 10 
5 704.1 14 703.8 15 20 
6 740.5 14 739.1 13 20 
7 782.8 19 779.7 19 20 
8 832.8 105 832.9 104 10 
8a 864.7 21 864 21 20 
9 945.1 19 943.2 20 60 
10 1373.5 29 1376.9 29 60 
11 1613.7 90 1610.4 94 20 
12 2202.4 174 2185.7 184 20 

Source: The European Space Agency (https://sentinels.copernicus.eu/web/sentinel/) 
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indicators and can be used to determine the presence and health of a crop [46]. 

ENDVI=
(NIR + G) − (2 ∗ B)
(NIR + G) + (2 ∗ B)

(1)  

2.4.2. Green Differential Vegetation Index (GDVI) 
GDVI take in to account near infrared (NIR) and green (G) bands to estimate nitrogen deficiency and requirements [47]. 

GDVI = NIR − G (2)  

2.4.3. Normalized Differential Vegetation Index (NDVI) 
The NDVI is the most frequently used index to monitor drought, track and estimate crop yield, forecast hazardous fire zones, and 

map desert expansion. The NDVI is a standardized vegetation index that allows us to build an image of the relative biomass. The red (R) 
band chlorophyll absorption and the comparatively high reflectance of plants in the near infrared band (NIR) are used to calculate 
NDVI [45,48]. 

NDVI=
NIR − R
NIR + R

(3)  

2.4.4. The Soil-Adjusted Vegetation Index (SAVI) 
The SAVI is a vegetation index that uses a soil luminance adjustment factor to reduce the influence of soil luminance. It is frequently 

utilized in desert settings where vegetation cover is minimal [43,45]. 

SAVI=
1.5 ∗ (NIR − R)
NIR + R + 0.5

(4)  

2.4.5. The Enhanced Vegetation Index (EVI) 
The EVI is an optimized vegetation index that is designed to improve vegetation monitoring by adding a blue band (B) with 

improved sensitivity in high biomass regions, a decoupling of the canopy background signal and a reduction in atmospheric influences 
[49]. 

EVI =
2.5 ∗ (NIR ​ - ​ R)

(NIR + 6 ∗ R − 7.5 ∗ B) + 1
(5)  

2.4.6. Normalized Difference Phenology Index (NDPI) 
The NDPI was developed to identify vegetation from soil and snow while minimizing discrepancies between these background 

components. On the other hand, the NDPI ignores the spectral features of dry grass. The NDPI employs the R, NIR, and shortwave 
infrared (SWIR) bands to differentiate vegetation from background components (soil and snow) [42,50]. 

Fig. 2. Landviewer satellite platform depicting the natural colour of the Wonji-Shoa Sugarcane Plantation (https://eos.com/landviewer/?lat=8. 
40912&lng=39.29612). 
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NDPI=
NIR − (0.74 ∗ R + 0.26 ∗ SWIR)
NIR + (0.74 ∗ R + 0.26 ∗ SWIR)

(6)  

2.4.7. Normalized difference RedEdge (NDRE) 
The NDRE is a photosynthesis activity indicator of vegetation cover that is used to measure nitrogen concentrations in plant leaves 

in the middle and end of a season. It is used to detect stressed and aging vegetation and to diagnose plant health by using NIR and 
RedEdge (RE) bands. It also makes it possible to optimize harvest timing and useful in the advanced ages of the crop. It is advisable to 
employ NDRE, where a dense canopy can produce NDVI saturation [45,51]. 

NDRE=
NIR − RE
NIR + RE

(7)  

2.4.8. Red-edge Chlorophyll Index (ReCl) 
The ReCl is a photosynthetic activity index of vegetative cover that is sensitive to chlorophyll content in leaves. Because chlorophyll 

levels are closely tied to nitrogen levels in the crop, the index helps to identify parts of the field with yellowed or faded leaves that may 
require further fertilizer treatment [45,52]. 

RECI=
NIR
RE

− 1 (8)  

2.4.9. Ratio Vegetation Index (RVI) 
The RVI has a high ability to indirectly signal chlorophyll and nitrogen content in leaves, leaf area, and dry weight and hence has a 

high potential to estimate insect pest damage to crops [53,54]. 

RVI=
NIR

R
(9)  

2.4.10. Green Normalized Difference Vegetation Index (GNDVI) 
The GNDVI is a modified version of the NDVI that incorporates green (G) and near-infrared (NIR) light to better show chlorophyll 

content and changes in vegetation. It is also beneficial for analysing the crop’s water and nitrogen deficits and excesses [52]. 

GNDVI=
NIR − G
NIR + G

(10) 

Fig. 3. A Landviewer platform showing the ‘Custom Combination’ feature that permits input of a new formula (A) and the ‘Time Serious Analyses’ 
feature that allows entering planting and harvesting dates (B) to generate time series NDVI values of an area of interest. 
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2.5. Evaluation approaches 

The Landviewer platform allows users to calculate any spectral index by entering the formula into the custom combination tab 
(Fig. 3A). It also generates the time series NDVI value of any desired area of interest from planting to harvesting in the platform’s time 
series tab (Fig. 3B). In this study, four approaches were utilized to compare the results derived from both features of the platform 
against ground data collected from the fields of WSSP. 

2.5.1. Goodness-of-fit of the sigmoid growth curve in the LCVI profiles of sugarcane 
The growth of the sugarcane plant follows a sigmoidal growth curve [16]. A sigmoid growth curve (S-shaped growth curve) is a 

type of growth in which a living organism increases in population, initially at a slow rate (lag phase), then at an exponential rate (log 
phase), and finally at a decreasing rate (stationary phase) until the population stabilizes [55]. 

Of the different types of sigmoid growth curves, the growth of a newly planted sugarcane field is better described by a logistic curve 
that defines symmetric growth, and the growth of the ratoon cane is better explained by the Gompertz model, which depicts asym
metric growth with fixed inflection points [56,57]. Thus, in our study, the plant and ratoon cane fields were evaluated separately by 
employing goodness-of-fit of the Logistic curve [58] and Gompertz curve [59], respectively, during the first 10 months of cane age. 

2.5.2. Relationship between yield components and LCVIs 
The second approach focused on evaluating LCVIs for their degree of association with yield components of sugarcane (plant 

density, height, and diameter). These yield components have a significant association with cane yield and hence can show the per
formance (health) of the cane [60]. Thus, spectral VIs are expected to correlate with these yield components. 

2.5.3. Relationship between fractional green canopy cover (FGCC) and LCVIs 
Fractional green canopy cover (FGCC) is an indicator of canopy development, light interception, and evapotranspiration parti

tioning, which are indicators of crop health [61]. Earlier studies in other crops indicate that spectral vegetation indexes, mainly NDVI, 
are significantly correlated with FGCC [62–64]. 

2.5.4. Relationships between sugarcane yield and time series NDVI 
One of the ingenious features of Landviewer is that it can automatically generate the whole NDVI values during the entire growth 

period of the cane once the planting and harvesting date is specified [45]. This enables farm managers to easily assess the performance 
of a crop instantly. Thus, the relationship between Normalized Difference Vegetation Index (NDVI) and the final yield of sugarcane was 
evaluated. 

Fig. 4. An example of the field layout of one of the sampled fields (variety NCo334) from which yield components of sugarcane were collected.  
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2.6. Field data collections 

The fields selected for data collection had an area of 5–24 ha and were harvested during the cropping seasons of 2020–2021 and 
2021–2022. The average harvest ages were 18 and 14 months for the plant and ratoon cane, respectively. The ratoon fields used for the 
study were selected from the first and second cuttings. In WSSP, the harvesting season lasts from November to May, while the peak 
planting months are December–March. Data and information that comprise the crop type, variety, average yield, planting/ratooning 
date, and harvesting date of each of the selected field were obtained from a historical yield database archived by Wonji-Shoa Sugar 
Factory.  

A. To test the goodness-of-fit of the sigmoid curves, a stratified sampling method was applied. Accordingly, the two crop types (plant 
crop and ratoon crop) were used as the main strata, and from each crop type, three varieties (NCo334, N14, and B52298) were used 
as substrata. Finally, three fields that were harvested in a cropping season of 2020–2021 with a reasonable yield (above 100 tons 
ha− 1) were randomly selected from each substrata. Then, the planting and harvest dates of each field were extracted from the 
database brought from Wonji-Shoa Sugar Factory.  

B. To collect data pertaining to the yield components of sugarcane, one ratoon field was selected randomly from each of the three 
major sugarcane varieties, i.e., NCo334, N14, and B52298, that were harvested in the 2020–2021 cropping season. When the cane 
reached the grand growth stage (6 months of age), approximately 5 ha of the selected fields were delineated and laid out into nine 
main plots, each with an area of 1392 m2 (Fig. 4). The layout was created in such a way that the plots were uniformly distributed 
across the entire field. Then, the geo-references of each plot were recorded using a Global Navigation Satellite System (GNSS) 
receptor. To collect ground truth data, each plot was further divided into three subplots (46.4 m2), and plant density, height, and 
diameter were collected and extrapolated for the main plot. The plant density was determined by counting the number of millable 
cane stalks within the subplots. Plant height (from ground level up to the top visible dewlap) and cane diameter (at the middle of 
the stalk) were measured by randomly selecting three cane stalks from each subplot.  

C. To determine the fractional green canopy cover (FGCC), stratified sampling, where the three major sugarcane varieties of WSSP 
were used as strata, was employed. From each stratum, three fields with an age of four to five months were selected randomly. 
Depending on the shape and area of each field, two to five plots of approximately 600–800 m2 were demarcated on a randomly 
selected site. The geo-references of each plot were recorded using a GNSS receiver. Then, from each plot, three to four spots were 
randomly selected, and the top images of the cane canopy were taken from a height of about 3.5 m using a smartphone (Techno C9) 
mounted on a stick (Fig. 5). In total, 108 pictures were taken, and the FGCC was calculated by analysing the collected images using 
Canopeo software (Oklahoma State University, Stillwater, OK). The calculations were performed as per the guidelines indicated on 
the official website of the application (https://canopeoapp.com/). Canopeo is a tool of image analysis that gives a percentage of 
white pixels (Fig. 5), which corresponds to green canopy coverage [61]. The FGCC value obtained from each spot was then 
extrapolated into the main plot. The field data were collected on the same day as the imagery date of the study area by the 
Sentinel-2 satellite.  

D. To evaluate the time series NDVI values generated by Landviewer, ratoon sugarcane fields that recorded a yield of 24–140 ton ha− 1 

were randomly selected from the field-level database of the Wonji-Shoa Sugar Factory. From each of the three major varieties, N14, 
NCo334 and B52298, 29 fields were selected, making a total of 87 fields selected. 

Fig. 5. Cane image as taken from a height of 3.5 m (left) and analysed by Canopeo (right). The percentage of the white pixels in the analysed images 
correspond to green canopy coverage. 
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To determine the vegetation index (VI), first, a polygon of each selected field/plot (areas of interest) was drawn on Google Earth 
Pro. When the entire field was used as an area of interest, a polygon was drawn by following the border of that specific field. Whereas, 
when a plot within a field was used as an area of interest, the coordinates collected from the corner of each plot were imported to 
Google Earth Pro, and then a polygon was drawn following these coordinates. Second, the polygons drawn on Google Earth Pro were 
saved as a kml file and uploaded to the Landviewer platform (Fig. 2). Third, the vegetation indexes were determined by inserting the 
formula for each index into the formula input field under the custom combination tab of the Lanviewer (Fig. 3A). Fourth, to determine 
the mean index value of an area of interest, the weighted mean of the mid-values of each performance category was calculated. Fifth, 
the time-series NDVI values were generated by entering the planting or ratooning dates as well as harvest dates of a field in the period 
box of the time-series analysis tab (Fig. 3B). Finally, the entire set of NDVI values (planting date/rationing date to harvest date) was 
downloaded from the platform as an Excel file. A schematic representation of the whole methodology is depicted in Fig. 6. 

2.7. Data analysis 

Genstat 2018 [65] was used to test the significance of the goodness-of-fit of the sigmoid curve in LCVIs. Then, the percentage 
variance accounted for the goodness fit of logistic and Gamperz curves for plant and ratoon canes, respectively, was taken to compare 
the LCVIs. To that end, mean separation by using Tukey’s test at 95% confidence intervals was analysed. 

To evaluate the significance and the degree of relationship between LCVIs vs. FGCC and LCVIs vs. yield components of sugarcane, a 
regression analysis was performed using real statistics resource pack software (Release 7.6) [66]. 

From the downloaded file of time-series NDVI values for each field, the mean of three maximum NDVI values [67] at 2, 4, 6, 8, and 
10 months of age as well as at harvest were computed. Then, multiple linear regressions were carried out between the mean value of 
the NDVI and the final yield of the cane using the same software. 

3. Results 

3.1. Goodness-of-fit of sigmoid growth curve to Landviewer Calculated Vegetation Indexes (LCVIs) 

For each sugarcane variety, the goodness-of-fits of the logistic and Gamperz curves of all the Landviewer Calculated Vegetation 
Indexes (LCVIs) were significant (p < 0.001) for both plant and ratoon crops, respectively (Fig. 7). The temporal profiles of LCVIs 
showed an initial gradual increase, followed by an exponential rise, and then becoming stagnant (Fig. 7). However, the trends observed 

Fig. 6. Flow chart of the methodology. LCVIs and VIs stand for Land viewer Calculated Vegetation Indexes and Vegetation Indexes, respectively.  
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in the Normalized Difference Phenology Index (NDPI) (Fig. 7A), Soil Adjusted Vegetation Index (SAVI) (Fig. 7B), Normalized Dif
ference Vegetation Index (NDVI) (Fig. 7C), Normalized Difference Red Edge (NDRE) (Fig. 7D), Green Normalized Difference Vege
tation Index (GNDVI) (Fig. 7E), Enhanced Normalized Differential Vegetation Index (ENDVI) (Fig. 7F), Green Differential Vegetation 
Index (GDVI) (Fig. 7G), and Enhanced Vegetation Index (EVI) (Fig. 7H) were found to be better than those in the Red-edge Chlorophyll 
Index (ReCl) (Fig. 7I), and Ratio Vegetation Index (RVI) (Fig. 7J) in terms of following sigmoidal growth pattern. This was also in 
agreement with the results indicated in Table 3. Furthermore, the rate of increase at the early stage of growth was slower in the plant 
cane than in the ratoon cane, which may result from the fact that the latter had an already established root system. 

Fig. 7. Landviewer Calculated Vegetation Indexes (LCVIs) profile of sugarcane during the first 10 months age of the crop on the three major va
rieties (N14, NCO334 and B52298) and the two crop types (PC and RC, plant cane and ratoon cane, respectively) at Wonji-Shoa Sugarcane 
Plantations in central. Ethiopia. Each alphabet represents one of the ten VIs i.e. NDPI (A), SAVI (B), NDVI (C), NDRE (D), GNDVI (E), ENDVI (F), 
GDVI (G), EVI (H), RECI (I) and RVI (J). Each curve is an average of three fields and significantly fitted to sigmoid growth model at p < 0.001. 
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An example used to illustrate temporal change in VIs (time series NDVI map of one of the sampled plant cane fields) also shows a 
pictorial representation of the aforementioned results where the differences among the NDVI of successive months were initially low 
(germination stage) (Fig. 8A and B) and then drastically increased until the cane reached 6 months of age (Fig. 8C, D, Fig. 8E, and 
Fig. 8F). Finally, the NDVI becomes stagnant at the grand growth phase (Fig. 8G, H, and Fig. 8I). This again confirmed that LCVIs 
follow the typical growth trend of the sugarcane crop, i.e., a sigmoidal growth pattern [16]. Hence, LCVIs can be used effectively to 
monitor the performance of sugarcane plantations and make decisions about the management of the crop during its growth stages. 

Tukey’s test at the 95% confidence interval revealed the existence of significant differences among the LCVIs. Accordingly, the 
goodness-of-fit in SAVI, NDPI, NDRE, EVI, GNDVI, GDVI and ENDVI (91–95% of the variability) were significantly (p < 0.05) higher 
than RVI and RECI (80–89% of the variability) (Table 3), while there were no significant differences among the VIs within both the 
former and the latter groups (Table 3). Hence, except for the RVI and RECI, all the LCVIs can be used to monitor both plant and ratoon 

Fig. 8. An example of the vegetation index (NDVI) of a sugarcane field at different months after planting (MAP) showing that the growth of 
sugarcane follows a sigmoid growth pattern. 

Table 3 
Percent variance accounted for sigmoid growth curve fitting in Landviewer Calculated Vegetation Indexes (LCVIs) on the three major varieties (N14, 
NCO334 and B52298) and the two crop types (plant cane and ratoon cane) at Wonji-Shoa Sugarcane Plantation in central Ethiopia.  

Index Plant Crop Ratoon Crop 

NCo334 B52298 N14 Mean NCo334 B52298 N14 Mean 

SAVI 97.50 96.40 91.50 95.13a 95.50 90.53 93.07 93.03a 
NDPI 97.10 95.00 93.07 95.06a 92.50 91.90 93.33 92.58a 
NDRE 96.10 95.27 92.33 94.57 ab 94.07 92.83 90.23 92.38a 
NDVI 96.13 94.93 92.53 94.53 ab 96.40 85.20 94.40 92.00a 
EVI 97.90 95.27 88.80 93.99 ab 94.43 86.07 94.07 91.52a 
GNDVI 96.07 95.67 89.37 93.70 ab 96.70 80.83 95.23 90.92 ab 
GDVI 97.83 94.67 84.97 92.49abc 92.17 92.10 88.23 90.83 ab 
ENDVI 96.97 91.67 85.27 91.30abc 95.07 84.97 91.60 90.54 ab 
RVI 92.03 90.87 73.47 85.46bc 86.90 71.67 89.53 82.70bc 
RECI 87.30 91.27 73.17 83.91c 87.63 72.00 82.10 80.58c 
Mean 95.49a 94.10a 86.45b 92.01 93.14a 84.71b 91.18a 89.1 

The goodness of fit was tested by fitting logistic and Gampertz growth curve to LCVIs in the plant and in the ratoon crops, respectively. The com
parison was made by using Tukey’s test at 95% confidence intervals. 
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cane fields with better accuracy. 
The performance of LCVIs in relation to sugarcane varieties showed significant differences. We found that the goodness-of-fit of the 

logistic curve for NCo334 (95% of variability) and B52298 (94% of variability) were in statistical parity, whereas the values of the 
goodness-of-fit of the logistic curve of both varieties were significantly higher than that of N14 (86% of variability) in the plant crop. In 
the case of the ratoon crop, NCo334 (93% of variability) and N14 (91% of variability), which were not significantly different, per
formed better than B52298 (85% of variability). This implies that the VIs to be used for monitoring different varieties may also vary. 
Table 3 indicates that the best indexes for the monitoring of the NCo334, B52298 and N14 varieties were EVI, SAVI, and NDPI, 
respectively, for plant cane fields. In the case of ratoon fields, GNDVI was found to be the best index for monitoring both NCO334 and 
N14, while NDRE was the most effective evaluator of B52298. 

Compared to the plant crop, the LCVIs from ratoon cane showed inferior fittings in all the corresponding indexes (Table 3). The 
combined mean goodness-of-fit in ratoon cane (89% of variability) was also lower than that in plant cane (92% of variability). This 
implies that during monitoring of ratoon crops, the LCVIs to be used should be selected carefully (Table 3). 

3.2. Relationship between yield components and Landviewer Calculated Vegetation Indexes (LCVIs) 

3.2.1. Variety NCo334 
All the LCVIs, except the Enhanced Normalized Difference Vegetation Index (ENDVI), showed significant (p < 0.05) relationships 

with plant density, plant diameter, and plant height (Table 4). Of the three yield components, we observed the strongest relationship in 
plant density (R2 = 0.66–0.90), followed by plant height (R2 = 0.38–0.70) and plant diameter (R2 = 0.35–0.65). 

When a combined regression analysis (using the three yield components as independent variables) was applied, all the LCVIs 
(except ENDVI) exhibited significant (p < 0.05) relationships with the yield components (Table 4). Among the indexes, the Green 
Difference Vegetation Index (GDVI), Green Normalized Difference Vegetation Index (GNDVI), Normalized Difference Vegetation Index 
(NDVI), and Soil Adjusted Vegetation Index (SAVI) (R2 > 0.90) showed relatively stronger correlations than the Enhanced Vegetation 
Index (EVI), Red-edge Chlorophyll Index (RECI), Normalized Difference Phenology Index (NDPI), Normalized Difference Red Edge 
Index (NDRE), and Ratio Vegetation Index (RVI). In fact, the three yield components and the VIs were correlated with different degrees 
of accuracy. The plant density was better correlated with the GDVI (R2 = 0.9), while both plant height (R2 = 0.74) and diameter (R2 =

0.65) showed a better correlation with the GNDVI. Hence, these indexes can be selected as the best tool to assess the yield components 
of sugarcane. 

3.2.2. Variety N14 
Except for ENDVI and NDVI, there existed a significant relationship between plant density and LCVIs, where SAVI and RVI (R2 =

0.64) showed the highest degree of relationship (Table 5). In the case of plant height, the relationship was significant for all the LCVIs, 
with EVI (R2 = 0.88) and SAVI (R2 = 0.88) being the highest. In contrast to variety NCo334, the strongest relationship was observed in 
plant height, while no significant association was observed in stalk diameter, indicating that varieties have different reflectance 
properties. 

Concerning the combined regression analysis, all the LCVIs showed a significant and strong relationship (p < 0.05) with the three 
variables in common (Table 5). The highest and lowest coefficients of determination were recorded for the NDPI, SAVI, RECI, and EVI 
(R2 = 0.89–0.92), as well as for the GDVI and EDVI (R2 = 0.73), respectively (Table 5). 

3.2.3. Variety B52298 
Unlike the aforementioned varieties, yield components of B52298 showed poor association with LCVIs, which suggests that 

monitoring this variety by using LCVIs needs special attention and that an alternative mechanism should be sought (Table 6). The plant 
density was significantly (p < 0.05) related to the GDVI (R2 = 0.66), EVI (R2 = 0.64), SAVI (R2 = 0.62), NDPI (R2 = 0.60), and NADRE 
(R2 = 0.60) but was not significantly associated with the remaining indexes (0.22 ≤ R2 ≤ 0.5) (Table 6). Plant height (0 ≤ R2 ≤ 0.18) 
and plant diameter (0 ≤ R2 ≤ 0.23) showed no significant and very weak correlations. In the combined regression analysis, except for 

Table 4 
The strength and significance of relationship between Landviwer Calculated Vegetation Indexes (LCVIs), and plant density, height and diameter in 
variety NCo334 at Wonji-Shoa Sugarcane Plantation in central Ethiopia.  

Index Plant density Plant height Plant diameter Combined 

R2 p-value R2 p-value R2 p-value R2 p-value 

NDPI 0.81 <0.001 0.66 0.01 0.61 0.01 0.86 0.01 
GDVI 0.90 <0.001 0.71 <0.001 0.63 0.01 0.93 <0.001 
ENDVI 0.66 0.01 0.38 0.08 0.35 0.09 0.70 0.05 
SAVI 0.88 <0.001 0.54 0.02 0.50 0.03 0.91 <0.001 
NDVI 0.88 <0.001 0.60 0.02 0.54 0.02 0.91 <0.001 
NDRE 0.80 <0.001 0.64 0.01 0.64 0.01 0.86 0.01 
RVI 0.74 <0.001 0.70 0.01 0.64 0.01 0.84 0.01 
RECI 0.84 <0.001 0.70 0.01 0.61 0.01 0.87 <0.001 
EVI 0.84 <0.001 0.60 0.01 0.56 0.02 0.88 <0.001 
GNDVI 0.88 <0.001 0.74 <0.001 0.65 0.01 0.92 <0.001  
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EVI (R2-0.79), all the LCVIs were also not significant. 

3.3. Fractional green canopy cover (FGCC) 

A significant (p < 0.05) association was observed between LCVIs and FGCC in nine of the indexes for variety NCo334, in eight of the 
indexes for variety N14, and in four of the indexes for variety B52298 (Table 7). Hence, similar to the findings observed in the yield 
components (Tables 4–6), variety B52298 again demonstrated poor correlation with FGCC (Table 7). 

In variety Nco334, the highest association was observed in SAVI (R2 = 0.79), which was followed by RVI (R2 = 0.74), NDVI (R2 =

0.72), and NDPI (R2 = 0.72). For N14, the highest association was also found in SAVI (R2 = 0.93), followed by ENDVI (R2 = 0.87), 
NDPI (R2 = 0.83), and NDRE (R2 = 0.74). For B52298, only NDVI (R2 = 0.83), NDPI (R2 = 0.73), NDRE (R2 = 0.71), and GNDVI (R2 =

0.67) showed a significant relationship with FGCC. 
In general, the NDPI, NDVI, and GNDVI showed significant relationships with the FGCC for all the three varieties (Table 7), which 

again confirms the consistent performances of mainly the NDPI under different conditions. However, ENDVI, SAVI, NDRE, RVI, and 

Table 5 
The strength and significance of relationship between Landviewer Calculated Vegetation Indexes (LCVIs), and plant density, height, and diameter in 
variety N14 at Wonji-Shoa Sugarcane Plantation in central Ethiopia.  

Index Plant density Plant height Plant diameter Combined 

R2 p-value R2 p-value R2 p-value R2 p-value 

NDPI 0.63 0.01 0.86 <0.001 0.13 0.33 0.92 <0.001 
GDVI 0.56 0.02 0.70 0.01 0.01 0.85 0.73 0.04 
ENDVI 0.41 0.06 0.73 <0.001 0.06 0.53 0.73 0.04 
SAVI 0.64 0.01 0.88 <0.001 0.06 0.54 0.90 <0.001 
NDVI 0.44 0.05 0.72 <0.001 0.03 0.66 0.72 0.04 
NDRE 0.60 0.02 0.76 <0.001 0.05 0.57 0.79 0.02 
RVI 0.64 0.01 0.67 0.01 0.00 0.87 0.75 0.03 
RECI 0.60 0.01 0.87 <0.001 0.10 0.40 0.90 <0.001 
EVI 0.60 0.02 0.88 <0.001 0.07 0.50 0.89 <0.001 
GNDVI 0.52 0.03 0.74 <0.001 0.04 0.62 0.75 0.03  

Table 6 
The strength and significance of relationship between Landviewer Calculated Vegetation Indexes (LCVIs), and plant density, height and diameter in 
variety B52298 at Wonji-Shoa Sugarcane Plantation in central Ethiopia.  

Index Plant density Plant height Plant diameter Combined 

R2 p-value R2 p-value R2 p-value R2 p-value 

NDPI 0.60 0.02 0.17 0.31 0.23 0.23 0.77 0.05 
GDVI 0.66 0.02 0.18 0.29 0.19 0.29 0.76 0.05 
ENDVI 0.39 0.10 0.11 0.41 0.10 0.45 0.66 0.38 
SAVI 0.62 0.02 0.05 0.58 0.08 0.51 0.73 0.07 
NDVI 0.50 0.05 0.04 0.66 0.08 0.49 0.65 0.12 
NDRE 0.60 0.02 0.05 0.61 0.07 0.54 0.69 0.09 
RVI 0.50 0.05 0.04 0.63 0.11 0.42 0.69 0.09 
RECI 0.22 0.24 0.00 0.92 0.00 0.93 0.33 0.54 
EVI 0.64 0.02 0.08 0.49 0.14 0.37 0.79 0.04 
GNDVI 0.50 0.05 0.03 0.67 0.06 0.56 0.61 0.17  

Table 7 
The strength and significance of relationship between Landviewer Calculated Vegetation Indexes (LCVIs) and Fracrional Green Canopy Cover (FGCC) 
for the major sugarcane varieties at Wonji-Shoa Sugarcane Plantation in central Ethiopia.  

Index NCo334 N14 B52298 

R2 p-value R2 p-value R2 p-value 

NDPI 0.72 <0.001 0.47 0.03 0.73 0.01 
GDVI 0.55 <0.001 0.26 0.13 0.19 0.33 
ENDVI 0.55 <0.001 0.87 <0.001 0.53 0.06 
SAVI 0.79 <0.001 0.93 <0.001 0.00 0.98 
NDVI 0.72 <0.001 0.83 <0.001 0.83 <0.001 
NDRE 0.16 0.09 0.74 <0.001 0.71 0.02 
RVI 0.74 <0.001 0.54 0.02 0.19 0.33 
RECI 0.41 <0.001 0.48 0.03 0.00 1.00 
EVI 0.68 <0.001 0.03 0.62 0.11 0.47 
GNDVI 0.68 <0.001 0.44 0.04 0.67 0.02  

A. Dengia et al.                                                                                                                                                                                                         



Heliyon 9 (2023) e18982

14

RECI were significant for two of the varieties, while GDVI and EVI were significant only for one variety. 

3.4. Relationship between sugarcane yield and normalized difference vegetation index 

The Normalized Difference Vegetation Index (NDVI) values determined from canes of 4, 6, and 8 months of age and above were 
significantly (P < 0.001) correlated with the final yield of sugarcane in the N-14, NCo334 and B52298 varieties, respectively (Table 8). 
However, at 2, 4, and 6 months of age and below, the relationship between the NDVI and yields was not significant (P < 0.05), and the 
strength of the relationships were also very weak for the N-14, NCo334 and B52298 varieties, respectively (Table 8). The degree of 
association became stronger with an increase in cane age (Table 8), while it remained constant after eight months of age except for 
variety NCo334. 

At harvest, variety NCo334 recorded the highest correlation with yield (R2 = 0.85), followed by N14 (R2 = 0.81) and B52298 (R2 =

0.73), which is in agreement with the above results that all the field data of NCo334 are consistently well associated with LCVIs. At ten 
months of age, NCo334 and N14 showed equal degrees of association with yield (R2 = 0.81), while both were greater than B52298 (R2 

= 0.73). In spite of the differences among the varieties, the observed relationship was reasonably strong and hence illustrates the 
capability of NDVI generated by Landviewer to indicate the performance of the cane and to use as a potential yield estimation tool. At 
eight months age of the cane, N-14 was found to be the highest in correlating with cane yield (R2 = 0.75), preceding NCo334 (R2 =

0.58) and B52298 (R2 = 0.34). At the ages of 6, 4, and 2 months, N14 (0.13 ≤ R2 ≤ 0.69) also showed the highest correlation with yield, 
followed by NCo334 (0.04 ≤ R2 ≤ 0.30) and B52298 (0.01 ≤ R2 ≤ 0.12), indicating that varieties considerably dictate the degree of 
relationship between sugarcane yield and NDVI. 

4. Discussion 

The main goal of this study was to evaluate the Landviewer Calculated Vegetation Indexes (LCVIs) and to identify the best VIs to be 
used in monitoring of sugarcane plantation. To this end, we evaluated the most commonly used vegetation indexes, which were 
calculated by the Landviewer platform by testing the goodness-of-fit of the sigmoid curve and evaluating its relationship with different 
growth parameters of sugarcane. 

To our knowledge, this is the first study conducted in the country to test LCVIs in monitoring crops in general and sugarcane 
plantations in particular. Several studies in other countries verified that a significant and strong relationship existed between spectral 
vegetation indexes and ground truths such as biomass, yield, and leaf area index [68–71]. Hence, satellite remote sensing is useful to 
detect, map, and monitor the growth, health and productivity of crops [21]. However, the complexity of satellite image processing, 
which requires special facilities and skills, has restricted its wider application, particularly in Africa [26,29]. 

Despite the growing interest in satellite-based crop monitoring, only a few studies have been performed using the powerful and 
cloud-based satellite data processing platform called Landviewer [72,73]. The former study dealt with determining the state and 
dynamics of the ratio of vegetation and built-up area, while the latter focused on estimating water and vegetation area using Land
viewer. Our results were similar to these previous studies in that LCVIs can effectively detect vegetation areas. Nevertheless, these 
studies had a limitation in that they did not test the accuracy and reliability level of different vegetation indexes calculated by the 
platform. In our study, we evaluated the effectiveness of ten LCVIs against ground truth data such as sigmoid growth pattern, yield 
components, FGCC, and yield of sugarcane, where we found promising results. 

4.1. Goodness-of-fit of the sigmoid growth curve in LCVIs 

The growth pattern of a plant often follows a sigmoidal curve where the rate of increase in growth is initially slow (lag phase), then 
becomes rapid (log/exponential phase) and ends with a steady rate (stationary phase) [74–76]. As such, sugarcane exhibits a similar 
growth pattern [16]. In our study, we confirmed that LCVIs significantly (p < 0.001) followed this type of pattern with different 
degrees of accuracy (Table 3). This confirms the reliability of using LCVIs for monitoring the performance of sugarcane crops and is 
useful for managing the problem of the continuous decline in cane yields in the country. Furthermore, the results suggest that studies 
pertaining to the growth patterns of a crop can use LCVIs. 

Our findings are also compatible with those of Zhao et al. [77], who found that the NDVI readings increase rapidly as plants grow, 

Table 8 
Relationship between Normalized Difference Vegetation Index (NDVI) and yield of three sugarcane varieties at 2, 4, 8, 10 months of age and at harvest 
of the cane in Wonji-Shoa Sugarcane Plantation in central Ethiopia.  

Time of NDVI Determination (Age in months) NCo334 N-14 B52298 

R2 P-Value R2 P-Value R2 P-Value 

2 0.04 0.27 0.126 0.06 0.01 0.65 
4 0.03 0.43 0.519 <0.001 0.02 0.46 
6 0.30 <0.001 0.69 <0.001 0.12 0.64 
8 0.58 <0.001 0.75 <0.001 0.34 <0.001 
10 0.81 <0.001 0.81 <0.001 0.73 <0.001 
At harvest 0.85 <0.001 0.81 <0.001 0.73 <0.001  
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reaching near maximum levels about 200 days after planting for plant cane or 80–100 days after ratooning for ratoon crops. Ryu et al. 
[78] also conducted a similar study on rice using the conventional method of image processing. They found a sigmoid pattern in 
vegetation indexes (normalized difference vegetation index and photochemical reflectance index) fitted to cumulative growing 
degree-days of the plant with R2 values of 0.94 and 0.83. Although we used days after planting/ratooning instead of degree days, our 
fining also showed comparable results. 

The variations observed in the goodness of fit among the LCVIs (Table 3) imply that for robust sugarcane monitoring, growers 
should use specific VIs. In our study, we demonstrated that, with the exception of RECI and RVI, all LCVIs can be effectively utilized. 
The inferior performance observed in RECI and RVI (Table 3) may be attributed to the fact that both VIs are usually recommended to be 
used during the active growth stages of a crop or when a crop achieves good canopy cover and prior to the early phases of senescence, 
as they are designed to indicate crop chlorophyll content [45,79]. Hence, the lower vegetation tracking ability of these indexes during 
the early stages of sugarcane (when the vegetation is sparse) may have resulted in a lower goodness of fit compared to the other VIs. 

The lower goodness of fit observed in ratoon crops may be attributed to the poor growth condition of this crop that emanates from 
the development of toxic chemicals in the rhizosphere, the low ability of ratoons to take up nutrients, the depletion of soil nutrients, 
soil compaction, and increased insect and disease incidence after harvest of plant cane crop [80]. As a result, the yield of ratoon cane is 
usually 10–30% less than that of plant cane crop [80,81]. 

4.2. Yield components of sugarcane 

Cane density for all the three varieties, plant height for NCo334 and N14, and stalk diameter for NCo334 (except ENDVI) showed 
significant relationships with all the LCVIs (Table 4; Tables 5 and 6). The consistent performance of LCVIs in cane density agrees with 
the finding of Zhao et al. [82], who demonstrated that NDVI had a stronger relationship with cane density than with cane height and 
diameter. Zhao et al. [83] also demonstrated that among the five yield components they studied, stalk population along with yield 
exhibited the strongest associations with canopy reflectance. This may be related to the fact that plant density is the major determinant 
of canopy cover [84], which in turn influences VIs. It was also reported that sugarcane usually establishes a good crop stand whenever 
the plant density is higher [77,85]. Likewise, a plot with a high cane density may have a higher value of vegetation index than a plot 
with thicker and taller stalks that are fewer in number. 

The differences observed among cane varieties were also noticed in the conventional method of satellite data processing. For 
instance, Lofton et al. [86] and Chanda et al. [87] corroborated that spectral reflectance can vary among varieties due to differences in 
canopy architecture. The three varieties considered in the current study varied considerably in their morphology [38], which could 
explain the observed differences. For instance, in variety N-14, the strength of the correlations between LCVIs and yield components 
were highest for plant height, which was in contrast to the other varieties where the strongest correlations were observed in plant 
density. This might be due to the unique growth feature of the N14 variety, which has a prostrate growth habit after germination, and 
canopies quickly turn erect with straight stalks. This variety is a fast sprouting type with a high tillering capacity, quick stalk growth 
rate, and canopy formation [88]. 

In variety B52298, the relationships between most of the LCVIs and the yield components (plant density, plant height, plant 
diameter) were weaker than those in the other varieties considered in our study. This might be attributed to the fact that variety 
B52298 is very sensitive to environmental stresses (drought, temperature, forest, etc.) so that the canopy appearance significantly 
varied during the growth period of the cane [89]. Therefore, monitoring this variety using LCVIs requires special precautions. 

Generally, our study confirms the validity of LCVIs in assessing crop stands. Thus, there are possibilities of using LCVIs to generate 
information on the yield components of sugarcane, particularly plant density and height. As these parameters greatly determine the 
final yield of sugarcane [60,77,90], LCVIs can thus be employed to predict the cane yield. Furthermore, using LCVIs, it is possible to 
estimate various parameters of sugarcane, the costs of which are prohibitively high if done through conventional means. Supporting 
this postulation, Molijn et al. [16] reported that measuring various variables of sugarcane was very costly and prone to data errors due 
to the morphology and growing environment of the crop. Accordingly, all of the LCVIs can be effectively used to estimate cane 
population in all the three varieties, as well as cane height in NCo334 and N-14. However, in variety B52298, estimating plant height 
and diameter using LCVIs requires further study. 

In this study, as the measurements of the different variables of yield components were conducted during the grand growth phase of 
sugarcane, further research needs to take into account different growth stages of the crop. 

4.3. Fractional green canopy cover (FGCC) 

Fractional green canopy cover (FGCC) is the percentage of the expected ground surface covered by photosynthetically active 
vegetation [64]. Thus, the significant relationship observed between FGCC and LCVIs (Table 7) again confirmed that LCVIs can 
effectively estimate the extent of greenness and ground coverage of sugarcane and thereby indicate the performance of the cane. 
However, there existed differences in the accuracy level of the vegetation indexes with varieties. 

Studies conducted on the FGCC of sugarcane are very scant. We found only one study [91] that demonstrated the existence of 
significant relationships (R2 = 0.91) between the germination rate of sugarcane and its FGCC, which was interpreted from digital 
photos analysed by Canopeo software. In the current study, we investigated the relationships between FGCC determined by the 
Canopeo software and spectral VIs (Table 7), where we found strong relationships. In a study conducted on other crops, NDVI was 
significantly correlated with FGCC [62–64,92], which is consistent with our findings. However, these studies have a limitation in that 
the researchers evaluated only NDVI. 
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Our study has demonstrated that NDVI, NDPI and GNDVI exhibited a consistent relationship with FGCC for all three varieties 
(Table 7). Earlier studies also indicated that these indexes are very dependable in indicating crop conditions. NDVI is sensitive to the 
presence of pigments that are involved in photosynthetic processes and is known to be efficient in delineating vegetation and detecting 
stress [93,94]. NDPI, on the other hand, is also acknowledged to have a high precision in both high- and low-biomass sites by replacing 
the red band with the “RED + SWIR”, thus removing the bare soil background effect [50,95] and minimizing vegetation index model 
saturation [96]. GNDVI has a larger dynamic range in dense vegetation and is more sensitive to chlorophyll concentration [52]. 

Even though ENDVI, SAVI, NDRE, RVI and RECI showed a significant relationship with FGCC in two of the varieties (NCo334 and 
N14), we observed an unexpected result in EVI (Table 7), where the relationship was significant only in one of the varieties. As 
corroborated in previous studies, EVI is one of the most effective indexes for vegetation cover assessment [70]. This may be the subject 
of further investigation. 

4.4. Cane yield 

Generation of the entire NDVI from planting to harvesting within a short time is one of the greatest advancements in remote-sensing 
technology that was realized by the Landviewer platform. This feature of the index saves a considerable amount of time during the 
evaluation of vegetation growth. In our study, we found that the time series NDVI generated by the platform was significantly 
correlated with cane yield at least starting from 6 months of cane age (Table 8). The coefficient of determinations (R2) obtained in the 
current study (0.73–0.85) (Table 8) were comparable with similar studies conducted by the conventional method of image processing 
[27,67,97–100], where they found a coefficient determination ranging between 0.60 and 0.87. This again confirmed that the NDVI 
generated by the Landvewer platform is effective in indicating the ground truths. 

Thus, our findings can be used as a basis to confidently utilize satellite-based crop monitoring in a sugarcane plantation by 
employing NDVI generated by the Landviewer platform. In view of the simplicity with which one can generate NDVI from the platform, 
it is a great opportunity for Ethiopian Sugarcane Plantations to fully exploit this technology so as to combat the decreasing trends of 
sugarcane yields. Through further investigation, Landviewer can also play a significant role in solving the problems pertaining to the 
conventional methods of yield estimation in sugarcane plantations, such as low accuracy, time constraints, and laboriousness. 

In our study, the strongest correlations observed in the latter age of the cane (Table 8) were in line with De Almeida et al. [101] and 
Bégué et al. [67], who found that the maximum NDVI at 8–10 months of age and 2 months before harvest, respectively, had a sig
nificant correlation with sugarcane yield. Jaiphong et al. [102] also demonstrated that the final yield of sugarcane is determined at the 
grand growth phase (4–10 months), which is essential for actual cane formation, elongation, and yield build-up. Conversely, the 
weakest correlation during the early growth stages in this study might be attributed to the fact that the yield potential cannot be fully 
realized at the juvenile growth stage of sugarcane [86]. Furthermore, as Liu et al. [75] stated, the real field environment is compli
cated, with several elements that influence plant spectral properties. In particular, the possibility of weed interference in inflating the 
VIs might be high at the early growth stage of the cane, i.e., before canopy closure. On the other hand, the relatively poor correlation 
observed in variety B52298 might be related to its low resistance to various biotic and abiotic stresses [89]. This is also in agreement 
with the aforementioned results, where B52298 was poorly correlated, while NCo334 was strongly correlated with all the cane pa
rameters considered in this study. 

The findings of this study also imply the possibility of using Landviewer to monitor the performance of sugarcane starting from the 
juvenile growth stage. This is further depicted in Table 9 which is presented as example from one of the variety (NCo334) considered in 
this study. The table shows that out of the 29 sampled fields, the NDVI values of fields with the maximum and minimum yield levels 
showed drastic differences (16%–30%) at the different cane ages. Therefore, Landviewer can be employed as a tool to monitor sug
arcane plantations and timely manage constraints that may have led to the continuous decline in yield. For instance, for the cane to 
give reasonably optimum yields, the NDVI values at different ages of the cane should be closer to the maximum NDVI listed below 
(Table 9). Otherwise, immediate investigations should be initiated to identify and solve the problem as early as possible. 

The results clearly show that LCVIs are as effective as conventionally calculated indexes in correlating with the final yield of 
sugarcane. In addition, it is simple, user-friendly, and fast and can be managed by non-experts using ordinary computers or smart
phones. This instils trust in the sugarcane plantation staff to utilize the Landviewer platform confidently. The utilization of the platform 
in turn improves the efficiency and effectiveness of plantation managers, which has enormous socioeconomic significance. This is 
because this technology can overcome the challenges of monitoring sugarcane plantations, which is difficult once the canopy is closed 
[16,17]. The technology also has the potential to minimize the expenses and efforts associated with estimating cane yield [21] which is 
one of the most important operation in a sugarcane plantation. Ultimately, satellite based crop monitoring by using LCVIs significantly 
contributes to managing the continuing decline in sugarcane yield, which costs WSSP around US$ 8,228,558 per year [37]. However, it 

Table 9 
Normalized Difference Vegetation Index (NDVI) values of the sampled fields (variety NCo334) at different age of the cane with the maximum and 
minimum yields (ton ha− 1) of sugarcane at Wonji-Shoa Sugarcane Plantations in central Ethiopia.  

Yield Level Yield (ton ha− 1) NDVI at different ages (months) of the cane 

2 4 6 8 10 Harvest 

Maximum 134 0.476 0.706 0.721 0.761 0.788 0.788 
Minimum 24.4 0.396 0.489 0.550 0.563 0.568 0.568 
%Change − 82.1 − 16.8 − 30.7 − 23.8 − 26.0 − 28.0 − 28.0  
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is important to bear in mind that anomalies in data owing to cloud cover and weed interference are the major challenges of 
satellite-based crop monitoring. In fact, the advancements being made in satellites equipped with hyperspectral and active sensors are 
expected to play a pivotal role in minimizing the effects of these challenges. 

Generally, our study has several strengths, such as considering up to ten vegetation indexes, six parameters, three major varieties, 
and two crop types. Furthermore, we used the actual cane yield so that the validity of the results would be reasonable. However, our 
findings have the following limitations. First, we focused only on three dominant varieties. From current and previous studies [86], it is 
evident that varietal differences matter, and thus, it is worth subjecting every commercial variety to this platform. Second, the study 
was conducted on one sugarcane plantation (WSSP, central Ethiopia), and the effect of location should be further studied. Third, the 
capability of LCVIs to identify the type of stresses such as moisture, nitrogen, salinity stress, etc., should be investigated. Fourth, the 
study employed only the Sentinel-2A satellite, which is one of the eleven satellites in the platform. Finally, to make use of the multiple 
features of the platform, further evaluation should be continued. 

5. Conclusions 

The results of our study demonstrated that a sigmoid growth curve was significantly fitted to the Landviewer Calculated Vegetation 
Indexes (LCVIs) profile of sugarcane. The yield components, fractional green canopy cover, and final yield of sugarcane also had 
significant associations with LCVIs. Therefore, LCVIs and the time series NDVI generated by the platform can be used effectively to 
monitor sugarcane plantations. Furthermore, three of the vegetation indexes, i.e., the Normalized Difference Phenology Index (NDPI), 
Normalized Differential Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI), were identified as the most effective 
indexes and should be preferentially employed during crop monitoring. In light of the difficulty in conventional methods of satellite 
image processing, the promising performance observed in LCVIs creates an excellent opportunity for developing countries to exploit 
the potential of satellite technology. Particularly, this has paramount importance for Ethiopian Sugarcane Plantations for identifying 
and mitigating production constraints that have led to a continuously drastic decline in cane yields. Furthermore, remote sensing 
research can make use of LCVIs. Beyond crop monitoring, Landviewr has several features, such as the detection of moisture, nutrients, 
salinity, pests, etc., that need further evaluation. 
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