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Corticotropin-releasing hormone exerts direct effects on neuronal
progenitor cells: implications for neuroprotection
Y Koutmani1, PK Politis2, M Elkouris3, G Agrogiannis4, M Kemerli4, E Patsouris4, E Remboutsika3 and KP Karalis1,5

Neurogenesis during embryonic and adult life is tightly regulated by a network of transcriptional, growth and hormonal factors.
Emerging evidence indicates that activation of the stress response, via the associated glucocorticoid increase, reduces neurogenesis
and contributes to the development of adult diseases.As corticotrophin-releasing hormone (CRH) or factor is the major mediator of
adaptive response to stressors, we sought to investigate its involvement in this process. Accordingly, we found that CRH could
reverse the damaging effects of glucocorticoid on neural stem/progenitor cells (NS/PCs), while its genetic deficiency results in
compromised proliferation and enhanced apoptosis during neurogenesis. Analyses in fetal and adult mouse brain revealed
significant expression of CRH receptors in proliferating neuronal progenitors. Furthermore, by using primary cultures of NS/PCs, we
characterized the molecular mechanisms and identified CRH receptor-1 as the receptor mediating the neuroprotective effects of
CRH. Finally, we demonstrate the expression of CRH receptors in human fetal brain from early gestational age, in areas of active
neuronal proliferation. These observations raise the intriguing possibility for CRH-mediated pharmacological applications in
diseases characterized by altered neuronal homeostasis, including depression, dementia, neurodegenerative diseases, brain
traumas and obesity.
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INTRODUCTION
Living organisms maintain their physiological homeostasis during
development as well as in adult life against constant challenges by
internal and environmental stimuli. Although differentiated cells
account for the majority of homeostatic functions, stem cells
contribute critically to the whole process either by generation of
differentiated cells or by changing their own function to adapt to
the altered tissue/organ demands.1 Thus, in a number of tissues,
including the nervous system, tissue-specific stem cells persist
throughout life and give rise to new cells in order to meet the
demands of turnover and injury-induced cell loss. Along these lines,
emerging evidence has linked changes in adult neurogenesis to the
pathogenesis, and often to the success of therapeutic regimens, of
major diseases such as depression.2–6

Neurogenesis occurs constitutively in the embryonic brain and,
as has been confirmed lately, to a lesser extent in specific niches of
the adult brain.7,8 In the adult human and rodent brains,
proliferation of neural stem/progenitor cells (NS/PCs) persists
throughout life in areas such as the subventricular zones (SVZs)
and the subgranular hippocampal zones.8 Neurogenesis involves a
tightly controlled process of spatiotemporal neuronal proliferation
and programmed cell death9 achieved by the orchestrated action
of a network of transcription and growth factors. Additional
intrinsic factors, such as secreted molecules, and environmental
stimuli impact significantly on the potential of NS/PCs for
proliferation, differentiation and survival, with mechanisms we
start to understand better.10–14 For example, excess levels of
circulating glucocorticoid, such as during prolonged, unopposed

stress, are associated with suppressed proliferation12 and
decreased survival of NS/PCs in the hippocampus.15,16

The adaptive response to challenges, otherwise stress or ‘fight-
or-flight’response,17 is a well-preserved process intimately
associated with survival and development. In mammals, it is
driven by the activation of the hypothalamic–pituitary–adrenal
axis and the catecholaminergic system.18 The critical step in the
development of the stress response is the activation of the
neuropeptide corticotropin-releasing hormone (CRH) or factor.19

This response is self-limited as return back to homeostasis is linked
to decrease in CRH neurons activation back to their basal state.20

CRH is expressed early in the developing mouse brain, such as on
E13.5 in forebrain and on E10 in the cerebellum21,22 correlating
temporally with the birth of the first neurons from the neural
progenitor cells of the ventricular layer.22 In addition, in both the
developing and the adult brain, CRH is expressed in the
neurogenic niche of the hippocampal granular zone, a well-
characterized neurogenic area.21,23 In the central nervous system,
CRH has been shown to function as a neurotransmitter/
neuromodulator.24 The first indication that CRH may be
implicated in processes related to neuronal development and/or
differentiation derived from the altered expression of genes
involved in myelination and cell proliferation in transgenic mice
overexpressing CRH.25 CRH has been also implicated in the
differentiation of noradrenergic neurons in the locus coeruleus
during brain development.26 CRH acts via binding to CRH
receptor-1 (CRH-R1) and -2 (CRH-R2), members of the G-protein-
coupled receptors (GPCRs) family.27 Several GPCRs have been
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implicated in neurogenesis and apoptosis in site- and/or
developmental stage-restricted manners.28 In line, neuropro-
tective effects of CRH have been described during develop-
ment,23 in primary neuronal cultures exposed to toxic factors,20 or
in vivo following oxidative stress.29,30

Here, we present evidence that CRH regulates neurogenesis, an
effect that could be considered as part of the adaptive response of
the nervous system to various challenges. This regulatory role of
CRH is in line with late reports on the contribution of CRH in the
maintenance of peripheral tissue homeostasis following meta-
bolic31 or inflammatory stimuli.32 In particular, we show that CRH
through its receptor-1 (CRH-R1) is implicated in the control of
proliferation and apoptosis of NS/PCs both in vitro and in vivo. Most
importantly, CRH seems sufficient to reverse the glucocorticoid-
mediated suppression of proliferation and the associated induction
of apoptosis in NS/PCs. Finally, we demonstrate the expression of
CRH receptor(s) in the neurogenic areas of mouse and human brain.
These data indicate a novel role of CRH and renders CRH as a
potential therapeutic target for central nervous system-associated
neurological disorders and diseases.

MATERIALS AND METHODS
Human tissues
Human embryos from 13 weeks old (n¼ 4) were obtained from Alexandra
Hospital and from Medical School, University of Athens, Greece. The ethics
committees of the participating university and hospital approved tissue
collection. Handling of tissue was carried out in accordance with all
regulations of the institutional ethics committees.

Animals
Animals housing and care were according to NIH and EU guidelines. The
Crh� /� mouse line was generated as described previously.33 Crh–/– mice
were raised in C57/Bl6 background and were obtained by crossing of
heterozygous, their wildtype littermates, Crhþ /þ were used as controls.

Cell culture, fluorescence-activated cell sorting analysis,
immunohistochemistry, BrdU, TUNEL assays, reverse transcriptase
PCRs and western blotting
Detailed methodology for all these assays is described in Supplementary
Materials and Methods.34–36

Statistical analysis
Results are expressed as mean±s.e.m. Data were analyzed by two-tailed,
unpaired, equal variance Student t-test and defined as Po0.05.

For details of animals, cell culture, tissues processing, imaging and
quantification, immunohistochemistry, 5-bromo-2-deoxyuridine (BrdU) and
terminal transferase dUTP nick-end labeling (TUNEL) assays, PCR analysis
and statistical analysis, see Supplementary Materials and Methods.

RESULTS
Evidence for altered neurogenesis in the CRH-deficient mice
To assess the impact of CRH in mouse neurogenesis, we used the
Crh-null (Crh� /� ) mouse with global CRH deficiency, and the
corresponding glucocorticoid insufficiency.33 We used
heterozygote pregnancies taking advantage of the fact that in
that case all embryos, independent of their genotype, are exposed
to similar glucocorticoid levels of maternal origin. Proliferation was
assessed by immunohistochemistry of multiple tissue sections
following BrdU administration on E14.5 for 2 h. As shown,
significantly fewer BrdU-positive NS/PCs were identified in the
proliferating layers of the cerebral cortex of Crh� /� mice
compared with their littermate wild-type mice (Figures 1a and c).
Furthermore, TUNEL analysis revealed significant increase in
TUNELþ cells in the ventricular zones (VZ) and SVZ of the
Crh� /� mice (Figures 1b and d). As glucocorticoid insufficiency
of the Crh� /� mice was ‘corrected’,37 these findings reflect

direct effects of Crh� /� deficiency on neurogenesis in the
developing mouse brain.

Expression of CRH receptors in neural progenitor cells of
developing and adult mouse brain
Next, we assessed the expression of CRHRs in the developing
mouse brain. Immunohistochemical analysis revealed a broad and
strong reactivity for CRH receptors in mouse neuroepithelium on
E14.5 (Figures 2a–a0). As shown (Figure 2a), CRH receptors were
specifically expressed on NS/PCs, as indicated by the colocaliza-
tion with the neural stem cell marker nestin. In the adult mouse,
we found CRH receptors in the lineage of neuronal progenitors of
adult SVZ, a very active neurogenic area, including quiescent
radial glia-like cells (nestinþ /GFAPþ ) (Figures 2b–b0 and c–c0),
transient amplifying progenitor cells (Mash1þ ) (Figures 2d–d0)
and migrating neuroblasts (DCXþ ) (Figure 2e–e0).

The above findings suggested the possibility that the CRH/
CRHRs system may be involved in neurogenesis. We tested this
hypothesis in primary cultures of NS/PCs isolated from the cortex
of embryonic day 13.5 mouse brain. We first identified expression
of CRH receptors in NS/PCs, by reverse transcriptase PCR
(Figure 2f) and by immunocytochemistry (Figure 2g–g0). As shown
by double staining for nestin and CRHRs, the great majority of
nestin-positive NS/PCs (80%) co-express CRHRs (Figure 2g–g0).

CRH blocks glucocorticoid toxicity in NS/PCs and exerts
glucocorticoid-independent neuroprotective effects
Glucocorticoid is one of the hormonal factors mostly studied as a
negative regulator of neurogenesis via direct pro-apoptotic and,
to a lesser extent, anti-proliferative effects on NS/PCs.38 Gluco-
corticoid release in dependent on CRH activation, an effect seve-
rely compromised in Crh� and Crhr1� null mice33,39 To evaluate
the possibility that CRH is involved in the effects of glucocorticoid
on NS/PCs, we studied first the proliferation of glucocorticoid-
exposed NS/PCs, as revealed by BrdU incorporation. Treatment of
NS/PCs with the synthetic glucocorticoid dexamethasone as
expected reduced their proliferation by 50%, while co-treatment
with CRH (10� 7 M) for 24 h abolished the suppressive effect of
glucocorticoid (Figures 3a and b). Interestingly, treatment with
CRH alone increased the abundance of BrdU-positive NS/PCs, by
B30% as compared with vehicle treatment (Figures 3a and b). It
should be mentioned that according to a recent study, the
concentration of CRH in hippocampus can reach 200 nM during
stress.23,40 Next, we evaluated the impact of co-treatment with
CRH on the glucocorticoid-induced NS/PCs’ apoptosis by TUNEL
assay. As shown, CRH was sufficient to protect NS/PC from
dexamethasone-induced apoptosis (Figures 3c and d). Taken
together, these results suggest that CRH exerts direct, glucocorti-
coid-independent effects on mouse NS/PCs. Furthermore, CRH
may counteract the negative effect of glucocorticoid on prolifera-
tion and survival of NS/PCs by its direct neuroprotective actions.

CRH stimulates NS/PCs proliferation and blocks apoptosis via
CRH-R1 receptor
To determine which CRH receptor(s) mediate the effects of CRH on
NS/PCs, we employed specific antagonists, a very good tool
available, especially given the limited specificity of the commer-
cially available antibodies for each specific CRH receptor subtype.
We applied the non-peptide CRH-R1 antagonist, antalarmin, or the
CRH-R2 antagonist, astressin 2b, 30 min before CRH treatment.
When CRH was administrated together with astressin 2b, the total
number of BrdU-positive cells was not affected compared with
CRH-treated cells alone (Figures 4a–c). In contrast, when CRH was
administered in the presence of the antalarmin, the proliferative
effects of CRH were abolished (Figures 4a–c), suggesting a CRH-
R1-specific effect. Next, we evaluated the effects of the two
antagonists on the CRH-induced protection of NS/PCs from

Corticotropin-releasing hormone affects neuronal progenitor cells
Y Koutmani et al

301

& 2013 Macmillan Publishers Limited Molecular Psychiatry (2013), 300 – 307



apoptosis. As shown by TUNEL assay, it was antalarmin only that
reversed the effect of CRH. These findings demonstrate the
specificity of the above effects of CRH on NS/PCs mediated by
CRH-R1 alone (Figures 4b–d).

To further elucidate the molecular mechanisms mediating the
aforementioned effects of CRH and their relevance in human cells,
we used the human neuroblastoma cell line, SH-SY5Y.41 Similar to
the effects on NS/PCs, CRH induced proliferation of SH-SY5Y cells,
whereas analysis of the cell cycle profiles by fluorescence-
activated cell sorting showed a higher percentage of cells in the
S phase (Supplementary Figure S1A) and significant induction of
the expression of cyclin D1 (Supplementary Figure S1B). Serum
deprivation followed by TUNEL assay showed reduction of
apoptotic bodies by B50%, and increased expression of
caspase-3 (Supplementary Figure S1C) following CRH treatment.
The above data support our findings in NS/PCs and indicate cyclin
D1 and caspase-3 as significant factors in the CRH-mediated
neuroprotection.

Distinct signaling pathways mediate the effects of CRH/CRH-R1 on
NS/PCs
Binding of CRH to CRH-R1 induces the activation of cAMP and, in
several cells and tissues, it is shown to engage additional signaling
pathways, including mitogen-activated protein kinase (MAPK) and
PI3K/Akt.20,38 To elucidate the contribution of these pathways in
the neuroprotective effects of CRH, we applied specific inhibitors.
As shown, PD98059, a MAPK inhibitor, blocked the CRH-induced
increase of BrdU-positive NS/PCs, while co-treatment with
wortmanin, that blocks activation of the PI3 kinase, had no
effect (Figures 4a and c). In contrast, wortmanin blocked the anti-
apoptotic effect of CRH, whereas no effect of PD98059 was
detected (Figures 4b and d). These findings demonstrate that two
distinct intracellular signaling pathways, MAPK and PI3K/Akt, are
specifically involved in the proliferative and anti-apoptotic effects
of CRH/CRH-R1 on NS/PCs.

Expression of CRH receptors in proliferating zones of the
developing human brain
To assess the potential implications of our findings in humans, we
assessed the expression of CRH receptors in the developing
human brain. We performed immunostainings with specific
antibody that recognizes both CRH receptors (CRHRs). As shown,
we detected wide expression of CRHRs in the fetal human brain
from 13 weeks embryo (Figure 5a). Most importantly, there were
high levels of expression staining in the ventricular and SVZ
(Figures 5b–b0), both rich in proliferating cells as revealed by
staining for Ki67 (Figure 5c). Our findings demonstrate for the first
time CRH receptors in the human brain in the proliferating
neuronal cells from early fetal age and provide evidence for the
possible relevance of our findings in human neurogenesis.

DISCUSSION
In this study, we demonstrate that CRH, identified as the major
mediator of the stress response and glucocorticoid release in
mammals, exerts protective effects on mouse neural progenitors/
stem cells. We show that CRH receptors are expressed in
neurogenic areas of fetal and adult mouse brain and that CRH-
R1 mediates the above effects of CRH, via activation of distinct
signaling pathways, MAPK and PI3K. We also provide evidence
that CRH can oppose the neurotoxic effects of excess glucocorti-
coid on neuronal progenitors. Finally, we demonstrate that CRHRs
are expressed in the dividing human fetal brain cells.

We found compromised neuronal proliferation and increased
rates of apoptosis in the Crh� /� fetal mouse brain as compared
with wild-type tissue (Figure 1). CRH receptors are broadly
expressed in the developing mouse neuroepithelium, particularly
in actively proliferating, nestin-positive NS/PCs (Figure 2), around
the time window that neurogenesis occurs. Significant expression
of CRH receptors in neurogenic niches persisted in adult brain,
with the strongest staining in the SVZ/rostral migratory stream.
This area is considered critical for recovery from ischemia,

Figure 1. Altered proliferative and apoptotic properties of neural progenitor cells in the developing brain of Crh�null (Crh� /� ) mice.
(a) 5-bromo-2-deoxyuridine (BrdU) was administered to the mother at gestational age 14.5 for 2 h. Representative images from brain slices
(E14.5) of Crh� /� and wild-type (wt) littermates are shown. Scale bar¼ 20 mm. (c) Graph that shows quantification of the BrdU-positive cell
count in 180� 180 mm2 areas. Data are shown as mean±s.e.m. (n¼ 20 slices of three animals). (b)Representative images from brain slices
(E14.5) of Crh� /� and wt littermates after performance of terminal transferase dUTP nick-end labeling (TUNEL) assay. Scale bar¼ 50 mm.
(d) Graph that shows quantification of the TUNEL-positive cell count in 180� 180 mm2 areas. Data are shown as mean±s.e.m. (n¼ 20 slices of
four animals) *Po0.05 versus wt mice. vz, svz, LV, lateral ventricle.
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generation of GABAergic neurons and olfaction.41,42 As shown
(Figure 2), a good proportion of all distinct cell types in the lineage
of adult neurogenesis, including GFAPþ , Nestinþ , Mash1þ and
DCXþ cells, were also positive for CRHRs staining. The high
abundance of CRH receptors in the mouse cortical neurogenic
areas (Figure 2) and the altered cell proliferation and apoptosis in
the same areas of the Crh� /� brain (Figure 1) suggested the
possibility that CRH may have direct effects on NS/PCs. Indeed,
culture of NS/PCs in the presence of CRH resulted in dramatic
enhancement, by B60%, of the proportion of proliferating cells
(Figures 3 and 4). It seems that CRH exerts a dual effect on NS/PCs,
by increasing the proportion of cells that will remain in the
proliferating state and enhancing their ability to overcome
apoptosis (Figure 4). Although by reverse transcriptase PCR both

CRH receptors are expressed in NS/PCs, it appears that the
neuroprotective effects of CRH on these cells are mediated by
CRH-R1, as they were completely abolished by co-treatment with
antalarmin, a CRH-R1-specific antagonist (Figure 4). Recent studies
report different effects of CRH acting via CRH-R1 on proliferation
and survival of cells from a variety of origins. Thus, both inhibition
of the proliferation of epidermal keratinocytes,43,44 human breast
cancer and endometrial adenocarcinoma cells,45 and stimulation
of the proliferation of b-cells in the pancreas31 were shown. In our
hands, CRH induced proliferation and protected from apoptosis
the human neuroblastoma SH-SY5Y cells, that express CRHRs and
have been used to study neuroprotection (Supplementary Figure
S1). Several reasons may account for the discrepancies between
the reported effects of the CRH/CRH-R1 on cell proliferation, such

Figure 2. Expression of CRH receptors (CRHRs) in embryonal and adult neural progenitor cells in vivo and in vitro. (a) Detection of CRH
receptors in neural progenitor cells of embryonic (E14.5) forebrain. Co-expression (yellow) of CRHRs and the neural progenitor marker nestin.
(b, e) Detection of CRH receptors in neural progenitor cells of adult forebrain. Co-expression of CRHRs (arrows) and the neural progenitor
markers nestin (b) and GFAP (c) was observed in the majority of cells lying in the neurogenic areas of mouse brain. Some cells selectively
express CRHRs (black arrowheads) or nestin/GFAP (white arrowheads). Co-expression of CRHRs (green) and the neural progenitor markers
Mash1 (red, d–d0) and neuroblast marker DCX (red, e–e0) in several areas is shown. (f ) PCR analysis revealed mRNA expression of both CRH-R1
and CRH-R2 in neural stem/progenitor cells (NS/PCs). Adult brain mRNA was used as positive control. (g) Detection of CRH receptors in NS/PCs
isolated from E13.5 embryonic forebrain. Co-expression of CRHRs and the neural progenitor marker nestin. While the majority of neural
progenitor cells express both CRHRs and nestin (white arrows), some cells are selectively positive only to nestin (yellow arrows). 406-diamidino-
2-phenylindole (DAPI) was used as counterstain. Scale bar¼ 100 mm (a), 50 mm (b–e), 200 mm (g). Figures in the right panel (a0, g0) or lower
panels (b0–e0) are magnifications of the figures shown in the left or upper panel, respectively. aSVZ, anterior SVZ; CP, cortical plate; LV, lateral
ventricle; pia, pial surface; RMS, rostral migratory stream.
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as tissue-specific factors, co-expression of CRH-R2 and/or addi-
tional ligands, the cell type, that is, primary versus stable cell line.

Neural mitogenic signaling has been primarily associated with
the activation of tyrosine kinase receptors,46–48 whereas emerging
evidence points to similar effects following activation of several
GPCRs.49,50 CRH receptors belong to the class B subfamily of
GPCRs that in addition to cAMP activation, in several tissues or
cells, act through induction of NFkB, MAPK and PI3K.51–53

Modulation of neuronal survival analogous to that we found for
CRH has been described for PACAP, VIP and MIP-254,55 ligands of
other GPCRs. Our present data suggest that the dual effects,
mitogenic and anti-apoptotic, of CRH on neural progenitor
populations are specific and achieved via distinct signal
transduction pathways, MAPK and PI3K, respectively (Figure 4).
These findings were replicated in the SH-SY5Y cells, that provided
a tool to show specific effects of CRH in cell cycle events and
induction of cyclin D1 (Supplementary Figure S1). A similar
mechanism has been postulated for the neuroprotective effects of
VEGF.56 Using the same system, we found inhibition of the
activation of caspase-3 by CRH (Supplementary Figure S1), similar
to previous reports on VIP and PACAP.54

Neuroprotective effects of CRH/CRH-R1 have been described in
primary and permanent cell lines as well as in cultured brain
slices,20 following exposure to neurotoxic agents such as

amyloid,30 glutamate and lipid peroxides or hypoxia.57,58 On the
other side, there is a body of reports on the hazardous effects of
CRH/CRHR1 in the brain in association with chronic stress and the
corresponding increase in glucocorticoid.59 Glucocorticoid recep-
tors are expressed in the developing neuroepithelium, and the
proliferation of NS/PCs has been decreased dramatically following
dexamethasone or corticosterone treatment.60,61 Furthermore,
high levels of glucocorticoid has been considered as the major
cause of the stress-induced neuronal death,60,62 evidenced, for
example, by reduction of the volume of the dentate gyrus during
chronic stress.63 Here, we demonstrate blockade of these effects
of glucocorticoid following co-treatment with CRH (Figure 3).
Based on the above, it is possible that CRH and glucocorticoid
have exerted opposing effects on the proliferation of NS/PCs.
Along these lines, it was recently shown glucocorticoid inhibit
cyclin D1,60,61 an effect opposite to our current findings with CRH.

To our knowledge, this is the first study that demonstrates
specific effects of CRH on physiological neurogenesis and the
mechanisms involved. In agreement with our results, it has been
shown that connexin 43, a factor expressed in fetal brain and
involved in neurogenesis, mediates the neuroprotective effects of
CRH.64 It is in support of the intriguing possibility of the
applicability of our findings in human neurogenesis, the
identification of CRHR in human fetal dividing neurons

Figure 3. Effect of CRH in dexamethasone-treated NS/PCs proliferation and apoptosis. (a) Representative figures of 5-bromo-2-deoxyuridine
(BrdU)-labeled cells (red) counted 24 h after treatment with or without CRH after pretreatment with dexamethasone. Dexamethasone was
added in cell culture 1 h before CRH. 406-diamidino-2-phenylindole (DAPI) staining was applied for visualization of total cell abundance. Scale
bar¼ 200 mm. (b) Graph that depicts total number of the BrdU-positive cells count in 180� 180 mm2 areas. Data are shown as mean±s.e.m.
(n¼ 4). *Po0.01, **Po0.01 versus non-CRH-treated cells. (c) Effect of CRH on dexamethasone-treated NS/PCs apoptosis induced by serum
deprivation for 24 h.Representative images of terminal transferase dUTP nick-end labeling (TUNEL)-stained NS/PCs (red) combined with DAPI
nuclear staining (blue) after treatment with or without CRH and/or dexamethasone. Scale bar¼ 200 mm. (d) Graph depicts quantification of
the TUNEL-positive cells count in 180� 180 mm2 areas. Data represent the mean±s.e.m. (n¼ 4). *Po0.05, **Po0.01.
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(Figure 5). Furthermore, detailed analysis of the expression of the
CRHR1 and CRHR2 genes in human tissues showed expression for
both in the hippocampus to levels similar or even higher than in
the amygdala, one of the main areas for CRH action.65 In a recent
study, looking at the effect of CRH specifically in hippocampal
pyramidal cells, the authors suggested that physiological release
of low levels of CRH seem to be required for normal function of
differentiated neurons.40

In summary, our findings demonstrate stimulatory effects of
CRH on mouse neurogenesis and indicate a direct homeostatic
role for CRH in antagonizing the negative effects of glucocorticoid
in neuronal survival. Our working hypothesis is that CRH exerts
direct, beneficial effects on neuronal progenitors, via its specific
receptor CRH-R1. These effects are unmasked in states of
severe stress owing to the prolonged and significant rise in

glucocorticoid and the associated inhibition of CRH expression.66

More studies are needed to provide further insights on the role of
this peptide in human neuronal stem and progenitor cells. Our
study raises the possibility for potential therapeutic application of
CRH/CRHR1 in the treatment of brain and neurodegenerative
disorders by support of specific neuronal actions.

CONFLICT OF INTEREST
The authors declare no conflict of interest

ACKNOWLEDGEMENTS
This work was supported by intramural funding of BRFAA to KPK and PKP and a
Regpot Grant (TranSMed) from the EU (KPK).

Figure 4. Effect of CRH in NS/PCs proliferation and apoptosis. (a) Representative figures of 5-bromo-2-deoxyuridine (BrdU)-labeled cells (red)
counted 24 h after treatment with or without CRH. CRH receptor antagonists or signaling pathway blockers were added in cell culture 1 h
before CRH. Antalarmin used as a specific antagonist for CRH-R1, astressin 2B (A2B) as a specific CRH-R2 antagonist, whereas PD98059 and
wortmannin were used as blockers of the MAPK and PI3 K pathway, respectively. 406-diamidino-2-phenylindole (DAPI) staining was applied for
visualization of total cell abundance. Scale bar¼ 200 mm. (b) Effect of CRH on NS/PCs apoptosis induced by serum deprivation for 24 h.
Representative images of terminal transferase dUTP nick-end labeling (TUNEL)-stained NS/PCs (red) combined with DAPI nuclear staining
(blue) after treatment with or without CRH and/or specific CRH antagonists and signaling blockers as described for panel. Scale bar¼ 200 mm.
(c) Graph that depicts total number of the BrdU-positive cells count in 180� 180 mm2 areas. Data are shown as mean±s.e.m. (n¼ 4). *Po0.01,
**Po0.01 versus non-CRH-treated cells. (d) Graph depicts quantification of the TUNEL-positive cells count in 180� 180 mm2 areas. Data
represent the mean±s.e.m. (n¼ 4). *Po0.05, **Po0.01.

Figure 5. Expression of CRH receptors (CRHRs) in fetal human brain. (a) Detection of CRH receptors in differentiated neurons of the primordial
plexiform layer (PPL) of the thalamus at 13 gestational week (arrows). (b) In the ventricular (VZ) and subventricular (SVZ) neurogenic areas
there are many CRH receptor-expressing cells belonging to the neural stem/progenitor cells population as revealed by the Ki67
immunoreactivity in consecutive sections (c). Scale bar¼ 100 mm (a), 100 mm (b, c). Figure b0 is a magnification of figure b. VZ, ventricular zone.
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