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There is an unmet need for novel and efficacious therapeutics for regenerating

injured articular cartilage in progressive osteoarthritis (OA) and/or trauma.

Mesenchymal stem cells (MSCs) are particularly promising for their chondrogenic

differentiation, local healing environment modulation, and tissue- and organism-

specific activity; however, despite early in vivo success, MSCs require further

investigation in highly-translatable models prior to disseminated clinical usage.

Large animal models, such as canine, porcine, ruminant, and equine models, are

particularly valuable for studying allogenic and xenogenic humanMSCs in a human-

like osteochondral microenvironment, and thus play a critical role in identifying

promising approaches for subsequent clinical investigation. In this mini-review, we

focus on [1] considerations for MSC-harnessing studies in each large animal model,

[2] source tissues and organisms of MSCs for large animal studies, and [3] tissue

engineering strategies for optimizing MSC-based cartilage regeneration in large

animal models, with a focus on research published within the last 5 years. We also

highlight the dearth of standard assessments and protocols regarding several crucial

aspects of MSC-harnessing cartilage regeneration in large animal models, and call

for further research to maximize the translatability of future MSC findings.
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Introduction

Articular cartilage injury secondary to trauma and aging

affects over 300 million people (Safiri et al., 2020) and poses

significant health burdens at the individual and socioeconomic

level (Hunter et al., 2014; Katz et al., 2021). Injury ranges from

acute defects, which can accelerate osteoarthritis (OA) if

untreated, to diffuse cartilage loss in end-stage disease (Chen

et al., 2017). Moreover, cartilage possesses particularly poor

intrinsic healing capacity due to it’s avascularity, complex

matrix architecture, and limited chondrocyte replication

(Grassel and Aszodi 2019).

There exists an unmet need for novel and efficacious

treatments for articular cartilage injury. Osteochondral

grafting (OCG) and autologous chondrocyte implantation

(ACI) restore the articular surface in focal defects, but suffer

from donor site morbidity, limited tissue availability, and poor

efficacy for diffuse cartilage loss (Zhang et al., 2021). Likewise,

microfracture insufficiently recruits host growth factors and stem

cells, promoting fibrocartilage formation with poor

biomechanics (Mustapich et al., 2020). Total joint arthroplasty

is indicated for end-stage OA in large joints, which alleviates pain

but introduces potential complications including implant

infection, postoperative stiffness and pain, and need for

revision surgery (Heo et al., 2020). Therefore, no existing

treatments effectively reconstitute the osteochondral unit.

Among emerging therapies, mesenchymal stem cells (MSCs)

demonstrate promising potential for in vivo cartilage

regeneration (Zhang et al., 2019). However, clinical translation

has been limited despite multiple ongoing clinical trials for intra-

articular MSC injection (Hernigou et al., 2021; Lamo-Espinosa

et al., 2021). Arguably, the disconnected and inconsistent results

between preclinical small and large animal studies may

contribute substantially to the limited translation in current

practice. Therefore, in this mini-review we discuss [1] highly

clinically-relevant large animal models of cartilage regeneration,

[2] source tissues and organisms for MSCs in large animal

studies, and [3] tissue engineering strategies for optimizing

MSC-based cartilage regeneration in large animals, focusing

on research published within the last 5 years. We extracted

relevant literature from Pubmed using the terms

“mesenchymal stem cell,” “articular cartilage regeneration,”

and either “pig,” “sheep,” “goat,” “dog,” or “horse.”

Large animal models for MSC-based
articular cartilage regeneration

Unlike the small joint size, thin articular cartilage, and robust

cartilaginous defect regeneration of small animals (i.e., rodents,

rabbits) (Libbin and Rivera 1989; Moran et al., 2016), large

animal models are particularly useful for studying and

identifying proposed treatments for further clinical

investigation. Focal defects model isolated injury and

regeneration, involve the full-thickness chondral layer or

entire osteochondral unit on load- or non-load-bearing

surfaces, and unlike in clinical disease, possess well-defined

margins and cover limited areas (Cook et al., 2014).

Alternatively, diffuse cartilage degeneration akin to OA is

induced via articular surface surgical manipulation/injury

(Zhang B. Y. et al., 2018), anterior cruciate ligament

(ACL) and/or medial meniscus resection followed by

weight-bearing (Ude et al., 2014), and chemical treatment

(Uilenreef et al., 2019). Spontaneous OA is also studied in

non-human primates (McCoy 2015) and long-lived

companion animals including canines and equines, which

can develop OA in their natural life course (Sasaki et al.,

2019) (Table 1). Selectively-bred genetic OA is typically

limited to small animal models (Chen et al., 2017).

Canine models

Domestic canines are unique, relatively long-lived models

that suffer from similar spontaneous OA and poor cartilage

healing as humans. Canines also handle postoperative

exercise and loading regimens particularly well (Chu et al.,

2010). Different breeds exhibit varying biomechanics, load

patterns, and skeletal maturity ages based on size, which may

complicate translation. Uniquely, the canine’s role as a family

pet also presents ethical issues and limits the extent of post-

treatment analysis, although arthroscopies can still rapidly

enable articular surface evaluation (Chu et al., 2010).

Anatomically, canine cartilage is thinner than in humans

and only relatively small defects, most commonly 4 mm, are

created which limits comparability (Ahern et al., 2009). Like

most quadrupeds, the canine knee joint also exhibits greater

flexion and decreased extension than in humans, and

possesses a quadrupedal-specific long digital extensor

tendon which supplements joint stability (Proffen et al.,

2012).

Allogenic and xenogenic human MSCs yield promising

cartilage regeneration results in canines. Intra-articular

injection of human umbilical cord matrix-derived MSCs

(umMSCs) increased regenerated cartilage thickness and

improved articular surface appearance on magnetic

resonance imaging (MRI) (Zhang B. Y. et al., 2018).

Adipose tissue-derived MSCs (aMSCs) and umMSCs

injections also trended towards suppressed blood/synovial

inflammatory markers, including interleukin-6 and tumor

necrosis factor-alpha (Botto et al., 2022). Moreover, intra-

articular knee injection of 10 million allogenic bone marrow-

derived MSCs (bMSCs) and hyaluronic acid (HA)

encouraged cartilaginous tissue formation in chondral

defects on gross and histologic analysis, compared to HA

or saline alone (Li et al., 2018).

Frontiers in Cell and Developmental Biology frontiersin.org02

Liu et al. 10.3389/fcell.2022.982199

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.982199


TABLE 1 Advantages, disadvantages, and logistics of large animal models for articular cartilage injury and regeneration with MSC treatment, with
parameters of relevant studies published within the last 5 years.

Animal
model

Porcine Goat Sheep Equine Canine

Articular
cartilage
thickness

1–2 mm 1.5–2 mm 0.4–1.7 mm 1.5–2 mm 0.6–1.3 mm

Defect diameter 6–8 mm 6–10 mm 7–10 mm 6–20 mm 2–10 mm (4 mm most
common)

Advantages comparable biomechanics,
comparable joint size

comparable biomechanics,
comparable joint size,
relatively inexpensive/easy to
maintain

comparable biomechanics,
comparable joint size,
relatively inexpensive/easy to
maintain

spontaneous OA, comparable
biomechanics, comparable
joint/cartilage size

spontaneous OA, relatively
inexpensive/easy to
maintain, compliant with
postoperative exercise and
loading regimens

Disadvantages relatively late skeletal
maturity, poor compliance
with postoperative exercise/
loading regimens, expensive
and difficult to maintain

relatively late skeletal
maturity, poor compliance
with postoperative exercise/
loading regimens, higher peak
knee pressure

relatively late skeletal
maturity, poor compliance
with postoperative exercise/
loading regimens

relatively late skeletal
maturity, expensive and
difficult to maintain,
postoperative overloading,
greater biomechanical load,
strict licensing requirements

ethical concerns, limited
noninvasive analysis
methods

OA induction
methods

ACL transection, partial/total
meniscectomy, monosodium
iodoacetate, chondral and
osteochondral defect

partial/total meniscectomy,
chondral and osteochondral
defect

ACL transection, partial/total
meniscectomy, chondral and
osteochondral defect

spontaneous, osteochondral
fragment, surgical impaction,
chondral and osteochondral
defect

spontaneous, ACL
transection, partial/total
meniscectomy, chondral and
osteochondral defect

MSC Types bMSCs, aMSCs, sMSCs,
human bMSCs, human
umMSCs

bMSCs, human umMSCs,
human ubMSCs

bMSCs, aMSCs bMSCs, sMSCs bMSCs, aMSCs, umMSCs

MSC delivery
route

Seeded onto implanted
scaffolds, direct implantation

Intra-articular injection,
seeded onto implanted
scaffolds, direct implantation

Intra-articular injection,
seeded onto implanted
scaffolds, direct implantation

Seeded onto implanted
scaffolds, direct implantation

Intra-articular injection

Injected MSC
dose

n/a 25 million 2.5–50 million n/a 1–10 million

Implanted MSC
dose

0.4–30 million 1–60 million 2.5–30 million/ml 1–50 million n/a

Length of Study 12–26 weeks 16–40 weeks 6–27 weeks 26–52 weeks 5–28 weeks

Treatment
Outcomes

Lv et al. (2018): Improved
gross/histological score, GAG
content

Zhang et al. (2018a):
Improved MRI/histological
appearance, increased
collagen II, compared to
microfracture

Feng et al. (2018)—Improved
MRI/histological scores,
decreased synovial fluid
inflammatory factors, thicker
cartilage, allogenic MSC
survival at least 14 weeks

Murata et al. (2022):
improved radiographic defect
filling, MRI/gross/histological
scores

Li et al. (2018): improved
radiographic defect filling,
gross/histological scores

Yamasaki et al. (2019):
Improved MRI/histological
score, increased radiographic
defect filling

Zhang et al. (2020): Improved
gross/MRI/histological
appearance, higher GAG
content and Young’s
modulus, persistent xenogenic
umMSCs in chondrocyte/
MSC co-culture scaffold

Veronesi et al. (2022)—
improved macroscopic/
histological/synovial
histological score, decreased
local inflammatory markers,
with stromal vascular fraction
outperforming expanded
MSCs

Zhang et al. (2018b):
improved MRI X-ray
appearance, thicker
neocartilage, decreased
circulating inflammatory
markers

Kondo et al. (2019): Improved
gross/histological score, MRI
appearance, only at study
endpoint

Tseng et al. (2018): Increased
defect filling, histological
appearance, decreased fibrous
neotissue

Kim et al. (2022): Improved
gross/X-ray score, lameness
score

Keller et al. (2019)—No
inflammatory cell infiltrate,
comparable histological
scores for matrix staining,
superficial/mid/deep zone,
and overall assessment to
autograft, at end-point

Chu et al. (2018): Similar
gross/MRI/histological score
and fibrocartilage formation
for nonexpanded bone
marrow concentrate and
microfracture

De Francesco et al. (2021):
improved lameness and pain
scores, trend towards
reduced synovial
inflammatory markers

Wu et al. (2019): Improved
gross appearance, histological
score. HA increased
proliferation and cartilage-
specific gene expression

Wei et al. (2019): Improved
gross/histological scores

Vahedi et al. (2019)—
Increased gross defect filling
with cartilaginous tissue,
increased expression of
collagen II, aggrecan, and
SOX9, for MSCs with scaffold

Mancini et al. (2020): limited
cartilaginous tissue formation
and persistent hydrogel on
histology, for both bilayer
constructs

(Continued on following page)
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Porcine models

Miniature porcine breeds are among the most commonly-

studied large animals, due to their similar joint size, loading

mechanics, weight, intrinsically-poor cartilage regenerative

ability, collagen fiber arrangement, bone apposition rate, and

trabecular thickness as humans (Proffen et al., 2012; Takroni

et al., 2016). Minipigs are also commonly used to evaluate

inflammation and toxicity of implanted osteochondral

biomaterials (Cone et al., 2017). At 1–2 mm thick, minipig

cartilage is thinner than in humans; nevertheless, larger

6–8 mm diameter osteochondral defects can be created (Chu

et al., 2010). Disadvantageously, minipigs cannot participate in

many exercise or weight-bearing regimens. Like other large

animals, only skeletally-mature minipigs exhibit diminished

intrinsic cartilaginous repair, which extends maintenance

duration and overall cost.

Numerous studies support that autologous, allogenic, and

xenogenic human MSC administration bolsters osteochondral

reconstitution in pigs. Porcine aMSCs seeded onto decellularized

cartilage extracellular matrix (DCECM) performed similarly to

chondrocytes regarding histological chondral defect regeneration

(Lu L. et al., 2021). Scaffold-free implantation of porcine bMSCs

and aMSCs at 5–30 million cells per defect, respectively, also

improved cartilage histological and MRI score compared to

nontreatment (Yamasaki et al., 2019; Theruvath et al., 2021).

Likewise, autologous porcine synovial tissue-derived MSCs

(sMSCs) aggregates, at 400,000 cells/defect, bolstered histology

and macroscopic scores in femoral condyle after 12 weeks

(Kondo et al., 2019).

Regarding xenogenic studies, human bMSCs seeded and

chondrogenically-induced on collagen scaffold encouraged

cartilaginous tissue formation 5 months after bone plug co-

implantation into osteoarthritic pigs (Tseng et al., 2018).

Moreover, 5 million human umMSCs suspended in HA

hydrogel enhanced gross and histological cartilage scoring

compared with nontreatment, in porcine full-thickness

trochlear defects (Wu et al., 2019). Such studies suggest

comparable therapeutic efficacy of human-derived and porcine

MSCs in minipigs.

Ruminant models

Ruminants are popular and accessible models for

osteochondral defect studies, as they exhibit poor spontaneous

regeneration and are cheaper and easier to handle than other

large animals. Cyclic loading, biomechanics, and contact pressure

during ruminant gait is comparable to that of humans (Moran

et al., 2016). Biomechanically, goat knees experience higher peak

pressures than in human tissues, which contributes to

comparatively poor cartilage repair (Patil et al., 2014). Caprine

defects up to 6 mm are reported, although cartilage thickness

varies significantly across breed size/sex with upper limits of

1.5–2.0 mm. Ovine models possess a cartilage thickness of

0.4–1.7 mm, with defects up to 7 mm reported (Cook et al.,

2014).

Numerous studies report that allogenic/xenogeneic MSCs

promote osteochondral regeneration in ruminants. Allogenic

bMSCs or aMSCs seeded onto polycaprolactone, collagen,

alginate, and/or tantalum scaffolds improve cartilaginous

tissue deposition and histologic scores compared to untreated

defects in sheep (Vahedi et al., 2019; Favreau et al., 2020) and

goats (Wei et al., 2019), with comparable histological scoring to

autograft reported (Keller et al., 2019). Injection of aMSCs in

sheep similarly suppressed synovial fluid inflammatory factors

and bolstered histological, macroscopic, and MRI scores (Feng

et al., 2018; Lv et al., 2018; Veronesi et al., 2022).

Regarding human-derived MSC studies, 1 million umMSCs

seeded on DCECM scaffold yielded improved tissue elasticity

modulus, collagen II content, and MRI evaluation in goat defects

compared to microfracture (Zhang Y. et al., 2018). Intra-articular

injection of 25 million human umbilical cord blood-derived

MSCs (ubMSCs) and DCECM in OA-induced goats also

TABLE 1 (Continued) Advantages, disadvantages, and logistics of large animal models for articular cartilage injury and regeneration with MSC
treatment, with parameters of relevant studies published within the last 5 years.

Animal
model

Porcine Goat Sheep Equine Canine

Theruvath et al. (2021):
Improved gross/MRI/
histological score, collagen II
content

Favreau et al. (2020)—
Improved gross scores, MRI/
histological appearance,
regenerated cartilage surface
area

Bothe et al. (2019): Erosion of
bone, decreased histological
score with biphasic scaffold
implantation

Di Bella et al. (2019)—
improved gross/histological
scores, for MSCs in in situ-
printed scaffolds but not
MSCs in pre-printed scaffolds
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improved gross articular appearance and radiographic scoring

after 6 months (Kim et al., 2022). Additionally, 10 million total

human umMSCs and goat chondrocytes in DCECM scaffold

encouraged cartilaginous tissue formation with superior

glycosaminoglycan content, Young’s modulus, and

surrounding tissue integration in caprine chondral defects

after 9 months, compared to scaffold alone or nontreatment

(Zhang et al., 2020). Importantly, umMSCs persisted in

regenerated tissue after 9 months, suggesting sustained

chondrogenic differentiation and minimal immunogenicity.

Notably, ruminants rarely develop spontaneous OA and

require meniscal removal or disruption—ACL transection

alone insufficiently induces significant OA, unlike in other

large animals (McCoy 2015). Exercise and weight-bearing

protocols are also difficult to implement (Chu et al., 2010),

although caprine OA was successfully reported following

meniscal manipulation and running regimens (Al Faqeh et al.,

2012).

Equine models

Equine models are uniquely useful yet challenging for cartilage

injury investigation. Horses spontaneously develop chondral

defects and age/trauma-induced OA secondary to high athletic

and lifestyle demands, and thus provide a uniquely-representative

model of osteochondral injury for humans (McIlwraith et al., 2012).

Surgical OA models can also be generated via osteochondral

defects, commonly within the carpal joint (McCoy 2015).

Equine articular cartilage possesses minimal intrinsic repair

capability, with cartilage thickness ranging between 1.5–2 mm

and study defect sizes between 6–20 mm (McIlwraith et al.,

2012). Horse stifle structure and bone mineral density are also

comparable to that of humans (Ahern et al., 2009). Importantly,

equine cartilage experiences significantly greater loading forces

compared to humans (Murray et al., 2001), which can induce

long-term healing failure and is difficult to prevent (McCoy 2015).

Horses are also especially costly to maintain due to specialized

housing and care.

Allogenic MSCs yield mixed results in equine osteochondral

defects. Scaffold-free implantation of 50 million sMSCs into

femoral condyle osteochondral defects bolstered gross, MRI,

and histological scores of cartilage regeneration (Murata et al.,

2022). However, polycaprolactone and HA scaffolds containing

bMSCs and cartilage progenitor cells yielded poor neocartilage

formation, hypothesized to stem from early implanted cell loss

(Mancini et al., 2020). Insufficient MSC numbers and off-target

differentiation may also hinder regeneration; implantation of

autologous bone marrow concentrate (containing non-expanded

bMSCs) and thrombin into full-thickness trochlear defects

yielded fibrocartilaginous tissue after 1 year, comparable to

microfracture (Chu et al., 2018). Future equine studies may

elucidate mechanisms of treatment failure including local

inflammation, pathologic scaffold degradation, and MSC

dedifferentiation (Mancini et al., 2020).

MSC sources for articular cartilage
regeneration in large animals

MSCs are multipotent, self-renewing progenitor cells

isolatable from various tissues and studied for cartilage

regeneration in vitro (Fulber et al., 2016; Sasaki et al., 2018),

in the aforementioned models, and in clinical trials (Matas et al.,

2019; Dilogo et al., 2020). Attractively, MSCs can proliferate and

differentiate into chondrocytes under endogenous/exogenous

signals including matrix, growth factors, proteins, drugs, and

mechanical stimuli (Le et al., 2020). MSCs also secrete a

secretome of bioactive molecules, i.e., growth factors,

prostaglandins, and extracellular vesicles, which modulate the

local niche to attenuate inflammation and promote host cell

migration, proliferation, differentiation, and matrix deposition

(Maumus et al., 2018).

MSCderived exosomes—a subtype of extracellular

vesicles—are particularly promising for cell-free cartilage

therapeutics. Exosomes are increasingly considered the

primary secretory mechanism by which MSCs modulate local

healing (Toh et al., 2017), and mediate intercellular

communication by exhibiting target-specific paracrine effects

on recipient cells. Exosome contents include proteins, nucleic

acids, lipids, and other biomolecules encapsulated within

phospholipid bilayer and surface ligands (Bao and He 2021).

Importantly, exosomes avoid potential shortcomings of direct

MSC transplantation, include dedifferentiation,

immunogenicity, and batch heterogeneity (Bao and He 2021).

The different MSC tissue sources studied in the

aforementioned models (Table 1) affect the proliferation,

cartilaginous matrix deposition, chondrogenic differentiation,

and overall therapeutic behavior of isolated MSCs (Yaneselli

et al., 2018; Gugjoo et al., 2019). bMSCs are among the earliest

and most-studied MSC populations in large animal and clinical

studies (Lo Monaco et al., 2018). Equine bMSCs exhibit greater

chondrogenic potential than aMSCs, while human bMSCs

exhibit less calcification potential than sMSCs (Sasaki et al.,

2018). However, bone marrow extraction is invasive and

complicated by low bMSC density (~7800 MSCs/ml in

humans) (Hernigou et al., 2021). Therefore, aMSCs

(particularly from joint-associated adipose) are increasingly

popular for cartilage regeneration due to highly-available and

easily-accessible tissue, rapid procurement, and chondrogenic

potential (Zhang et al., 2019; De Francesco et al., 2021). Ovine

aMSCs proliferated faster than bMSCs but expressed lower

cartilage-specific gene levels for collagen II, SOX9, and

aggrecan in vitro, despite both MSC types performing

similarly in osteoarthritic ovine knees (Ude et al., 2014).

Canine infrapatellar fat aMSCs also exhibited greater
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FIGURE 1
MSC-harnessing strategies for articular cartilage regeneration in large animal models. Different types of MSCs—autologous, allogenic and
xenogenic—were first obtained from adipose tissue (aMSC), bonemarrow (bMSC), synovium (sMSC), and human umbilical cords (umMSC & ubMSC).
Subsequently, MSCs were pretreated with and/or delivered through (1) 3-D scaffolds, (2) bioactive dissolved molecules, (3) direct cellular
modifications, (4) defect targeting systems, and (5) cell-free MSC-derived exosomes, for enhancing cartilage regeneration and/or modulating
inflammation. Currently, the two major routes of MSC administration in preclinical large animal studies are intra-articular injection and local
implantation within chondral/osteochondral defects. Figure created with BioRender.com.
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proliferation and colony expansion in vitro than those from

subcutaneous fat (Sasaki et al., 2018). Moreover, equine intra-

articular fat aMSCs displayed greater chondrogenic potential

than those from non-joint-associated adipose (Gugjoo et al.,

2019).

MSCs are exciting for cartilage regeneration due to their

significant chondrogenic potential reported by numerous

studies. sMSCs are isolatable from synovial membrane or

fluid, although equine studies demonstrated superior

chondrogenic potential of synovial fluid sMSCs in vitro (To

et al., 2019). MSCs from subtypes of porcine synovium

(fibrous vs. adipose) also varied in growth factor signaling

and membrane receptors (Siengdee et al., 2020). Compared

with bMSCs and aMSCs, canine sMSCs exhibited superior

proliferation, matrix deposition, and rates of stem cell marker

CD90 positivity (Sasaki et al., 2018), while porcine sMSCs

displayed greater chondrogenic potential (Nakamura et al.,

2012). A notable disadvantage is limited synovium and cell

quantity—autologous sMSCs are typically expanded prior to

reimplantation (To et al., 2019).

Xenogenic human umbilical cord-derived MSCs provide

valuable opportunities to study human MSC behavior within

large animal osteochondral microenvironments. MSCs are

extracted from umbilical cord matrix and blood (Rakic et al.,

2018) and demonstrate marked advantages of phenotypic

homogeneity, minimal immunogenicity, and tissue availability

(Zhang Y. et al., 2018). Simple/noninvasive MSC procurement

also circumvents autologous cell extraction procedures and

avoids associated donor site morbidity. Promising early

findings in multiple large animal models suggest that human

umbilical cord MSCs may perform similarly in a clinical setting

(Zhang B. Y. et al., 2018; Wu et al., 2019; Kim et al., 2022).

Finally, the choice of autogenic, allogenic, or xenogenic MSCs

shapes the conclusions and translatability of large animal studies.

Autologous and allogenic mammalian MSCs facilitate proof-of-

concept studies, but may yield poor results upon clinical

translation due to human and inter-animal/species differences in

cell behavior (Siengdee et al., 2020). Subsequently, xenogenic human

MSC delivery in large animals helps elucidate human-specific cellular

behavior in vivo and hint at future translational efficacy, although

immunogenicity, interaction with animal host cells, and poor model

representation of real-world pathology may still alter outcomes (Lo

Monaco et al., 2018; Zayed et al., 2018).

Tissue engineering strategies for
optimizing MSC-based therapies

Tissue engineering strategies facilitate MSC delivery and

modulate MSC activity, and typically categorize into three-

dimensional scaffolds, bioactive dissolved molecules, direct

cellular modification, defect targeting systems (Go et al., 2021)

and extracellular vesicles (Figure 1). Several large animal studies

report that biphasic osteochondral scaffolds simultaneously

promote bone and cartilage regeneration (Zhang et al., 2017;

Cunniffe et al., 2019). However, others report mixed results

hypothesized to stem from local inflammation and residual

byproducts from biphasic construct degradation (Wang et al.,

2018; Bothe et al., 2019; Mancini et al., 2020). Alternatively,

three-dimensional-printed MSC constructs (Di Bella et al.,

2018; Yamasaki et al., 2019) or cell-suspension hydrogels

(Levato et al., 2017; Rathan et al., 2019) enable resurfacing

of diffusely-osteoarthritic articular surfaces with irregular

borders. Bioactive molecules encompass growth factors [bone

morphogenic protein-2, transforming growth factor-beta,

fibroblast growth factor-2 (Desance et al., 2018), and NEL-

like molecule-1 (Li et al., 2016)], matrix molecules including

DCECM (Kim et al., 2019; Lu Y. et al., 2021), and ions which

recapitulate the native chondrogenic niche and bolster

MSC chondrogenic differentiation, proliferation, and matrix

expression.

Regarding exosomes, intra-articular injection of 1 mg human

MSC exosomes and HA improved cartilage Young’s modulus,

stiffness, and MRI/histological scores in porcine femoral

condyles (Zhang et al., 2022). Preliminary comparisons, albeit

in rodents, also suggest that specific dosages of MSCs and MSC-

derived exosomes demonstrate similar cartilage regenerative

efficacy (Kim et al., 2020). Although the mechanism is

incompletely understood, exosome molecules, i.e., micro

ribonucleic acids and enzymes are proposed to upregulate

chondrocyte proliferation and chondrogenesis (Toh et al.,

2017; Kim et al., 2020). MSC exosomes also reportedly

attenuate cartilage injury by inhibiting pathologic

inflammation, chondrocyte apoptosis, and macrophage activity

(Kim et al., 2020). Nevertheless, exosomes can exhibit

nonspecific effects—intra-articular injection of 1 mg human

embryonic stem cell exosomes after bone marrow stimulation

upregulated bone deposition in porcine chondral defects, with

impaired cartilage formation on histology (Hede et al., 2021).

Conclusion and perspectives

There is a pressing need to develop novel and efficacious

therapies for regenerating chondral/osteochondral defects in

OA. MSCs are among the most promising substitutes for

native chondrocytes, as they can exhibit chondrogenic

differentiation and local microenvironment modulation.

MSC activity also varies with origin tissue and organism,

presenting critical considerations when developing

regenerative strategies and interpreting preclinical findings.

Comparatively, sMSCs may hold particular promise for future

cartilage therapeutic development due to superior

chondrogenic potential and clinical accessibility. MSC-

derived exosomes may also offer similar efficacy while

avoiding direct MSC transplantation.
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Given the biomechanical/anatomical differences and potent

healing capacity of small animals, preclinical studies must utilize

large animal models to adequately develop translatable

therapeutics. Notably, most MSC-based studies on cartilage

regeneration were conducted in ruminant and porcine models

(Table 1; Figure 1) because of anatomical/biomechanical

similarity to human tissue, cost-effectiveness, and extensive

post-treatment analysis options. Nevertheless, canines and

equines also offer unique advantages regarding spontaneous

OA modelling and subsequent clinical translatability.

Moreover, tremendous advances in chondrogenic MSC

delivery systems include architecturally- and mechanically-

biomimetic scaffolds (Levato et al., 2017; Rathan et al., 2019)

and MSC genetic editing (Sun et al., 2020) (Figure 1).

Despite the limited scope of this mini-review, we determined

that there is no clear consensus or standard regarding critical

aspects of MSC therapy for large animal cartilage regeneration,

particularly regarding effective MSC dosages for implantation or

injection in differing species (Table 1) (Li et al., 2018; Kim et al.,

2022). Other unstandardized aspects include methodology for

MSC chondrogenic induction and/or expansion, surgical

protocols for OCG or ACI, and therapeutic benchmarks/

controls for cartilage regeneration efficacy in various species.

As the field advances, it is paramount to establish comparability

between studies and holistically evaluate translatability of MSC-

therapeutic findings, especially in large animal models, to

maximize clinical relevancy and impact.
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