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Abstract: Conventional wireless sensor networks (WSNs) in smart home-building (SHB) are typically
driven by batteries, limiting their lifespan and the maximum number of deployable units. To satisfy
the energy demand for the next generation of SHB which can interconnect WSNs to make the
internet of smart home-building (IoSHB), this study introduces the design and implementation of
a 250 mW to 2.3 W energy harvesting device. The proposed device is dynamically autonomous
owing to the integration of embedded solar photovoltaic (PV) modules and power storage through
a supercapacitor (SC; 5 V, 0.47 F) capable of powering WSNs for 95 s (up to 4.11 V). The deployed
device can harvest indoor and outdoor ambient light at a minimum illumination of 50 lux and a
maximum illumination of 200 lux. Moreover, the proposed system supports wireless fidelity (Wi-
Fi) and Bluetooth Low Energy (BLE) to do data transfer to a webserver as a complete internet of
things (IoT) device. A customized android dashboard is further developed for data monitoring on
a smartphone. All in all, this self-powered WSN node can interface with the users of the SHBs for
displaying ambient data, which demonstrates its promising applicability and stability.

Keywords: solar photovoltaic (PV); internet of smart home-building (IoSHB); energy harvester (EH);
low power electronics; internet of things (IoT); wireless sensor network (WSN); autonomous sensors;
smart home; smart building

1. Introduction

Smart home-building (SHB) equipped with wireless sensor networks (WSNs) have
attracted greater public interest in recent times, attributing their ability to improve dwellers
comfort cost-competitively. WSN is the network that integrates sensing, computing, and
networking to automate data acquisition, analysis, and telemetry. WSNs allow flexible
networking and energy consumption in a growing number of applications [1]. In these
SHBs, distributed network nodes are composed of low-power electronic devices equipped
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with sensors and microcontrollers capable of regularly receiving, storing, and transmitting
ambient data to a remote host webserver. Many integrated WSN nodes and scalable
internet appeals tend the traditional SHB to function as the Internet of Smart Home-
Building (IoSHB). Micro-nano power electronic devices are being used on a large scale
inside the SHB to increase the comfort of its inhabitants by enhancing convenience, saving
electricity, delivering remote surveillance and real-time sensor data monitoring [2,3]. This
is implemented using WSN and IoT design, becoming more prevalent in our everyday
lives [4,5]. The rapid growth of the IoT in many living environments, such as smart
homes, smart offices, and smart buildings, has necessitated the creation of human–machine
interfaces (HMIs) [6,7]. Every WSN physical node is fitted with multi-sensor devices for
heterogeneous ambient sensing and can also encode, pre-process, send, and receive data
to the main controller. In general, intelligent wireless interconnected sensing systems are
required to complete all-new IoT technologies [8,9].

In this context, WSN nodes perform the key role in low power consumption with long-
distance communication considering the cost, size, and ease of setup and installation [10].
Therefore, the requirement for a wired power source for autonomous wireless devices
remains a major concern. The electricity needed for the device is often supplied in the form
of removable batteries. Network communications are increasingly evolving from wired
to wireless, with all sensors being linked, interoperable, and needing rapid rollout. It is
essential to introduce new powering techniques for autonomous sensors, raise technological
knowledge, and increase adoption by removing battery transition as a big operational
and environmental problem [11]. AmbiMax [12] is a WSN node energy harvesting circuit
and SC-based energy storage device proposed to solve the battery ageing problem of the
existing WSN energy harvesting system. The SC can charge at the maximum efficiency
using the maximum power point tracking (MPPT) technique. Furthermore, AmbiMax
is versatile, allowing for the combination of several energy harvesting sources, such as
sun, wind, thermal, and vibration, each with a unique optimum scale. Heliomote [13] is a
self-contained system operated by a solar panel and two AA nickel–metal hydride (NiMH)
batteries. The solar panel is directly attached to the battery through a diode. Furthermore,
it lacks MPPT, which is needed for high energy harvesting performance. The authors in [14]
discuss the core problems and trade-offs in the design of solar energy harvesting in wireless
embedded systems; the design, deployment, and performance assessment of Heliomote.
The experimental findings show that Heliomote acts as a plug-in to the Berkeley/Crossbow
motes and handles energy harvesting and storage autonomously, allows near-perpetual
harvesting conscious activity of the sensor node. The authors in [15] designed a credit card-
sized self-powered sensor node to generate 240 µW power and charge the 0.55 F SC in 800 s.
Authors [16] designed an ultra-low power of 0.9 mW electromagnetic energy harvester
to charge the 12.8 mF SC in 1440 s. Shen et al. presented an electromagnetic device that
can generate 21.51–31.6 mW [17]. A 2 mF SC-based piezoelectric energy harvesting WSN
is developed in [18] that can generate a maximum of 1.1 mW, with a maximum charging
time of 67 s. A 0.47 mF SC can be charged in 125 s and generates 46.06 µW from the
vibrations that is presented in [19]. An experimental study of an ultra-low-power WSN
energy harvesting system takes 12 h time to charge a 0.33 F SC [20]. An electromagnetic
energy harvesting system can generate 11.5 mW and charge the 14.7 mF SC in 30 s that
is presented in [21]. An arc-shaped triboelectric nanogenerator (AS-TENG) is designed
in [22] to harvest energy from wind and water flow. The AS-TENG achieves an open-
circuit voltage of up to 600 V and a short-circuit current of 40 µA, illuminating 248 LEDs
instantaneously under a wind speed of 15 m/s. A self-powered piezoelectric sensor-based
system with a single electrode is constructed in [23]. This device can detect body motions
such as walking, running and the motion of some mechanical devices such as peristaltic
pumps, lock, and window switches. The self-powered sensor can warn the user through a
smartphone if a door or window is opened by unauthorized personnel.

The authors introduce SeisMote in [24], a modern portable wearable tool for tracking
cardiovascular activity. Custom low-power protocols are designed to enable simultaneous
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control of 32 signals from only 12 nodes at 0.2 ms. The device usage in the field revealed
experimental records of data loss, and the battery charge surpassed 16 h. Building au-
tomation, agriculture, health and medical, and process monitoring are important sectors
where energy harvesting technologies are important. The use of WSN in buildings for
better monitoring and maintenance of air handling systems, decreasing building energy
use and improving building air quality to ensure occupant well-being is a clear illustra-
tion [3,25]. In 2018, residential and non-residential buildings accounted for the largest share
of global final energy use of 36%, as well as energy-related carbon dioxide (CO2) emissions
of 39% [26]. Buildings can achieve smart air quality management by automatically con-
trolling air handling systems based on the real-time CO2 concentration, temperature, and
humidity, saving up to 25% on energy costs [27]. Since the environmental parameters do
not alter often, each sensor node in the IoT needs to function in an active mode for sensing,
processing, and communication periodically. The ultralow-power consumption mode has
a relatively long-time span, such as in the order of minutes at the power consumption in
milliwatt (mW).

In contrast, the power-hungry active mode has a relatively short period, such as
millisecond (ms) at the power consumption in mW. Consequently, IoT-based sensor nodes
total power usage is much smaller than in active mode. It allows to power an IoT-based
sensor node utilizing ambient energy harvesting components, such as PV energy har-
vesters, where energy collection during the sensor nodes sleep cycle can be continuously
accumulated in a battery or supercapacitor [28]. The long lifespan of energy harvesting
and storage modules allows the IoT-based sensor node to be driven without thinking about
battery replacement. Attempts have been made to combine PV cells, power control circuits,
and even storage to create a completely integrated PV energy harvesting system that can
eventually contribute to self-powered IoT systems [29]. However, due to the comparatively
higher power requirements for wireless data transmission, lowering the IoT nodes overall
power usage is challenging. In the case where indoor lighting conditions are dim, which
limits the amount of PV energy harvested, the argument for powering an indoor IoT sensor
node is more difficult. Therefore, there is insufficient indoor WSN powered by PV energy
harvesting mechanism for air quality measurements in buildings. It should also be noted
that the majority of studies are just recommendations from software simulation works,
with very few being gone for full implementations.

This paper introduces a novel concept of an autonomous low power PV energy in-
tegrated WSN framework for innovative home applications to advance both study and
performance. A careful hardware and software integration is used to develop a hardware
prototype utilizing the existing software platform to achieve long-term sustainable opera-
tions. Three software platforms, such as the MATLAB/SIMULINK, simulate the energy
harvesting part. The Arduino Integrated Development Environment (IDE) and C++ lan-
guage are used to program the ESP32 microcontroller, and an android application is used
to monitor the system status through a smartphone. As a result of its reduced dimensions
and energy autonomy, it is suitable for intelligent home, office, building automation and,
more broadly, IoT-enabled sensor applications. WSN nodes provide input for various
sensor devices (temperature, humidity, moisture, CO2 sensors, etc.) to the consumer or
a centralized control host. Low-power activity and energy usage are achieved in careful
hardware and software integration in the proposed SHBs. The architecture of the proposed
model is presented in Section 2. Section 3 presents the simulation and experimental setup.
The simulated and performance test results elaborately discussed in Section 4. This article
concludes in Section 5 with highlights of conclusions and contribution of work.

2. Architecture of the Proposed Model

A standard solar energy conversion device contains a solar panel, DC-DC converters,
rechargeable battery/supercapacitor, battery management unit, low voltage or high voltage
protection circuit, and power control algorithm. A mathematical model is developed
that adequately describes the solar PV modules non-linear I-V and P-V characteristics.
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Numerous types show the features of solar cells. To date, the single, double and triple
diode is the mostly used equivalent solar circuit model. The single diode equivalent model
is used in this article due to its simplicity and precision in describing the complete I-V
and P-V curves of a solar cell. A single diode PV module shown in the reference [30–32]
is used to simulate the proposed model. A buck-boost converter and maximum power
point tracking technique (MPPT) is used. Figure 1 shows the electrical equivalent circuit
of the proposed energy harvesting model. At the beginning of the circuit, the solar PV
module is highlighted with a red dash line followed by the filter circuit, converter circuit,
and MPPT block in the purple dash line. The harvested energy from the solar PV module
will charge the SC as an energy source (ES) [33]. Currently, to extend the battery life of
WSN nodes to months or even years, energy-efficient networking schemes paired with a
low-power architecture are used [8,34]. The BLE protocol lowers power usage and enables
fast connection to mobile devices. Therefore, it has a narrow operational range and is
subjected to royalty, making it unsuitable for pervasive low-cost devices in the WSN [35].
The ESP32 device is chosen as it can work as the microcontroller, Wi-Fi, and BLE module.
The SC delivers the required power to the WSN nodes or loads.
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Figure 2 shows the schematic diagram of the proposed solar PV energy harvesting
system for autonomous sensors in smart home applications. The solar PV module AM-1816
can work both in the indoor and outdoor environment. Incident light from the direct sun or
lamp can operate the solar module. The electrical specifications of the PV module are given
in Table 1. This glass type amorphous silicon solar PV module can generate a maximum
of 252 µW power, which is insufficient to distribute to the wireless sensor node. Thus,
an energy harvesting and power management module is used to increase the power to
a certain level to efficiently operate the WSN and the other components in the proposed
model. The ADP5091, an intelligent, integrated energy harvesting low power management
unit (PMU) that converts DC power from PV cells, is used. These devices charge storage
items such as rechargeable lithium-ion batteries, thin-film batteries, supercapacitors, and
provide power to small electronic devices and battery-free systems. The output of the solar
module is connected to the ADP5091 (Analog Devices Inc., Norwood, MA, USA) energy
harvester module. Due to the non-linear characteristics of the solar PV module, the energy
storage may suffer an unstable power supply from the source during the charging period.
The authors in [36] stated that SCs are suitable when fast charging is needed to meet a
short-term power requirement, while batteries are required to provide long-term electric
energy. Therefore, a double layer SC is chosen to store the energy for continuous support
to the system during the absence of solar power.

The double-layer of the SC ensures fast charging and discharging because it can occur
at any moment [37]. Since the SC charges and discharges quickly, a specific condition on
the microcontroller is used. Once the SC started to discharge, the sensor data transfer
rate will be optimized based on the available charge. If the available energy is 50−100%,
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the data transfer can happen with a short time interval, whereas the time interval will be
increased if the charge level is reduced below 50%. In this way, the SC can back up the
system uninterruptedly for a long time. Moreover, as the shift in the atmosphere inside
the SHB is gradual, the sensor device does not require to transmit signals continuously.
Instead, the device will be in standby mode during the usable solar PV electricity, which
is continuously collected, and then turn on for sensing and signal to transmit for a short
period. Such a periodic function of the sensor device is feasible for creating a self-powered
WSN with long-term operation. A voltage level shifter is associated with the SC and can
distribute the voltage of 3.3 V to the Wi-Fi module ESP32 and 5 V to the sensors. Sensors
are connected with the Wi-Fi module through the WSN node.
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applications.

Table 1. Electrical specifications of the AM-1816 Solar PV module [38].

Parameter Value

Model Number AM-1816

Substrate Glass

Type Amorphous Silicon

Maximum Output Power 252 µW

Open Circuit Voltage, VOC 5 V

Short Circuit Current, ISC 96.7 µA

No. of Cells 8

Operating Voltage, Vope 3 V

Operating Current, Iope 92.2 µA

Dimension (W × L × T) 96.7 × 56.7 × 1.1

Weight 15.6 g
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3. Simulation and Experimental Setup

Both the simulation and experimental tests have been carried out to validate the
proposed model. Except for few differences in some points, both the simulation and
experimental setup shows the desired results. The simulation is carried out in MAT-
LAB/SIMULINK 2020b (MathWorks, Natick, MA, USA) environment.

The proposed simulation model is shown as the SIMULINK block in Figure 3. In the
simulation, irradiance takes a minimum of 200 W/m2 to a maximum of 1000 W/m2 with a
200 W/m2 interval. The temperature is taken a minimum of 15 ◦C to a maximum of 55 ◦C.
A perturb and observe (P&O) algorithm extracts the power from the solar PV module at the
MPP [39]. The complete experimental setup is shown in Figure 4. The input parameters, PV
voltage, current, and power, are observed by the source meter (model no. 2460, KEITHLEY,
Cleveland, Ohio, USA). Input voltages are monitored by the digital storage oscilloscope
(model no. EDUX1002G, Keysight, Santa Rosa, CA, USA). Output voltage and current
of the PV energy harvesting device is measured and visualized by the digit multimeter
(model no. 34465A, Keysight, Santa Rosa, CA, USA). The digital multimeter measures
supercapacitor charging voltage. The AM-1816CA (Panasonic Electric Works, Ottobrunn,
Germany) amorphous silicon solar module is used as the primary energy source. The
fluorescent (FL) incident light from the ceiling is captured on the solar module.
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4. Results and Discussions

A complete prototype of a solar PV energy harvesting (EH) system is developed
and validated in a smart home environment. The designed EH device and IoT system
are capable of operating three IoT-connected sensors. Following the implementation of
the configuration of the hardware, the model goes through a simulation. The simulation
predicts the optimal outcome. Figure 5 shows the different characteristics curve of the
AM-1816 solar PV module. The performance difference of a solar PV cell highly depends on
the irradiance and temperature [40,41]. The solar cell shows the highest I-V at the condition
of the highest irradiance and lowest temperature. At the same time, the lowest I-V output
is generated at the lowest irradiance and highest temperature. In terms of the effect of
irradiance on the properties of a PV module, the induced current is proportional to the total
incident irradiance with a dependency at constant temperature and can be expressed by
Equation (1). The short circuit current at 25 ◦C is Isc, α is the short circuit current correction
coefficient, the solar cell operating temperature is Tc, and the incident irradiance ISC (T) G.

ISC (T) = ISC (at 25 °C) [1 + α(TC − 25)]
G

1000 W/m2 (1)Micromachines 2021, 12, x  8 of 16 
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The left side of Figure 5a shows the I-V curve at different irradiance 200 W/m2 to
100 W/m2. The maximum current of 1 A and maximum voltage of 5 V is generated at the
maximum irradiance of 1000 W/m2, whereas the minimum current and voltage are gener-
ated at the minimum irradiance of 200 W/m2. Similarly, the right side of Figure 5a shows
the P-V curve. The highest power is generated at the highest irradiance at 1000 W/m2.
When all other factors remain unchanged, the higher the temperature, the lower the open-
circuit voltage of the solar PV cell. This is referred to as a power loss. On the other side,
when the temperature falls compared to the initial conditions, the PV output voltage and
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power increases. The voltage dependency on temperature is expressed in [40] as a function
of VOC (T) standard temperature condition (STC).

VOC (T) = VOC (at 25 °C) [1 + β(TC − 25)] (2)

Here, the open-circuit voltage temperature coefficient is β, and the solar cell operating
temperature is TC. As the solar cell temperature rises, the semiconductor bandgap narrows,
allowing more energy to be consumed, increasing the solar cells short circuit current
for a given irradiance. Simultaneously, increasing the temperature rapidly expands the
population of electrons. The simulation of the I-V and P-V characteristics of the solar PV
module under different temperatures is carried out for indoor and outdoor applications.
The left side of Figure 5b shows the maximum voltage is generated at 25 ◦C comparing to
the minimum temperature of 15 ◦C and maximum temperature of 55 ◦C. The right side of
Figure 5b shows the P-V curve at different temperature readings.

Figure 6 depicts the proposed models simulated performance. As shown in Figure 6a,
the induced voltage increases to a maximum of 4.8 V after 2 s. Whereas the systems peak
power was initially 1.2 W, it now offers steady power of about 0.5 W. The power of without
and with MPPT control is depicted in Figure 6b. The proposed model achieves a maximum
MPPT power of 1.5 W, compared to 1.2 W without the MPPT tracker. Both MPPT and
normal power decreases as time passed. The charging voltage, charging current, and state
of charge (SOC%) characteristics of the SC are shown in Figure 6c. The SCs state of charge
is 9.39% after 9.5 s; the optimal performance voltage level is 3.3 V, which can be completed
in less than 0.1 s. Later, in the absence of energy sources, the SC maintains a steady voltage
of 3.3 V. The simulation demonstrates that charging the SC to 4 V takes just 1 s. Only
the energy sources and energy harvester components are simulated and evaluated in this
analysis. The solar cell is attached to the Vin of the ADP5091 energy harvester module in
the prototype. Vin is connected internally to the charge pumps cold start and the MPPT
pin. The performance of the MPPT pin is attached to the boost controller, with the boosted
voltage being delivered to the modules BAT pin. The BAT pin is coupled directly to the SC.
The experimental results show the SC begins to charge when the energy supply produces
just 0.8 V. The experiments evaluate various input voltage levels ranging from 0.8 V to
3.2 V.

Figure 7 illustrates the different features of the PV module as illuminated by various
light sources. The variation of illumination vs. voltage of the PV module is depicted in
Figure 7a. Each cell of the AM-1816 solar PV module produces a voltage of 0.63 V at the
illumination of 200 lux in an indoor environment. A voltage of 0.89 V at an irradiance
of 1000 W/m2 in the outdoor environment. The PV modules illumination vs. current
characteristics is depicted in Figure 7b. The module produces 4.3 µA current at a minimum
of 50 lux and a 17 µA current at a maximum illumination of 200 lux. The I-V characteristics
of the AM-1816 module are shown in Figure 7c, accompanied by the illumination vs. power
graph in Figure 7d. The module can deliver 85 µW power at an optimum illumination
level of 200 lux.

Figure 8 depicts the SC in its complete charging and discharging mode. The SC is
found to cross 4.12 V in less than 30 s. At a maximum generated PV voltage of 3.2 V at
130 lux, it is observed that the proposed device needs just 17 s to charge. Charging the
SC at the lowest voltage standard of 0.8 V (at 30 lux) takes a time of 185 s. For calculation
purposes, the SCs maximum charging voltage level has been set to 3.82 V. It takes 118 s,
62 s, 42 s, 27 s, and 18 s for the proposed system to operate at various input voltages of
1 V, 1.5 V, 2 V, 2.5 V, and 3 V, respectively. Thus, the low input voltage requires more time
to charge from the experiment. In comparison, the high input voltage requires less time
to charge. Additionally, it is observed that the SC charges to 4.11 V in 25 s. The voltage
level is increased to 4.12 V after 30 s. Throughout the measurement procedure, a steady SC
voltage of 3.82 is used and the SC discharges from fully charged voltage of 3.82 V to 0 V.
The estimated discharge time is 95 s to discharge the SC from 3.82 V to 2.28 V. As a result,
the sensors and IoT feature run continuously for 95 s without external energy sources. It



Micromachines 2021, 12, 653 9 of 16

is also observed that the SC requires approximately 360 s to discharge to 0 V during the
circuit finally is on mode.
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Figure 8. Charging and discharging state of the supercapacitor.

For the charging state, the charging time depends on the illumination of light and
the voltage generated from the PV module. For discharging, the SC discharges very fast
during the data transmission to the web browser and smartphone. The wireless sensor
node operates at a minimum voltage of 1.97 V for the moisture sensor. For the temperature
and humidity sensor, at least 2.28 V is required. Until the SC voltage reaches 2.28 V, the
sensors transmit data to the IoT server. The temperature sensor (SHTC3) and moisture
sensor (SEN0193) cannot connect to the server when the charge amount is less than 2.28 V.
The used SC discharges from 3.82 V to 1 V in 230 s. It is found that the moisture sensor
starts transmitting the data at a voltage of 1.97 V. The SHTC3 sensor continues to run, but
the power supply is inadequate to relay the data. SHTC3 transmits data to the internet
server through the ESP32 Wi-Fi module at a voltage of 2.28 V. Thus, during the discharge,
the SC powers up the SHTC3 and SEN0193 sensors for 95 s (at a minimum of 2.28 V) and
120 s (at a minimum of 1.97 V), respectively.
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Figure 9 shows the experimental voltage and power waveforms generated at a dif-
ferent time with different illumination levels. Figure 9a shows the generated power and
voltages at the illumination of 40 lux. The highest and the lowest peak power at this stage
is 0.19 W and 0.09 W, respectively, whereas the generated voltage is around 1 V. Figure 9b
shows the generated power at the highest peak power of 0.38 W and the lowest peak power
of 0.25 W at the illumination of 60 lux and voltage of around 1.5 V. Figure 9c shows the
highest peak power of 0.68 W and the lowest peak power of 0.56 W at the 80 lux and the
generated voltage is around of 2 V. Figure 9d shows the highest peak power of 1.03 W at
the 100 lux and the generated voltage is 2.5 V. Figure 9e shows the maximum generated
power is 1.63 W at 120 lux and around 3 V. Figure 9f shows the highest peak power of the
proposed system is 2.3 W at the highest illumination level of 130 lux and around voltage
of 3.2 V. Since the system is designed for low power and indoor environment, here the
maximum illumination of 130 lux is taken in account. Therefore, the proposed approach
can generate the highest voltage of 5 V with the highest illumination level of 200 lux.
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Table 2 displays the details on the power usage of the wireless sensor. 1.885 × 10−5 W
is absorbed by the temperature and humidity sensor. The moisture sensor absorbs
0.020304 W power. The sensors standby state and data transfer mode use a total of
0.20011885 W. The proposed systems generated power (PGEN) is 0.25 W, which is enough to
operate the wireless sensor node at the minimum illumination of 50 lux. The experimental
results show that when data is transmitted at two seconds, the SC can back up the whole
device for 95 s. At this stage, sensors successfully transfer 40 data strings to the webserver.
A higher or lower sensor data sampling rate may result in increased or decreased power
consumption, respectively. Thus, depending on the devices usable resources or state of
charge, it is also possible to save SC power by adjusting the data transmission interval and
data sampling rate. Appropriate resource optimization based on the data transmission
rate and the sleep/wake-up time of the sensors will result in significant power savings.
The capacitive moisture sensor is a power-hungry device comparatively the temperature
and humidity sensor from the experiments. Thus, the authors suggest using an alternative
capacitive moisture sensor for commercial and efficient low power consumption.

Table 2. Measurements of the generated power (PGEN) and consumed power.

Sensor Name Voltage Current Power Total Consumed
Power PGEN at 50 lux PGEN at 130 lux

Temperature
and Humidity 3.77 V 0.005 mA 1.885 × 10−5 W

0.20011885 W 0.25 W 2.3 W
Moisture 3.76 V 5.4 mA 0.020304 W

The developed IoT architecture is fully operational, both in the webserver and through
an android application. Figure 10a,b shows the data transmission to the webserver and data
monitoring customized dashboard on the smartphone through the android application. If
the system detects an active Wi-Fi network, it will connect to it; otherwise, it will enable
Bluetooth mode and attach to the handset. Figure 10a shows the proposed prototype con-
nected to the server, with the captured data shown on the laptop serial monitor. Figure 10b
depicts the live message queuing telemetry transport (MQTT) dashboard, which constantly
updates the sensor data inside the smart home. The MQTT software is available on the
google play store and can be used free of cost. This proposed application is customized
based on the requirement and the number of data slot displaying on the smartphone screen
is selected based on the available sensors. The output parameters of the temperature,
humidity, and moisture sensors are shown on the dashboard in Figure 10b.

Recently published energy harvesting sensor platforms are presented in the literature.
The authors compare the proposed design with the existing work on solar integrated energy
harvesting systems for WSNs in Table 3 [42]. The authors in [43] present an intelligent
MPPT solar energy harvesting (SEH) system for ZigBee based WSNs that can harvest
450 mW power. The generated power is stored in lithium (Li) battery. The MPPT SEH
system is designed for Crossbow motes based wireless embedded systems in [14] that
stores the energy to the nickel–metal hydride battery (NiMH). A solar energy harvester is
proposed in [44] for WirelessHART based industrial wireless sensor nodes, the generated
energy stores in a Lithium polymer (LiPO) battery. The authors in [45] propose a micro
solar MPPT power sensor network, Tmote Sky WSN motes and NiMH, as the wireless
sensor applications and energy storage, respectively. The SEH circuit is developed for
Tmote Sky based WSNs embedded systems [46]. Crossbow Mica2 WSNs is used by solar
and NiMH battery-powered energy harvesting systems in [47]. An indoor solar and
ultracapacitor (UC) based energy harvesting system is proposed for Crossbow MicaZ
sensor network router nodes [48]. Hua Yu et al. [49] proposed an indoor light energy
harvesting system for temperature (Temp.) and humidity (Hum.) sensor-based energy-
aware wireless sensor node. The proposed prototype generates a maximum of 2.3 W
power utilizing the MPPT techniques. An SC of 0.47 F is used to store the energy, which
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takes only 25 s time to charge fully. The ESP32 module can perform both as the Wi-Fi
and Bluetooth low energy (BLE) mode to save energy. The wireless sensor node includes
temperature, humidity, and moisture sensors. Compared to other existing work mentioned
in Table 3, the proposed system can generate the required power to operate the wireless
sensor network that includes the maximum number of sensors and takes less time to charge
the SC fully. Wi-Fi and BLE allow to perform the device as self-sustained based on the
available power.
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Table 3. Comparative analysis with published literature on solar integrated energy harvesting systems for wireless sensor
networks vs. the proposed work.

References EHT WSN D/A ES Available P/E Env.

Yin Li et al. [43] MPPT ZigBee Li 5.0 V, 450 mW OD

Vijay R. et al. [14] MPPT Crossbow motes NiMH 4.0 V, 100 mA OD

R. Ibrahim et al. [44] - WirelessHART Li-PO 21.5 V, 520 mA OD

Jay Taneja et al. [45] MPPT Tmote Sky NiMH 4.23 V, 111.2 mA OD

D. Brunelli et al. [46] - Tmote Sky SC 50 mW OD

P. Corke et al. [47] MPPT Crossbow Mica2 NiMH 4 V, 300 mA OD

A. Hande et al. [48] - Crossbow MicaZ UC 3.24 V, 25 mA ID

Hua Yu et al. [49] MPPT Hum. and Temp. Sensor SC 4.5 V/72.74 µW ID

Proposed Work MPTT ESP32, Temp., Hum.,
and Moisture Sensor SC 5 V, 250 mW–2.3 W OD and ID

EHT—Energy harvesting technique, D/A—Device/Applications, ES—Energy Storage, P/E—Power/Energy, Env.—Environment, OD—
Outdoor, ID—Indoor.
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5. Conclusions

This paper proposes an autonomous energy harvesting system with a low power solar
PV module for indoor and outdoor usages for smart home-building (SHB) applications.
The developed device is entirely functional during an accidental power outage or even in
the absence of regular grid electricity. The sensor data can be monitored through the IoT
on a smartphone dashboard and anywhere through an internet webserver. Particularly,
three sensors, such as temperature, humidity, and moisture, are tested, and the total
consumed power by the sensors is 200 mW (0.20011885 W). In contrast, the proposed
energy harvesting system can generate 250 mW (0.25 W) at the minimum illumination
of 50 lux under any indoor ambience (fluorescent or LED lamp). The proposed device
can generate a maximum of 2.3 W power at the maximum illumination of 130 lux. The
SC as energy storage enables fast charging up to 4.11 V within 25 s. Once the SC is fully
charged, it can back up the complete WSN nodes for 95 s uninterruptedly and transfer a
total of 40 data string per 2 s interval to the webserver. The developed self-powered energy
harvesting system can power billions of sensors autonomously, especially the sensors used
in smart home-building applications.
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