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Background: Increasing evidence suggested the critical roles of lncRNAs in the

maintenance of genomic stability. However, the identification of genomic

instability-related lncRNA signature (GILncSig) and its role in pancreatic

cancer (PC) remains largely unexplored.

Methods: In the present study, a systematic analysis of lncRNA expression

profiles and somatic mutation profiles was performed in PC patients from The

Cancer Genome Atlas (TCGA). We then develop a risk score model to describe

the characteristics of the model and verify its prediction accuracy. ESTIMATE

algorithm, single-sample gene set enrichment analysis (ssGSEA), and

CIBERSORT analysis were employed to reveal the correlation between

tumor immune microenvironment, immune infiltration, immune checkpoint

blockade (ICB) therapy, and GILncSig in PC.

Results: We identified 206 GILnc, of which five were screened to develop a

prognostic GInLncSig model. Multivariate Cox regression analysis and stratified

analysis revealed that the prognostic value of the GILncSig was independent of

other clinical variables. Receiver operating characteristic (ROC) analysis

suggested that GILncSig is better than the existing lncRNA-related signatures

in predicting survival. Additionally, the prognostic performance of the GILncSig

was also found to be favorable in patients carrying wild-type KRAS, TP53, and

SMAD4. Besides, a nomogram exhibited appreciable reliability for clinical

application in predicting the prognosis of patients. Finally, the relationship

between the GInLncSig model and the immune landscape in PC reflected its

application value in clinical immunotherapy.

Conclusion: In summary, the GILncSig identified by us may serve as novel

prognostic biomarkers, and could have a crucial role in immunotherapy

decisions for PC patients.
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Introduction

Pancreatic cancer is one of the deadliest cancers, ranking as

the fourteenth most common cancer and the seventh leading

cause of cancer mortality worldwide. Due to the lack of obvious

early symptoms, PC usually presents at an advanced stage, which

results in a 5-years survival rate as low as 6% (ranging from 2% to

9%) (McGuigan et al., 2018). Despite the great advances in

surgery, chemotherapy, and radiotherapy for PC that have

been made in the past few years, long-term survival and

prognosis remain terrible, with more than 80 percent of

patients facing recurrence after resection (Garrido-Laguna and

Hidalgo, 2015). More recently, a large number of previous studies

have analyzed the relationship between the expression of

molecular markers and clinicopathology and long-term

survival in the molecular mechanism of PC. However, their

impact on patient early diagnosis and treatment is still limited

(Garcea et al., 2005). Therefore, searching for new prognostic

markers that can predict the poor outcome of patients may

become the target of intervention, and provide new treatment

strategies for the treatment of PC.

Genomic instability refers to an increased tendency of the

genome to acquire mutations, which is typically conferred by

some mechanism dysfunction, such as DNA damage repair,

DNA replication, transcription, and so on. Genomic instability

is a hallmark of cancer and is related to cancer initiation and

progression (Duijf et al., 2019). In addition, genome stability

status is also associated with survival and can be used as a

prognostic marker for cancer patients (Gupta et al., 2018).

Long non-coding RNAs (lncRNAs) are arbitrarily considered

as non-protein coding transcripts over 200 nucleotides in length

(Ma et al., 2014). There is increasing evidence suggesting that

lncRNAs are involved in a variety of biological processes and play

a critical role in genome regulation (Mercer et al., 2009; Rinn and

Chang, 2012; Ma et al., 2014). Noticeably, the dysregulation of

lncRNAs has been established to be associated with many

complex diseases, including cancers (Gibb et al., 2011; Spizzo

et al., 2012; Cheetham et al., 2013). Many lncRNAs are

abnormally expressed in tumor tissues, which have been

considered oncogenes, such as MALAT1 (Wang et al., 2017),

HOTAIR (Troiano et al., 2017), H19 (Zhang et al., 1993), and

MEG3 (Braconi et al., 2011). The main function of lncRNA is to

regulate gene expression and indicate the tumor status better

than the protein-coding RNAs, so it can be used as a novel

biomarker with diagnostic and prognostic significance

(Hauptman and Glavac, 2013). Currently, several lncRNA

signatures have been developed in various cancers to predict

patient prognosis with great predictive performance, including

lung cancer (Lin et al., 2018), head and neck squamous cell

carcinoma (Diao et al., 2019), ovarian cancer (Zhou et al., 2016)

and breast cancer (Fei et al., 2018; Tang et al., 2019). Recently, Lee

et al. (2016) analyzed a non-coding RNA activated by DNA

damage (or NORAD) and maintained genomic stability by

isolating PUMILIO protein. Hu et al. reported that

GUARDIN, as a p53-responsive lncRNA, kept genomic

integrity under both stable and exposed status (Hu et al.,

2018). These results demonstrated the important role of

lncRNAs in maintaining genomic stability, but the lncRNAs

associated with genomic instability need to be further explored.

In addition, studies have shown that immune cells act as

tumor inhibitors or tumor promoters and may function as

important players in the tumor immune microenvironment

(TIME). Genomic instability has been termed as a promising

indicator for predicting responsiveness to immune checkpoint

blockade based on numerous researches.

Therefore, we constructed a GILncSig to investigate whether

the lncRNA signature could reflect the tumor immune

microenvironment, and serve as an effective prognostic

predictor for patients with PC.

Methods

Availability of data and materials

The clinical information, RNA-seq expression data, lncRNA

transcriptional profiles, and somatic mutation information of

patients with PC were obtained from TCGA project (https://

cancergenome.nih.gov/). A total of 171 TCGA PC patients with

lncRNA expression profiles somatic mutations, survival

information, and clinical features were utilized in our study.

TCGA patients with PC were divided into an 84-sample training

set and an 87-sample testing set. The training set was used to

identify the prognostic lncRNA signature and establish the

prognostic risk model, while the testing set was used to

independently validate its prognostic value.

Identification of genomic instability-
associated lncRNAs

To identify genomic instability-associated lncRNAs, a

computational framework was constructed based on the lncRNAs

expression profiles and somatic mutation profiles of PC patients. As

shown in Figure 1, the cumulative number of somatic mutations per

samplewascalculatedandarrangedindescendingorder.Thefirst25%

ofpatientsweredefinedas the genomic instability group (GUgroup),

and the last 25% were defined as the genomic stability group (GS
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group). Then compared the expression profiles of lncRNAs between

theGUgroupandGSgroupbythesignificanceanalysisofmicroarrays

(SAM)method.ThedifferentiallyexpressedlncRNAsscreenedoutby

the filter of fold change and permutation correction were defined as

GILnc (fold change >1.5 or <0.67 and false discovery rate (FDR)

adjusted p < 0.05).

Functional enrichment analysis

Wecalculated thePearsoncorrelationcoefficient toevaluate their

correlation by using paired lncRNA and mRNA expression profiles

and then established a lncRNA-mRNAco-expressionnetwork.Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses of the co-expressed protein-coding

genes with prognostic lncRNAs were performed to predict the

biological function of the differentially expressed lncRNAs using

clusterProfiler software in R-version 3.5.2 (Yu et al., 2012).

Tumor immune-related analysis

To reflect the characteristics of the tumor immune

microenvironment, the R package “ESTIMATE” was utilized to

calculate Scores of immune and stromal cells. Immune infiltration

information containing each tumor sample’s immune cell fraction

was obtained fromTumor Immune Estimation Resource (TIMER)

(https://cistrome.shinyapps.io/timer/). The correlation of tumor

immune cell infiltrating with prognostic risk signature was further

analyzed. We selected six key genes of immune checkpoint

blockade–related genes in PC to investigate the potential role of

a lncRNA-based signature in ICB therapy of PC.

Statistical analysis

We carried out a univariate regression analysis to determine

the relationship between the expression level of lncRNAs and the

overall survival of the training set. Those lncRNAs with a p-value

less than 0.05 were considered as the candidate prognostic

lncRNAs of PC whose expression levels were significantly

associated with the overall survival of PC patients. To assess

the contribution of that candidate lncRNA as an independent

prognostic factor for survival, a multivariate Cox regression

analysis was further performed. A p value less than 0.05 was

considered significant. A prognostic risk score model of GILncSig

was constructed based on the expression level of lncRNAs and

multivariate Cox regression coefficient to predict the prognosis of

patients with PC as follows: GILncSig (patients) =

∑n
i�1coefficient(lncRNAi)* expression(lncRNAi). In our

formula, GILncSig (patients) is the prognostic risk score for

PC patients. lncRNAi is each prognostic lncRNAs. Coefficient

(lncRNAi) represents the corresponding coefficient of

multivariate Cox regression analysis, and expression

(lncRNAi) is the expression level of lncRNAi.

According to the above formula, the lncRNA expression-

based risk scores for PC patients could be calculated and

divided patients into high-risk and low-risk groups with the

cutoff of the median risk score from the training set. Kaplan-

Meier survival curves were utilized to estimate the survival rate

of the different patient groups, and the survival differences

between the high-risk group and low-risk group were assessed

by the log-rank test. Time-dependent ROC analysis for overall

survival was used to assess the performance of the prognostic

risk model for time-dependent disease outcomes. Multivariate

Cox regression and stratified analysis were performed to

determine whether the GILncSig was independent of other

clinical variables. Hazard ratio (HR) and 95% confidence

intervals (CI) were estimated by Cox proportional hazards

regression model. A nomogram was built in the training set

to predict the 1-, 2-, and 3-years survival based on the results of

multivariate cox regression analysis by R “rms” and “survival”

package and applied to the testing set and the entire TCGA set

FIGURE 1
Computational framework of genomic instability-associated
lncRNAs detection.
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for verification. The corrected plot was used to assess the

prognostic accuracy of the nomogram. All statistical analyses

were performed using R software and Bioconductor.

Result

Identification of genome instability-
associated lncRNAs in patients with
pancreatic cancer

To detect the potential Genome instability-related lncRNAs,

the cumulative number of somatic mutations in each patient with

PCwas calculated fromTCGA. The first 25% (n = 43) and the last

25% (n = 40) patients were classified into the GU group and GS

group by the descending order of cumulative number. Then the

lncRNA expression profiles in the GU group and GS group were

analyzed by unsupervised clustering, the result shows that a total

of 206 lncRNAs were found to be significantly differentially

expressed (Figure 2A). All patients with PC in TCGA were

divided into GU-like group and GS-like group by

unsupervised hierarchical clustering analysis based on the

expression levels of the 206 differentially expressed lncRNAs.

The cumulative number of somatic mutations was higher in the

GU-like group and lower in the GS-like group (Figure 2B). As

shown in Figure 2C, more mutated genes exist in the GU-like

group (p < 0.001, Mann-WhitneyU test). As the UBQLN4 gene is

one of the driving factors of gene instability, the expression level

of the UBQLN4 gene in the GU-like group and GS-like group was

compared. The results showed that there was a significant

difference in the expression level of UBQLN4 between the two

groups, and the expression level of UBQLN4 in the GU-like group

FIGURE 2
Identification of genome instability-related lncRNAs in patients with pancreatic cancer. (A) Unsupervised clustering analysis of the lncRNA
expression profiles in the GU group and GS group. (B) Unsupervised clustering analysis of 171 patients with pancreatic cancer according to the
differential expression patterns of 206 GILnc. (C) Boxplots of somatic mutations count in the GU-like group and GS-like group. (D) Boxplot of the
expression level of UBQLN4 in the GU-like group and GS-like group.
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was significantly higher than that in the GS-like group. (p < 0.001,

Mann–Whitney U test, Figure 2D).

To better understand the biological significance of the

206 differentially expressed lncRNAs, functional enrichment

analysis was performed to predict potential functions. We

selected the protein-coding genes (PCGs) most related to the

expression of each lncRNA to construct a lncRNA-mRNA co-

expression network (Figure 3A). According to the enriched

results of the lncRNA-correlated PCGs, GO biological process

(e.g., cellular component (CC), DNA binding in the molecular

function (MF), and metabolism in the biological process (BP))

and KEGG pathway (e.g., MAPK signaling pathway, cAMP

signaling pathway, Pancreatic secretion, and Endocrine

resistance) were annotated to be associated with genome

instability (Figures 3B,C). Based on the above results, it is

considered that the 206 lncRNAs were involved in the

genomic instability-related biological process, and their altered

expression may destruct the genomic stability of cells. Therefore,

the 206 differentially expressed lncRNAs were recognized as

candidate lncRNAs with genomic instability in PC.

Acquisition of a genomic instability-
associated lncRNA prognostic
signature from the training set

To screen out the prognostic lncRNAs with independent

value, we performed a univariate Cox proportional hazard

regression analysis to analyze the relationship between

expression levels of 206 GIlncRNA and OS in the training set,

17 candidate prognostic lncRNAs were found to be significantly

associated with the prognosis of PC patients (Figure 4A).

Furthermore, multivariate Cox proportional hazards

regression was used to analysis on 17 candidate prognostic

lncRNAs. Based on the multiCox model (Figure 4B), 4 of

17 candidate lncRNAs including AL121772.1, BX640514.2,

FIGURE 3
Functional annotations of GILnc in patients with pancreatic cancer. (A) Co-expression network of GILnc and mRNAs. The blue and red circles
represented the LncRNAs and protein-coding mRNAs, respectively. Functional enrichment analysis of GO biological process (B) and KEGG pathway
(C) for the co-expressed protein genes with lncRNAs.
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LINC01133, and LYPLAL1-AS1 were found to retain their

prognostic significance and thus were identified as

independent prognostic lncRNAs (p < 0.05). All of the four

lncRNAs (AL121772.1, BX640514.2, LINC01133, and LYPLAL1-

AS1) with positive coefficients tended to be prognostic risk

factors and their high expression were associated with shorter

survival. One lncRNAs (AC087752.3) having negative

coefficients was shown to be a protective factor whose high

expression level was closed associated with longer survival. A

risk score model of GILncSig based on the results of the

multivariate Cox analysis regression coefficients was generated

to predict the outcome of PC patients as follows: GILncSig =

(−1.61 × expression value of AC087752.3) + (0.63 × expression

value of AL121772.1) + (0.39× expression value of BX640514.2)

+ (0.02 × expression value of LINC01133) + (0.38× expression

value of LYPLAL1-AS1). According to the GILncSig model, the

prognostic risk score was computed for each patient in the

training set. Using the median risk score as the cutoff point,

all patients in the training set were classified into a high-risk

group (n = 38) and a low-risk group (n = 46). The Kaplan-Meier

analysis indicated that the overall survival was significantly

different between the two risk groups and patients in the low-

risk subgroup had markedly longer overall survival than those in

the high-risk group (p = 0.009, log-rank test, Figure 5A). The

time-dependent receiver operating characteristic (ROC) curves

analysis for GIlncRNA prognostic model achieved an area under

the curve (AUC) of 0.653 at 1 year of overall survival (Figure 5C).

These results demonstrated the GIlncRNA had better prognosis

prediction performance in patients with PC. Then we ranked the

risk scores of patients in the training set. Figure 5B showed the

expression pattern of the five Independent prognostic lncRNAs,

the expression level of UBQLN4, and the count of somatic

FIGURE 4
Construction of the genomic instability-associated lncRNA prognostic signature from the training set. (A) Forest plot of 17 candidate prognostic
LncRNAs associated with pancreatic cancer patients’ overall survival based on univariate Cox regression analyses. (B) Forest plot of five candidate
prognostic LncRNAs associated with pancreatic cancer patients’ overall survival based on stepwise multivariate Cox proportional hazard regression.
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mutations. We found that for patients with high-risk scores, the

expression levels of four risk lncRNAs(AL121772.1, BX640514.2,

LINC01133, LYPLAL1-AS1) were up-regulated, while one

protective lncRNA (AC087752.3) was expressed at a low level.

In contrast, these prognostic lncRNAs expressed the opposite

patterns in patients with low-risk scores. Similarly, there were

significant differences in UBQLN4 expression levels between the

high-risk group and low-risk group (p = 0.049, Mann–WhitneyU

test; Figure 5D). Moreover, Figure 5D also revealed that the

number of somatic mutations in the high-risk group was slightly

higher than those in the low-risk group (p = 0.09,

Mann–Whitney U test; Figure 5D).

Validation of GILncSig in the testing set
and entire the cancer genome atlas set

To confirm our findings, the prognostic performance of the

GILncSig was further evaluated in the testing set. Patients in the

testing set were divided into the high-risk group (n = 43) and the

low-risk group (n = 44) by using the same GILncSig and cutoff

value deriving from the training set. Kaplan-Meier curves

showed that there was a significant difference in overall

survival between the high-risk group and the low-risk group,

and the overall survival of the high-risk group was much lower

than the low-risk group (p < 0.001, log-rank test, Figure 5E),

which were similar to those observed in the training set.

Validation of the GILncSig in the testing set of 87 patients

produced a ROC with an AUC of 0.806 at 1 year (Figure 5G).

Figure 5F shows how the expression level of GILncSig, the count

of somatic mutation, and the expression level of UBQLN4 in the

testing set change with the increasing score. The analysis

indicated that Somatic mutation counts and the expression

level of UBQLN4 were significantly higher in the high-risk

group as compared with those in the low-risk group (p =

0.0044, p = 0.00054, Mann-Whitney U test; Figure 5H).

Similar results were observed when the prognostic performance

of the GILncSig was further used to the entire TCGA set. Like the

FIGURE 5
Identification and validation of the GILncSig for outcome prediction in patients with pancreatic cancer in the training set and testing set. (A,E)
Kaplan–Meier survival curves of patients in the high- and low-risk groups are separated by the median GILncSig score in the training set (A) and
testing set (E). (B,F) LncRNA expression patterns and the distribution of somatic mutation and UBQLN4 expression with increasing GILncSig score in
the training set (B) and testing set (F). (C,G) Time-dependent ROC curves for 1-year survival prediction of the GILncSig in the training set (C) and
testing set (G). (D,H) Boxplots of comparison of the somatic mutation counts and the UBQLN4 expression between the high- and low-risk groups in
the training set (D) and testing set (H).
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FIGURE 6
Predictive performance evaluation of the GILncSig in patients with pancreatic cancer in the TCGA set. (A) Kaplan–Meier survival curves of
patients in the high- and low-risk groups separated by the median GILncSig score in the TCGA set. (B) LncRNA expression patterns and the
distribution of somatic mutation and UBQLN4 expression with increasing GILncSig score in the TCGA set. (C) Time-dependent ROC curves for 1-
year survival prediction of the GILncSig in the TCGA set. (D) Boxplots of comparison of the somatic mutation counts and the
UBQLN4 expression between the high- and low-risk groups in the TCGA set.
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training and testing set, the GIlncRNA was able to stratify 171 PC

patients of the entire TCGA set into the high-risk group (n= 81) and

low-risk group (n = 90) with obviously different overall survival (p <
0.001, log-rank test, Figure 6A). The AUC of time-dependent ROC

analysis for overall survival in the entire TCGA set was 0.724

(Figure 6B). The expression of GILncSig, somatic mutation

counts, and UBQLN4 expression level of PC patients in the

TCGA set was presented in Figure 6C, which were similar to

those observed in the training set and testing set. The counts of

somatic mutations in the high-risk group were significantly higher

than that in the low-risk group (p = 0.0022, Mann-Whitney U test,

Figure 6D), as was the expression level of UBQLN4 (p = 0.0001,

Mann-Whitney U test, Figure 6D).

Comparison of the GILncSig and other
lncRNA-related predictive signatures for
survival prediction

Recently, two lncRNA-related signatures were reported to

predict the prognosis of PC patients. Therefore, we further

compared the prognostic value of our GILncSig to that of

different lncRNA-associated signatures for predicting

outcomes: the five-lncRNA signature derived from Song’s

study (hereinafter referred to as SongSig) (Song et al., 2018)

and the three-lncRNA signature derived from Shi’s study

(hereinafter referred to as ShiSig) (Shi et al., 2018). Utilizing

the same TCGA patient set. Then we performed the time-

dependent ROC analysis and calculated the area under the

ROC curves to compare the prediction performance between

the GILncSig and other two existing lncRNA-related signatures

in the entire TCGA set. The result demonstrated that the AUC at

1 year of overall survival for the GILncSig is 0.724, which was

significantly higher than that of SongSig (AUC = 0.642) and

ShiSig (AUC = 0.556) (Figure 7). For this reason, we believed that

the GILncSig had better prognostic power than those two

lncRNA-related signatures.

Independence of prognostic value of
the GIlncRNA from other clinical
variables

To determine whether the prognostic value of the GIlncRNA

was independent of other clinical variables. Multivariate Cox

regression analysis was performed in each patient set using

prognostic risk score, age, gender, pathological grade, and

stage. Results from multivariate Cox analysis revealed that the

GIlncRNA was significantly associated with overall survival in

each set when adjusted for age, gender, pathological grade, and

stage (Table 1). At the same time, we also observed that age,

gender, pathological grade, and stage were different in the

multivariate analysis significantly. So we further performed

data stratification analysis according to age and gender,

pathological grade, and stage. According to age, PC patients

could be stratified into an old patient group (age >65, n = 81) and

a young patient group (age <=65, n = 90). The GIlncRNA could

subdivide each age group into a high-risk group and a low-risk

group. There was significantly different overall survival between

the high-risk group and low-risk group in each age group. (log-

rank test p = 0.016 for the old patient group and log-rank test p <
0.001 for the young patient group) (Figure 8A). Next, all patients

were also stratified by gender. The overall survival of patients in

the low-risk group was significantly longer than that of patients

in the high-risk group by analysis of the results. (log-rank test p =

0.002 for the female group; log-rank test p = 0.001 for the male

group; Figure 8B). In addition, all patients in the entire TCGA set

were grouped according to tumor size, lymph node metastasis,

and distant metastasis. Each group was further separated into a

high-risk group and a low-risk group by the GIlncRNA, and the

difference in overall survival between the two groups was

compared. As shown in Figure 8, except for the metastatic

group (M1 group and T1-2 group), there were statistically

significant differences in overall survival between the high-risk

and low-risk groups in each group (p < 0.001 for T3-4 group,

Figure 8D; p = 0.027 for N0 group, p = 0.003 for N1 group,

Figure 8G; p = 0.009 for M0 group, p = 0.317 for M1 group,

Figure 8C; log-rank test). Finally, the same analysis method was

applied to the pathological grade and stage of patients. The

results of the stratified analysis showed that the patients with

high grades were divided into either a high-risk group (n = 24)

with shorter survival or a low-risk group (n = 25) with longer

FIGURE 7
The ROC analysis for 1-year survival prediction of the
GInLncSig and the other two existing signatures (SongLncSig,
ShiLncSig), respectively.
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survival (p = 0.068, log-rank test; Figure 8E). The patients in the

low-grade group were similarly classified into two risk subgroups

with significantly different survival times (p < 0.001, log-rank

test; Figure 8E). Furthermore, patients with pathologic stage I or

II were combined into an early-stage group (n = 161), and those

with pathologic stage III or IV were combined into a late-stage

group (i = 7). The GIlncRNA divided the early-stage group and

the late-stage group into a high-risk group and a low-risk group

respectively. The overall survival was significantly different

between the two groups in the early-stage group (p < 0.001,

log-rank test; Figure 8F). Nevertheless, the difference in overall

survival between the two groups was not significant probably due

to the limited sample size in the late group (p = 0.549, log-rank

test; Figure 8F). Taken together, these results indicated that the

GILncSig was an independent prognostic factor associated with

overall survival in PC patients.

The prognostic significance of GILncSig is
better than KRAS, TP53, and
SMAD4 mutation status

KRAS, TP53 and SMAD4 were the most frequent mutant

genes and associated with poor prognosis in PC. With this in

mind, these three genes were included in the training set, testing

set and TCGA set for analysis, respectively. Then further

stratified analysis was performed based on the mutation status

of KRAS, TP53 and SMAD4 by GILncSig. The analysis showed

that the proportion of patients with KRAS, TP53, and

SMAD4 mutations in the high-risk group was higher than

that in the low-risk group to varying degrees in each set. For

KRAS, 66% of the high-risk group had KRAS mutations,

significantly higher than 16% of the low-risk group in the

training set (chi-square test p < 0.001). In the testing set, 72%

of the high-risk group had KRAS mutation, which was

significantly higher than 46% of the low-risk group (chi-

square test p = 0.040). In the entire TCGA set, 69% of KRAS

mutation in the high-risk group was significantly higher than

33% in the low-risk group (chi-square test p < 0.001). These

results suggest that GILncSig is closely related to the mutation

state of the KRAS gene. Therefore, we applied GILncSig to

patients with KRAS Wild type (KRAS Wild) and KRAS

mutation type (KRAS mutation). Patients with KRAS Wild

were divided into the low-risk group (KRAS Wild/GS-like)

and high-risk group (KRAS Wild/GU-like), and patients with

KRAS mutation were divided into the low-risk group (KRAS

Wild/GS-like) and high-risk group (KRAS mutation/GU-like).

Through comparative analysis, we found that the overall survival

TABLE 1 Univariate and Multivariate Cox regression analysis of the GILncSig and clinical features for the independent prognostic significance in
different patient datasets.

Variables Univariable model Multivariable model

HR HR.95L HR.95H p value HR HR.95L HR.95H p value

TCGA set

age 1.027207 1.005871 1.048994 0.012189 1.023761 1.001864 1.046137 0.033272

gender 0.873723 0.577194 1.322592 0.523359

grade 1.391989 1.040839 1.861608 0.025759 1.250423 0.931461 1.678608 0.136906

stage 1.365182 0.936063 1.991023 0.105923

riskScore 1.030134 1.014894 1.045604 9.46E-05 1.02821 1.013716 1.042912 0.000123

Testing set

id HR HR.95L HR.95H pvalue HR HR.95L HR.95H pvalue

age 1.02934 1.000879 1.058611 0.04324 1.02934 1.000879 1.058611 0.04324

gender 1.051846 0.60187 1.838237 0.859146

grade 1.341221 0.926544 1.941486 0.119783

stage 1.341823 0.799856 2.251018 0.265316

riskScore 1.029268 0.964336 1.098572 0.38557

Training set

id HR HR.95L HR.95H pvalue HR HR.95L HR.95H pvalue

age 1.026642 0.994416 1.059912 0.106125

gender 0.768614 0.409857 1.4414 0.412039

grade 1.454163 0.904621 2.337542 0.122089

stage 1.439642 0.82667 2.507129 0.19794

riskScore 1.026271 1.011035 1.041736 0.000679 1.02934 1.000879 1.058611 0.04324
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of the KRAS Wild/GS-like group was significantly different from

that of the KRAS Wild/GU-like group and KRAS Wild/GU-like

group, and patients in KRAS Wild/GS-like group had better

prognosis (p = 0.01, log-rank test; Figure 9A). For TP53, as shown

in Figure 9B, 73% of TP53 mutations in the high-risk group were

significantly higher than 26% in the low-risk group in the training

set (chi-square test p < 0.001). Similarly, in the TCGA set, the

TP53 mutation in the high-risk group was higher than that in the

low-risk group (high-risk group 66% versus low-risk group 41%,

chi-square test p = 0.004). However, TP53 mutations were only

slightly higher in the high-risk group than that in the low-risk group

in the test set, and there was no significant difference between the

two groups (high-risk group 58% versus low-risk group 54%, chi-

square test p = 0.874). In consequence, we believe that TP53 status

can be predicted according to theGILncSig risk score. Then patients

with TP53 mutation and TP53 wild type were further divided into

TP53 mutation high-risk group (TP53 mutation/GU-like),

TP53 mutation low-risk group (TP53 mutation/GS-like),

TP53 wild high-risk group (TP53 wild/GU-like), and TP53 wild

low-risk group (TP53 wild/GS-like). Survival analysis showed that

patients in the TP53 wild/GS-like group had longer survival than

those in the TP53 wild/GU-like group, and the higher risk scores

were associated with lower survival rates in TP53 wild subgroups

(p = 0.002, log-rank test; Figure 9B). For SMAD4, it has similar

results to KRAS andTP53. The patients in the training set, testing set

and TCGA set were respectively divided into high-risk group and

low-risk group by using GILncSig. In each set, the proportion of

SMAD4 mutation in the high-risk group was significantly higher

than that in the low-risk group (p = 0.228 for the training set; p =

0.028 for the testing set; p = 0.009 for TCGA set; chi-square test;

FIGURE 8
Stratification analysis by age, gender and pathological grade and stage. (A) Kaplan-Meier curve analysis of overall survival in low-/high-risk
groups for age. (B)Kaplan-Meier curve analysis of overall survival in low-/high-risk groups for gender. (C,D,G) Kaplan-Meier curve analysis of overall
survival in low-/high-risk groups based on tumor size, lymph node metastasis and distant metastasis. (E) Kaplan-Meier curve analysis of overall
survival in low-/high-risk groups for the grade. (F) Kaplan-Meier curve analysis of overall survival in low-/high-risk groups for stage.
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Figure 9C). The patients with SMAD4 mutation type and

SMAD4 wild type were further separated into SMAD4 mutation/

GU-like group, SMAD4 mutation/GS-like, SMAD4 wild/GU-like

group and SMAD4 wild/GS-like group. The results of the survival

analysis showed that the overall survival among the groups was

slightly different (p = 0.062, log-rank test; Figure 9C). Therefore, the

above findings suggested that the GILncSig is superior to KRAS,

TP53, and SMAD4 mutation status in prognosis.

Development and validation of a
nomogram for predicting survival in
patients with pancreatic cancer

To improve the clinical application of the GILncSig, we

established a prognostic nomogram model combined with the

risk score, age, gender, pathological grade and stage to predict the

patients’ survival at 1-, 2-, and 3- years in the training set by using

“rms” and “survival” packages in software R (Figure 10A). In

Figure 10B, the C-index of the nomogram of the training set was

0.650, and the AUC values predicted for 1-, 2- and 3-years

survival is 0.806, 0.844, and 0.792, respectively. The C-index was

0.615 in the testing set and the AUCs of ROC for 1-, 2-, and 3-

years survival predictions were 0.653, 0.776, and 0.856,

respectively (Figure 10C). Likewise, the C-index was 0.618 in

the whole TCGA set and the 1-, 2-, and 3-years AUCs were 0.724,

0.814, and 0.83, respectively (Figure 10D). The calibration plots

in (Supplementary Figure 1) exhibited excellent accordance

between the nomogram prediction and the actual values in

terms of the 1-, 2- and 3-years survival rates in the three

datasets. The above results indicated that the prediction

performance of the established nomogram is improved.

FIGURE 9
Relationship between the GILncSig and KRAS, TP53, SMAD4 mutation. The proportion of KRAS (A), TP53 (B), and SMAD4 (C) mutation in the
high- and low-risk group in the training set, the testing set, and the TCGA set. Kaplan–Meier survival curves of overall survival for patients in groups
divided based on KRAS (A), TP53 (B), SMAD4 (C) mutation status and the GILncSig.
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Correlation of risk score with tumor
immune environment characterization

Through the ESTIMATE evaluation method, TumorPurity,

ImmuneScore and StromalScore were calculated. These results

indicated that patients in the low-risk group have lower

TumorPurity and higher ImmuneScore and StromalScore

(Figures 11A–C). To further uncover the correlation between

GILncSig and immune cell infiltration, the analysis showed that

patients in the low-risk group had more T cells CD8, B cells, and

T cells CD4 memory activated, while the Macrophages M0 was at a

low level (Figure 11D). To further explore the influence of GILncSig

on the TIMEof PCwe analyzed the correlation of risk signature with

immune cell infiltration type and level. The results indicated that the

risk signature significantly correlated with infiltrating B cells

(r = −0.38; p = 1.2e − 05), infiltrating CD4+T cells (r = −0.34;

p = 0.00011), infiltrating plasma cells (r = −0.19; p = 0.036),

CD8 T cells (r = -0.35; p = 6.6e −05), macrophages M0 (r =

0.32; p = 0.00023), and macrophages M2 (r = 0.21; p = 0.018;

Figure 11E). Then, the ssGSEA algorithm was used to examine

whether there was a distinction of immune signatures between

groups of low/high risk. The results found that the infiltrating levels

of B cells, CD8+T cells, DCs, Neutrophils, pDCs, Tfh, Th1 cells, and

Th2 cells were remarkably elevated and some immune signatures

(i.e., CCR, checkpoint, inflammation-promoting, IFN response type

II) were significantly activated in the low-risk group Figure 12A,B).

Correlation of risk score with immune
checkpoint blockade key molecules

Six key immune checkpoint inhibitor genes (PDCD1, CD274,

PDCD1LG2, CTLA-4, HAVCR2, and IDO1) were singled out for

further research. We performed the correlation analysis of ICB key

gene expressionwith risk signature to investigate the potential role of

a signature in the ICB therapy of PC (Figure 12C). Correlation

FIGURE 10
Construction and assessment of a nomogram for survival prediction of patients with pancreatic cancer based on risk score, age, gender,
pathological grade and stage. (A) The nomogram was established in a training set for predicting 1-, 2-, and 3-years survival of pancreatic cancer
patients. (B–D) ROC curve analysis for 1-, 2-, and 3-years survival prediction of the nomogram in the training set (B), testing set (C), and TCGA set (D),
respectively.
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analysis results indicated that GILncSig had close relationship with

CD274 (r = −0.18; p = 0.018), CTLA4 (r = -0.32; p = 2e −05),

HAVCR2 (r = -0.29; p = 0.00012), PDCD1 (i = −0.4; p = 8.1e − 08),

and PDCD1LG2 (r = −0.3; p = 6e−05; Figures 12D), indicating

GILncSig might exert a nonnegligible player in ICB treatment

outcome prediction in PC. Further correlation analysis presented

that 32 of 47 (i.e., CD27, IDO2, etc.) immune check

blockade–related gene expression levels were significantly

different between the two risk groups (Figures 13).

Discussion

PC is the most common cause of cancer death worldwide

(Siegel et al., 2020). It is characterized by high morbidity, high

mortality, difficult early diagnosis, and poor prognosis (Sharma

et al., 2011; Peng et al., 2016). Surgical resection is effective for

patients with early PC, while palliative treatment is adopted for

patients with locally advanced, metastatic, and unresectable PC

(Li et al., 2004). In recent years, molecular research on PC has

made great progress, and the survival rate of PC patients has

improved to some extent. However, the prognosis has not been

improved (Feldmann and Maitra, 2008). As metastasis and

recurrence are the main causes of poor prognosis, it is urgent

to identify effective tumor biomarkers to evaluate the prognosis

of patients with PC accurately.

Genomic instability is an important feature of human cancer,

which is associated with poor prognosis, and metastasis

(Bakhoum and Cantley, 2018; Duijf et al., 2019). It has been

reported that genomic instability affects the prognosis of PC, and

FIGURE 11
Correlation of prognostic risk score with TIME characterization (A–C) The correlation of estimate score, immune score, and tumor purity
between these two subtypes. (D) Difference of infiltrating immune cell subpopulations and levels between low-/high-risk groups. (E) Correlation
between tumor immune infiltration and GILncSig.
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the pattern of genomic instability is quite heterogeneous in

metastatic PC (Campbell et al., 2010; Sahin et al., 2016). It is

known that the degree of genomic instability has diagnostic and

prognostic implications, yet measuring genomic instability is a

big challenge. Mettu et al. (2010) constructed a 12-gene signature

to assess genomic instability and predict clinical outcomes in

cancers. Zhang et al.(2014) developed a biological rationale-

driven genomic instability score to predict the prognosis of

ovarian cancer.

LncRNAs have complex biological functions and have

been proved to be closely related to the occurrence and

development of cancers (Gibb et al., 2011; Fatica and

Bozzoni, 2014). Recently, increasingly more researchers pay

attention to the clinical significance of LncRNAs in the

prognosis of cancers. For instance, the high expression of

lncRNA HOX transcript antisense RNA (HOTAIR) in lung

tumor tissues is correlated with metastasis and poor prognosis

in patients with lung cancer (Loewen et al., 2014). The lncRNA

AOC4P induces a poor prognosis in gastric cancer patients

through epithelial-mesenchymal transition (Zhang et al.,

2019). It has been found that lncRNAs play an important

role in maintaining genomic stability through continuous

exploration of the function of lncRNAs (Lee et al., 2016;

Liu, 2016; Hu et al., 2018). Although some efforts have

been made, few kinds of research have been done on GILnc

in cancers. Therefore, there is an urgent need to investigate the

prognostic value of genomic-instability associated lncRNAs in

PC patients.

In our study, we identified 40 genomic instability-associated

lncRNAs by analyzing the lncRNA expression profile and

somatic mutation profile of 171 patients with PC. Then, the

function of these lncRNAs was predicted by the lncRNA-

mRNA co-expression network. The GO and KEGG

enrichment results suggested that the genes co-expressed

with these 206 lncRNAs were enriched at chromosomes and

nucleoplasm in the cellular component, DNA binding in the

molecular function, and the transcription and compound

synthesis and metabolism in the biological process can

promote genomic instability, which leads to cancer

eventually (Barnum and O’Connell, 2014; Friedberg, 2001).

FIGURE 12
Correlation of prognostic risk score with TIME characterization (A) immune-related signature with corresponding immune-related scores in
groups low/high risk. (B) A distinction of enrichment of immune-related signatures between low-/high-risk groups. (C) Association analyses
between immune checkpoint inhibitors and GILncSig. (D) Association between risk model and CD274, CTLA4, HAVCR2, PDCD1, PDCD1LG2.

Frontiers in Genetics frontiersin.org15

Zhu et al. 10.3389/fgene.2022.990661

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.990661


We further divided all patients into the training set and testing

set. Cox proportional risk regression analysis was performed on

the candidate genomic instability-associated lncRNAs in the

training set, and a genomic instability-associated lncRNAs

signature (GILncSig) consisting of 5 lncRNAs with

independent prognostic value (AL121772.1, BX640514.2,

LINC01133, AC087752.3, and LYPLAL1-AS1) was

established to predict the prognosis of PC. The GILncSig can

classify PC patients in the training set into the high-risk group

and low-risk group with significantly different overall survival,

which was verified in the testing set and the whole TCGA set. In

addition, we also found that patients with PC in the high-risk

group had significantly higher somatic mutation counts and

UBQLN4 expression levels, both of which are characteristics of

genomic instability. A comparison of our GILncSig and two

recently reported lncRNA-related signatures with predictive

values for PC in the same TCGA patient set suggested that the

GILncSig has better prognostic ability in predicting survival

than those two lncRNA-related signatures. Our study also

found that the GILncSig was independent of other

clinicopathological factors, including age, gender,

pathological grade, and stage. Furthermore, based on the

GILncSig, the mutation status of KRAS, TP53, and

SMAD4 in the high-risk group were significantly higher than

those in the low-risk group. The survival time of KRAS, TP53,

and SMAD4 wild-type patients in the low-risk group was

significantly longer than that of patients with mutant-type.

The above results indicated that the GILncSig may have

greater prognostic significance than KRAS, TP53 and

SMAD4 mutation states. Finally, a nomogram was

constructed by combining GInLncSig and the four

independent prognostic factors of age, gender, pathological

grade, and stage in the training set, which further improved

the predictive performance, and was verified on the testing set

and the entire TCGA set.

What’s more, numerous researches focusing on TIME have

revealed the potential key role of lncRNAs in infiltrating immune

cells. In this study, we find that GILncSig was significantly

correlated with immune cell infiltration, ESTIMATE results

showed that GILncSig was positive with tumor purity but

negatively correlated with estimate score and immune score,

suggesting GILncSig could serve as a novel immune indicator in

PC. Besides, ssGSEA results indicated that in the low-risk group

the infiltrating immune cells were significantly increased and

immune signatures were remarkably activated. The immune-

activated condition in the low-risk group was associated with

high ICB-relevant gene expression, suggesting samples with

high-risk scores might respond to immunotherapy. What’s

more, the correlation analysis between ICB-related genes and

GILncSig indicated that our signature may possess the ability to

predict the clinical outcome of ICB therapy in PC.

Although the GILncSig identified here is reliable and

promising as a prognostic signature in the tumor immune

microenvironment of PC, there are still several limitations. In

addition to validation in the TCGA dataset, the GILncSig

requires more independent datasets to verify. Meanwhile, it is

necessary to further explore the regulatory mechanism of

GILncSig in biological function to maintain genomic instability.

FIGURE 13
Comparison of 32 immune checkpoint blockade–related gene expression levels in low-/high-risk groups.
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Conclusion

In summary, we have performed RNA-seq prognostic

analysis in PC patients by bioinformatics methods to develop

a genomic instability-derived lncRNA signature to predict the

prognosis of PC patients and successfully validated it on the

independent cohort. Moreover, we integrated GInLncSig with

age, gender, pathological grade and stage to construct a

nomogram to improve its prediction performance. Further

results unraveled that GILncSig was significantly correlated

with immune cell infiltration and has important significance

for genomic instability and ICB treatment of PC.
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