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Abstract: Cisplatin (Cis-diamminedichloroplatinum II, CP) is an important chemotherapeutic 

agent, useful in the treatment of several cancers, but with several side effects such as 

nephrotoxicity. The present study investigated the possible protective effect of selenium (Se) 

against CP-induced oxidative stress in the rat kidneys. Male Wistar albino rats were 

injected with a single dose of cisplatin (7 mg CP/kg b.m., i.p.) and selenium (6 mg Se/kg 

b.m, as Na2SeO3, i.p.), alone or in combination. The obtained results showed that CP 

increased lipid peroxidation (LPO) and decreased reduced glutathione (GSH) 

concentrations, suggesting the CP-induced oxidative stress, while Se treatment reversed 

this change to control values. Acute intoxication of rats with CP was followed by 

statistically significant decreased activity of antioxidant defense enzymes: superoxide 

dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase 

(GR) and glutathione-S-transferase (GST). Treatment with Se reversed CP-induced 

alterations of antioxidant defense enzyme activities and significantly prevented the  

CP-induced kidney damage. 
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1. Introduction 

Cisplatin (cis-diammine-dichloroplatinum II, CP) has been considered one of the most effective 

chemotherapeutic agents, utilized for treatment of a variety of human solid tumors. Activity has been 

demonstrated against a variety of tumors, particularly of head and neck, ovarian, testicular, esophageal, 

bladder and small cell lung cancers [1]. The clinical use of CP is often limited due to its undesirable 

side effects, nephrotoxicity and neurotoxicity being the most severe and dose-limiting ones [2].  

CP-induced kidney damage is associated with increased kidney vascular resistance and histological 

damage to proximal tubular cells [1,3,4]. The cytotoxicity of CP is considered to be due to a 

combination of factors, including peroxidation of the cell membrane, mitochondrial dysfunction, 

inhibition of protein synthesis, and DNA injury [3,5,6]. The most common adverse effect limiting the 

use of CP is nephrotoxicity that develops primarily in the S3 segment of the proximal tubule [7]. 

Although reactive oxygen species (ROS) have been considered to play a central role in this injury, the 

exact roles of free radicals and the mechanisms underlying the beneficial effects of free radical 

scavengers have not been fully evaluated [1–3,8,9]. 

The pathogenesis of kidney damage caused by CP is generally considered oxidative damage [1,2]. 

Administration of CP causes an increase in lipid peroxide levels and a decrease in the activity of 

antioxidant defense enzymes that prevent or protect from lipid peroxidation in the tissues. Cisplatin 

accumulates in the tubular epithelial cells of proximal kidney tubule, causing nephrotoxicity, 

characterized by morphological destruction of intracellular organelles, cellular necrosis, loss of 

microvilli, alterations in the number and size of the lysosomes and mitochondrial vacuolization, 

followed by functional alterations including inhibition of protein synthesis, GSH depletion, lipid 

peroxidation and mitochondrial damage [1,2,4,8–10].  

Recent studies have focused on the role of antoxidants in CP toxicity. The administration of 

antioxidants and other agents have been shown to ameliorate CP-induced toxicity in various species of 

animals [7,11–18].  

Selenium (Se) is an essential trace element which plays an important role in a number of biological 

processes in humans and many other forms of life. Many experimental studies of animals have 

demonstrated that the deficiency of Se induces some pathological conditions (coronary heart disease, 

liver necrosis) and is an important risk factor in the etiologies of these diseases [19–23]. Biological and 

medical advances in the area of Se provide interest in Se for both its antioxidant properties through 

seleno-enzyme incorporation and its direct pro-oxidant toxic effect through seleno-compounds [21,22]. 

Se is an essential component of several enzymes such as glutathione peroxidase (GSH-Px), thioredoxin 

reductase (TR) and selenoprotein P (SeP), which contains Se as selenocysteine. It is also well known 

that Se is essential for cell culture when a serum-free medium is used [21–25].  

Recent studies showed protective effects of Se against cadmium (Cd)-induced oxidative  

stress [26,27]. It has also been demonstrated that the chronic exposure to low levels of Cd and other 

toxic elements abolishes the cancer-protective effect of Se. An important property of Se is its 
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interaction with other elements that may be present in food, water, at the workplace and in the 

environment. Se functions as an antagonist to the toxicity of metals such as Hg, Cd, As, Ag, Pb and  

Cu [28,29]. The arsenic-, platinum- and gold-containing drugs significantly influence the fate of 

exogenous Se, whereby they may adversely affect the availability of this element, essential for 

synthesis of selenoenzymes [30].  

The aim of the present study was to investigate a protective effect of Se pretreatment on lipid 

peroxidation (LPO) and reduced glutathione (GSH) concentrations and activity of antioxidant defense 

enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione 

reductase (GR), as well as glutathione-S-transferase (GST) in the kidney of rats, acutely treated  

with CP. 

2. Experimental Methods 

2.1. Chemicals 

Cisplatin (cis-dichlorodiammine-platinum II, CP) and sodium selenite (Na2SeO3) were purchased 

from Merck Chemical Inc. (Darmstandt, Germany). Nicotinamide adenine dinucleotide phosphate 

(reduced form; NADPH); reduced (GSH) and oxidized (GSSG) glutathione; 1-chloro-2,4-dinitrobenzene 

(CDNB); tert-butyl hydroperoxide (t BOOH); glutathione reductase; DTNB (5,5′-dithio-bis-2-

nitrobenzoic acid) and bovine serum albumin were purchased from Sigma Chemical Co. (St. Louis, 

MO, U.S.A). All other chemicals and reagents were of the highest commercially available purity. 

2.2. Animals and Treatments 

Male Wistar albino rats (about 3 months old, weighing 210–250 g) were used. The animals were 

kept under standard laboratory conditions (12 h light, 12 h dark and 21 ± 2 °C). All rats were housed in 

individual cages and given standard diet and tap water ad libitum. The University Committee of the 

Ethics of Animal Experimentation approved all animal experiments. The animals were divided into 

four groups (n = 6 per group) and treated as follows:  

Group 1: Control rats, treated intraperitoneally (i.p.) with isotonic saline. 

Group 2: Cisplatin (CP) (received i.p. a single dose of 7 mg CP/kg b.w.). 

Group 3: Selenium (Se) (received a single i.p. injection of Na2SeO3 in the dose of 6 mg Se/kg b.w.). 

Group 4: Se + CP (treated by Se 1 h before CP injection in the above mentioned amounts).  

After the treatment (3 days after CP injection) all animals were sacrificed by decapitation. The 

kidney tissues were quickly excised, rinsed in ice-cold saline and used immediately or stored frozen at 

−80 C until further biochemical analysis.  

2.3. Tissue Preparation 

The kidney tissues were minced and homogenized with a Thomas Sci Co. glass homogenizer 

(Teflon pestle) at 0–4 C (10% w/v) using 0.25 M sucrose, 1 mM EDTA and 0.05 M Tris-HCl solution 

and pH 7.4. The homogenates were centrifuged (90 min at 10,000× g, 4 C) and the supernatant was 

used for antioxidant defense enzyme activity assays and for total protein determination. 
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2.4. Biochemical Analysis 

2.4.1. Lipid Peroxidation Assay 

Lipid peroxidation (LPO) was evaluated by measuring the MDA concentration. The tissues 

homogenates (using 1.15% KCl) were precipitated with trichloracetic acid. After centrifugation  

(1500× g, 15 min), the supernatant was mixed with TBA reagent (0.6%) and the mixture was kept at 

100 C for 1 h. The fluorescent reaction product was extracted with n-butanol and the fluorescence 

was measured in the organic phase, using a fluorescence spectrophotometer (excitation: 535 nm and 

emission: 555 nm) [31]. These results were expressed in nmol MDA/g tissue using a molar extinction 

coefficient for MDA of 1.56 × 105 M−1·cm−1. 

2.4.2. Determination of Antioxidant Enzyme Activity  

Superoxide dismutase (SOD, EC 1.15.1.1) activity was assayed in the supernatant by the 

epinephrine method [32]. The method is based on the measurement of the rate of epinephrine  

auto-oxidation inhibition by SOD contained in the examined samples in 50 mM sodium carbonate 

buffer pH 10.2, within the linear range of auto-oxidative curve. SOD activity was expressed as 

units/mg protein.  

Catalase (CAT, EC 1.11.1.6) activity was measured by the method of Beutler [33]. The method is 

based on the rate of H2O2 degradation by the action of CAT contained in the examined samples and 

followed spectrophotometrically at 230 nm in 5 mM EDTA, 1 M Tris-HCl solution, pH 8.0. The 

enzyme activity was expressed in μmol H2O2 min/mg protein. 

The activity of glutathione peroxidase (GSH-Px, EC 1.11.1.9) was determined using t-butyl 

hydroperoxide as a substrate by the method of Tamura et al. [34] and the activity was expressed as 

nmol NADPH oxidized/min/mg protein.  

Glutathione reductase (GR, EC 1.6.4.2) activity was assayed by the method of Glatzle et al. [35]  

by measuring NADPH oxidation in the presence of oxidized glutathione and the activity was expressed 

as nmol NADPH oxidized/min/mg protein.  

For determination of glutathione-S-transferase (GST, EC 2.5.1.18) activity, 1-chloro-2,4-dinitro 

benzene (CDNB) was used as a substrate [36] and the activity was expressed as nmol GSH used 

min/mg protein.  

2.4.3. Reduced Glutathione (GSH) Assay 

The concentration of reduced glutathione (GSH) was measured by the method of Beutler [37]. 

Tissue samples for GSH assay were homogenized on ice with 20 volumes of precipitating solution  

(1.5 mL 100 mmol/L Na-phosphate/5 mmol/L EDTA buffer, pH 8.0 and 0.4 mL 25% metaphosphoric 

acid) and then centrifuged at 10,000 g for 30 min at 4 °C. The reaction mixture contained  

0.5 mL of supernatant, 0.75 mL of Na-phosphate puffer (0.2 M, pH 7.4), 0.1 mL DTNB  

(5,5′-dithio-bis-2-nitrobenzoic acid) and 0.04 mL NaOH. The solution was kept at room temperature 

for 15 min and then read at 412 nm on a spectrophotometer. The concentration of GSH was expressed 

in μmol GSH/g protein.  



Int. J. Mol. Sci. 2012, 13            

 

 

1794

 

2.4.4. Protein Concentration Assay 

The concentration of total proteins was determined by the biuret method [38] using Folin’s reagent 

and bovine serum albumin (BSA) as standard.  

2.5. Statistical Analysis 

All data are presented as means ± SD. Statistical significance of the results was evaluated by using 

one-way ANOVA (analysis of variance) test and post-comparison was carried out with Student’s t-test. 

A probability value less than 0.05 (p < 0.05) was considered statistically significant. 

3. Results  

The data presented in Tablе 1 show significant changes in the concentrations of LPO and GSH 

during the treatment of rats with CP and Se alone or in combination. The results showed that LPO 

concentration significantly increased in kidneys of rats treated with CP (by about 27%) (p < 0.05) in 

comparison to control. Pretreatment with Se was very effective in the prevention of oxidative damage 

induced by CP, which resulted in significantly lower LPO concentration. Alone Se treatment had 

showed no significant effect. Exposure to CP caused significant decrease of GSH concentration by 

25.6% (p < 0.05) in kidney of rats, while Se treatment reversed this change to control values. No 

significant change in GSH was found in rats treated with Se + CP and Se only in comparison with 

control group. 

Table 1. Effect of Se treatment on LPO and GSH concentrations in kidneys of CP-treated rats. 

Parameters 
Experimental groups 

Control CP Se Se + CP 
LPO (nmol MDA/g tissue) 21.5 ± 2.8 27.3 ± 3.4 * 18.6 ± 1.5 # 23.7 ± 2.3 # 

GSH (μmol/g protein) 28.9 ± 3.8 21.5 ± 3.1 * 26.7 ± 2.7 # 24.7 ± 2.7 # 
Values are expressed as means ± SD; n = 6 for each treatment group; CP: Cisplatin; Se: selenium; 
LPO: lipid peroxidation; GSH: reduced glutathione; * p < 0.05 compared with control group,  
# p < 0.05 compared with CP group. 

Acute intoxication of rats with CP was followed by statistically significant decreased activities of 

all examined antioxidant defense enzymes (SOD, CAT, GSH-Px, GR and GST), (Figures 1–5). As 

represented in Figures 1 and 2, the exposure to CP caused the decrease of SOD and CAT activities (by 

about 37%) (p < 0.05) in kidney. In rats receiving Se only, and in rats pretreated with Se, the activities 

of SOD and CAT in kidney were similar to control values, but significantly increased (by about 21% 

and 26%) (p < 0.05) in comparison to the animals which received CP only.  
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Figure 1. Effect of Se treatment on superoxide dismutase (SOD) activity in kidney of  

CP-treated rats. Values are expressed as means ± SD; n = 6 for each treatment group;  

CP: Cisplatin; Se: selenium; * p < 0.05 compared with control group, # p < 0.05 compared 

with CP group. 

 

Figure 2. Effect of Se treatment on catalase (CAT) activity in kidney of CP-treated rats. 

Values are expressed as means ± SD; n = 6 for each treatment group; CP: Cisplatin;  

Se: selenium; * p < 0.05 compared with control group, # p < 0.05 compared with CP group. 

 

Figure 3. Effect of Se treatment on glutathione peroxidase (GSH-Px) activity in kidney of 

CP-treated rats. Values are expressed as means ± SD; n = 6 for each treatment group;  

CP :Cisplatin; Se: selenium; * p < 0.05 compared with control group, # p < 0.05 compared 

with CP group. 
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Figure 4. Effect of Se treatment on glutathione reductase (GR) activity in kidney of  

CP-treated rats. Values are expressed as means ± SD; n = 6 for each treatment group;  

CP: Cisplatin; Se: selenium; * p < 0.05 compared with control group, # p < 0.05 compared 

with CP group. 

 

Figure 5. Effect of Se treatment on glutathione-S-transferase (GST) activity in kidney of 

CP-treated rats. Values are expressed as means ± SD; n = 6 for each treatment group;  

CP: Cisplatin; Se: selenium; * p < 0.05 compared with control group, # p < 0.05 compared 

with CP group. 

 

The exposure to CP caused a significant decrease of GSH-Px (by 32.1%), GR (by 23.2%) and GST 

(by 36.8%) activities in comparison to control group (p < 0.05), (Figures 3–5). The protective role of 

Se in acute CP intoxication resulted in increased activities of GSH-Px (by about 25%) (Figure 3), GR 

(by about 15%) (Figure 4) and GST (by about 31%) (Figure 5) when compared to the animals given 

CP alone. The presence of the antioxidants minimized the toxic effects of CP on the affected enzymes. 

Treatment with Se alone significantly increased GSH-Px activity in kidney in comparison to the 

control (by about 16%) and CP-treated groups (by about 48%). Administration of Se alone and/or in 

combination with CP did not cause significant changes in activity of GR and GST enzymes in 

comparison with control group. 

4. Discussion  

Cisplatin (CP), a heavy metal complex is one of the most active drugs used in the treatment of a 

variety of cancers. However, the clinical usefulness of this drug is limited due to the development of 
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nephrotoxicity as a side effect that may be produced in various animal models [2,16,18]. The treatment 

of tumor cells with CP provokes several responses including membrane peroxidation, dysfunction of 

mitochondria, inhibition of protein synthesis and DNA damage [1,4–6,8–10]. The current study 

demonstrates that Se provides protection against CP-induced nephrotoxicity in rats. 

The data obtained in our study confirm that acute intoxication with CP causes a significant increase 

of LPO concentration in the kidney of rats (Table 1). CP-induced free radical production and LPO in 

tubular cells have been suggested to be responsible for the oxidative renal damage [1,3,8,14,39]. CP 

affects renal tissues where generated free radicals can interact with membrane lipids to produce their 

peroxidation, affecting cellular structure and function [2,17,18]. Kim et al. [12] observed that CP could 

promote the increase in lipid peroxidation in vitro. Pretreatment with Se was very effective in the 

prevention of oxidative damage induced by CP, which resulted in significantly lower LPO 

concentration in kidney. These results can be explained by the important role of Se in preventing lipid 

peroxidation and in protection of integrity and functioning of tissues and cells [13,20–23,26].  

Therapeutic effects of CP are based on the interaction with DNA in the cell, preventing 

proliferation, and inducing apoptosis in tumor cells. It was also observed that CP treatment increased 

BUN (blood urea nitrogen) and creatinine levels. A marked increase in BUN and creatinine in serum 

and histopathological changes including vacuolation, necrosis, and protein casts were observed in 

proximal renal tubules on the second day after CP injection in rats [3,5,6,39]. Mukhopadhyay et al. [40] 

observed that cisplatin-induced mitochondrial ROS generation triggered inflammatory response, cell 

death, and kidney dysfunction/nephropathy. Cisplatin initially triggers oxidative stress in the 

mitochondria of kidney proximal tubular and endothelial cells, which is followed by a secondary wave 

of ROS/RNS (reactive nitrogen species) generation, deterioration of mitochondrial structure and 

function, an intense inflammatory response, histopathological injury and diminished renal function. 

Inflammation may further amplify oxidative/nitrative stress, and these interrelated processes 

eventually culminate in more concerted renal tubular and endothelial cell demise (both apoptotic and 

necrotic), secondary hypoxia, kidney dysfunction, and failure [40]. A single systemic dose of 

mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently, prevented cisplatin-

induced renal dysfunction. Mito-CP also prevented mitochondrial injury and dysfunction, renal 

inflammation, and tubular injury and apoptosis [40]. Recent studies showed protective effects of 

CoQ10 and Vit E against Cd-induced oxidative stress [41].  

A large number of natural products and dietary components have been evaluated as potential 

chemoprotective agents. Many experimental studies in animals have demonstrated the ability of Se to 

prevent carcinogenesis [23]. Supplementation of the antioxidant vitamin C, E, curcumin, Se and other 

dietary components has been reported to inhibit lipid peroxide in various conditions such as  

CP-induced nephrotoxicity and hepatotoxicity [12–18,39].  

In various studies that investigated the role of oxidant stress in the kidney, lipid peroxides are 

reported to be increased [13,14,16,18,39]. Enzymatic and non enzymatic antioxidant defense systems 

are present in the cell to prevent the integrity of biological membranes from oxidative processes 

caused by free radicals [42,43].  

The kidney antioxidant defense system, such as SOD, CAT, GSH-Px, GR, GST activities  

(Figures 1–5), and reduced GSH concentration (Table 1) significantly decreased in the CP alone 

treated group of animals compared to the control. CP generates ROS such as superoxide anion (O2
−) 
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and hidroxil radicals (OH), and stimulates kidney lipid peroxidation [1,8,15,39,40]. It is accepted that 

both correlate to oxidative stress and cause the imbalance between the generation of oxygen derived 

radicals and the organism’s antioxidant potential [42,43]. CP-induced suppression of kidney antioxidant 

defense enzyme activity was also supported by the recently published experimental results [9,13,14].  

The decrease in SOD activity (Figure 1) after CP administration might be due to the loss of copper 

and zinc which are essential for the activity of enzyme or to ROS induced inactivation of enzyme 

proteins [13,18,39]. CP has been demonstrated to induce the loss of copper and zinc in the kidneys. 

The decreased SOD activity is insufficient to scavenge the superoxoide anion, produced during the 

normal metabolic process [42,43]. The activities of CAT and GSH-Px (Figures 2 and 3) were also 

found to decrease after CP administration, resulting in the decreased ability of the kidney to scavenge 

toxic hydrogen peroxide (H2O2) and lipid peroxides. CP administration resulted in a decline of GSH 

concentration (Table 1) and a decrease of GR and GST activities (Figures 4 and 5) in the rat kidney. 

The results from the present study indicate that Se significantly reduces the depletion of GSH 

concentration and antioxidant defense enzyme activity in the kidney of rat treated with CP. The 

protective effects of Se seem to be primarily associated with its presence in the GSH-Px, which is 

known to protect DNA and other cellular components from damage by ROS. Selenoenzymes are also 

known to play roles in carcinogen metabolism, in the control of cell division, oxygen metabolism, 

detoxification processes, apoptosis induction, and the functioning of the immune system [19–21,24,25]. 

GSH is necessary for resistance to oxidative stress through detoxification of ROS. It can also 

detoxify many endogenous toxins, including CP, through the formation of GSH adducts [7,17,44,45]. 

In addition, the GSH redox cycle, which includes GSH, GSH-Px and GR, plays an important role in 

the detoxification of ROS that are generated by CP, so as to protect cells from the potential toxicity 

and carcinogenesis [17,18,44,46]. The primary symptoms of cisplatin nephrotoxicity are inhibition of 

protein synthesis and intracellular GSH and protein-SH depletion, resulting in lipid peroxidation and 

mitochondrial damage [2,10,44,45]. GSH and protein-SH form the major cellular antioxidant defense 

systems, which control lipid peroxidation. The reduced renal GSH can markedly increase the toxicity 

of CP. The depletion of GSH also seems to be a prime factor that permits lipid peroxidation in the  

CP-treated group. The treatment with Se was very effective in the prevention of oxidative damage 

induced by CP, which resulted in significantly increased GSH concentration [47]. Experimental studies 

demonstrated that exogenous GSH could offer protection against CP-induced renal injury. Thiols, such 

as the sulfur of GSH, bind to the platinum molecule, replacing one of the chloride ions, thus preventing 

binding to other cellular nucleophiles [45]. The increased intracellular GSH concentration correlated 

with decreased platinum-DNA binding in freshly isolated peripheral blood mononuclear cells [6]. 

Studies of tumor cell lines have shown a correlation between the increased levels of intracellular GSH 

and the resistance to CP [44,45].  

GSH-Px, in particular, is highly dependent on GSH concentration. GSH-Px metabolizes H2O2 to 

water by using GSH as a hydrogen donor, resulting in the formation of GSSG [46,48]. GR subsequently 

regenerates GSH from GSSG. The decrease in the GSH-Px activity may result in the involvement of 

deleterious oxidative changes due to the accumulation of toxic products. The Se-containing enzyme 

GSH-Px protects cells against ROS. This result indicates that the increase in MDA in the kidney of rats 

treated with CP may be related to the decrease in the activity of GSH-Px. In this study, administration 

of Se exhibits GSH-Px-like activity, which prevented the decrease of GSH-Px activity in the kidney. 
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Yoshida et al. [49] and Naziroğlu et al. [13] showed that the reduction of GSH-Px activity in the 

kidney tissue of rats treated with CP alone was prevented by co-treatment with Se.  

The GST enzyme has an important role in detoxification of xenobiotics, drugs, and carcinogens, 

thus protecting the cells against redox cycling and oxidative stress. The decrease in the GST activity or 

–SH group could explain the induction of free radicals in CP-treated rats [16]. GST is a family of 

enzymes that catalyzes the conjugation of GSH to a variety of substrates. Several isoforms of GST 

have been shown to bind CP in vivo [44,50]. In the studies where increased resistance to CP was 

observed, none determined whether the inactivation of CP was due to GST binding to the CP, or 

catalyzing its conjugation to GSH. The previous studies show that after incubation of blood platelets 

with CP, the amount of GSH decreased and the complex of cisplatin with GSH (GS-cisPt) was formed 

(via reaction catalysed by GST) [50,51]. Feinfeld et al. [52] and Badary et al. [16] showed that the rats 

given a single toxic dose of CP excreted detectable GST activity in their urine, thus suggesting that 

urinary GST activity was a marker for a CP-induced proximal tubular damage.  

The treatment with Se reversed the CP induced alterations of all examined parameters in rat kidney. 

The results indicate that Se significantly reduced the depletion of GSH concentration and antioxidant 

defense enzyme activity in the kidney of rats treated with CP, thus providing protection to the kidney. 

The protective effect of Se against CP-induced oxidative stress in this study could also be either direct, 

by inhibiting lipid peroxidation and scavenging free radicals [13,47], or indirect, through the 

enhancement of the activity of antioxidant defense enzymes including SOD, CAT and GSH-Px [9].  

Se can reduce the nephrotoxicity and hepatotoxicity of CP without reducing the antitumor activity 

of the drug [13,20]. The protection correlates with higher levels of Se in the kidney and with higher 

concentration of GSH in the kidney, both compared to tumors. Se is known to protect GSH by forming 

the selenodiglutathione complex [24]. It is known that substitution reactions with biologic nucleophiles 

appear to govern the antitumor and toxic properties of platinum complexes [53]. Selenite is 

metabolized into selenols, specifically into methylselenol and glutathionylselenol, while bioactivation 

of selenite into selenols is a GSH-dependent process. HPLC with on line radioactivity detection of 
195mPt showed that methylselenol (HSe-CH3) was capable of forming a complex with CP in vitro.  
1H-NMR gave evidence that the complex contained one or more Pt–Se–CH3 bonds. It is proposed that 

the formation of a CP-selenol complex also takes place in vivo, especially in the kidney, thereby 

preventing CP to exert its nephrotoxic activity [23,47]. The biological roles ascribed to Se include the 

prevention of cancer [19,54,55], cardiovascular disease and viral mutation [20–26,56].  

5. Conclusions  

In conclusion, we have shown that CP-induced nephrotoxicity is closely associated with the 

increase of lipid peroxidation in the kidney tissues. Treatment with CP causes significant changes in 

the activity of antioxidant defense enzymes (SOD, CAT, GSH-Px, GR and GST) and GSH 

concentration. The results of our study suggested that the treatment with Se reversed CP-induced lipid 

peroxidation and alterations in antioxidant defense system, and significantly prevented CP-induced 

kidneys damage. Our results showed that the nutritional antioxidant Se ameliorated oxidative stress 

and loss of cellular antioxidants and suggested that Se efficiently protected kidneys from CP-induced 

oxidative damage.  
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