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Introduction
Do commonly utilized methods to process raw data from the 
high-throughput genomic platforms differ much from each 
other? Does it matter which methods are utilized to pro-
cess the data? Repositories of information, such as the Gene 
Expression Omnibus, cBioPortal, and The Cancer Genome 
Atlas (TCGA), contain hundreds of platforms and thousands 
of patient samples.1–3 These platforms include measurement of 
gene expression, copy number variation, protein expression, 
and posttranslational modification. All of this information 
is available to users in levels of data, where, for most users, 
only the processed data are available. Some workflow options 
are ready-to-go: the data available are preprocessed, such as 
Affymetrix HU133 Plus 2.0 data, RNA-Seq data, methyla-
tion data, and many other data types in TCGA. Alternatively, 
many analysts prefer to start with raw data and apply a cus-
tomized workflow consisting of their preferred sequence of 
processing steps. Workflow options include ready-to-go work-
flows, custom workflows, individual processing steps, or tun-
ing parameters in a particular step. Any change in a workflow 
step or a parameter setting constitutes a new workflow option. 
To what extent do these choices affect the final data set to be 
analyzed? If the data sets differ substantially, will they differ 

in quality? If so, how can we tell which is best? Finally, will 
soundness of the scientific conclusions be harmed by sub-
optimal workflow choices and improved by better choices? 
Surprisingly, these questions are scarce in bioinformatics lit-
erature. Aside from the obvious benefit that the quality of 
analyses could be improved, there is the issue of comparing 
results from different studies. When two investigations report 
on comparable data sets, a third party may wish to compare or 
contrast the results, for example, for scientific validation. The 
choice of different workflows in the two studies generates a 
potential confounder in comparing them. Greater consensus 
on workflow choices would help alleviate this problem.

An example of a data setting burdened by a poor under-
standing of workflow option choices is the Affymetrix 
microarray. Affymetrix expression data are publicly avail-
able for more than 35,000 data sets, and is an immensely 
valuable resource for almost every type of cancer research.1 
However, there is no de facto standard of determining the 
gene expression values from raw data. Many processing and 
normalization options can yield values of gene expression 
on about 18,000  gene products from an ambiguous set of 
54,675 probesets. A critical step in an Affymetrix workflow 
is to remove or filter poor quality probesets. This process 
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of removing bad measurement points has been defined 
previously as identifier filtering.4

Identifier filtering applied to Affymetrix chips presents 
an opportunity to evaluate workflow options concisely. We 
previously performed a comparison, not an evaluation, of iden-
tifier filtering. In identifier filtering, the user removes features 
(ie, probesets) judged to do a poor job, reflecting expression 
of their intended gene products. Table 1 outlines the imple-
mentation methods of identifier filtering tested here, includ-
ing PLANdbAffy (PD), Jetset (J), AffyTag (AT), AffyGrade 
(AG), Masker (M), EnCode (E), and three methods derived 
from GeneAnnot (Geneannot specificity (GSPE), Geneannot 
sensitivity (GSEN), Geneannot quality (GQ )).5–9 Table 1 also 
provides the abbreviations used in this article for each of the 
nine filtering strategies. These methods apply diverse criteria 
that consider nucleotide complementarity, probe design, and 
cross-hybridization of probe to off-target gene product.

This article presents a comprehensive evaluation of 
workflows consisting of probeset identifier filtering meth-
ods and their combinations. The methodology is previ-
ously published,10 and this article is an application of the 
methodology to an important problem in bioinformatics 
practice. As a test-bed for this evaluation, it uses tran-
script expression data paired with protein expression data. 
However, the goal of this work is not specifically to guide 
analysis of paired data sets, but rather, a much broader 

goal, to provide guidance for feature filtering in transcript 
expression experiments.

Prior research by our laboratory group has documented 
disagreements among resources that map between identifiers 
for probesets and identifiers for proteins.4 This previous work 
was implemented using a Bioconductor11 package, IdMap-
pingAnalysis.12 We showed that the quality of the mappers 
could be compared based on real biological data.4 Subsequent 
methodological work created a more general decision-theory-
based approach and demonstrated how other workflow ele-
ments besides identifier mappers, including filtering methods 
and threshold choices, can also be evaluated.10

For a variety of reasons, previous investigators have exam-
ined correlations between data from pairs of expression plat-
forms, for example, relating RNA-Seq to oligonucleotide data 
and relating oligonucleotide data to protein expression data.13–16 
A natural assumption is that greater transcript expression will 
lead to greater protein expression. There are, however, biologi-
cal reasons that a particular mRNA species might have weak 
or no correlation with the expression of the correctly mapped 
protein.10,15–19 The evaluation method applied here takes this 
into account, which is described below.

Methods
For reference, an overview of the methodology is shown  
in Figure 1.

Table 1. Identifier filtering methods and the scores utilized for filtering.

Filter Method  
Symbol

Description Developer Criteria Identifier Filtering

AT 8,27 Affytag–Pre-2004 Affymetrix  
annotation for the Affymetrix  
HGU133 Plus 2.0 array

Original annotation determined by  
mapping to UniGene and Locus Link.  
“_at is considered unique.

Filter al annotation tags that begin  
with “_[agirxsf]_at”

AG8,27 Affy Grade–Netaffx Transcript  
Assignment Pipeline

“A” grade is the highest grade where  
$9 probes match transcript sequence.

Filter grades not equal to A.

M28 Masker–National Cancer Institute  
alternative chip definition file (CDF)  
masking out probesets with poor  
target location

A CDF file which eliminates a probe  
when more than 2 nucleotides to not  
match the target as well as nonspecific  
probes

Filter any probeset that has no  
remaining probes on the mask

GSEN9 GeneAnnot Sensitivity The fraction of the probes in a probeset  
that match Watson-Crick nucleotide  
base pairs in the nominal gene

Filter probesets with Geneannot 
Sensitivity ,90%

GSPE9 GeneAnnot Specificity Sum over the number of matching  
probes with lower weight to  
non-specific probes

Filter probesets with Geneannot  
Specificity #50%

GQ9 Geneannot Quality Score A pipeline which confirms the probeset  
annotation with GeneCard data.

GQ = 1 is confirmed entirely with GeneCard  
data; Filter probesets with a GQ = [2–6]

E29 Encode–Encyclopedia of DNA  
elements

Protein coding genes are determined  
by human curation, RNA sequence  
and comparative genomics

Filter all probesets that map to a  
non-“Protein coding” target

PD7 PlandbAffy database BLAT of target to the probe and  
evaluation of nucleotide mismatch  
or exon location

Filter all probesets with a proportion of  
“good” probes ,30%

J6 Jetset Bioconductor package Determines features such as  
robustness of the probe, coverage,  
as well as nucleotide alignment with  
the reference genome

Filter all except the highest-scoring  
probeset among those annotated for  
target gene
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Data description. Two cancer data sets were utilized as 
test-beds for this evaluation of filter methods. The first is a 
data set of 91 endometrial cancer samples and 7 normal endo-
metrium samples, studied with tandem mass spectrometry 
proteomic data and Affymetrix U133 2.0 Plus expression data 
from the Gynecologic Cancer Center of Excellence (GYN-
COE).4 The second is a data set of 401 ovarian serous cys-
tadenocarcinoma samples with protein assay (reverse phase 
protein array (RPPA)) and Affymetrix U133A mRNA data 
from TCGA.20,21 These data sets differ substantially in sam-
ple size, number of features, and platforms. Proteomic and 
mRNA feature identifiers are paired across platforms using the 
IdMappingRetrieval bioconductor package.11,22 The ENvision 
mapping was selected based on the results from our previously 
published evaluation of identifier mapping resources.4,23

The endometrial cancer biomarker studies were per-
formed by the GYN-COE.4,24,25 The tissue samples were sub-
jected to trypsin digest at the University of Pittsburgh. Tryptic 
peptide digests were separately analyzed in duplicate by Liq-
uid chromatography-tandem mass spectrometry (LC-MS/
MS) with an Linear Ion Trap - Fourier Transform (LTQ-FT) 
(ThermoFisher Scientific) and an Linear Ion Trap - Orbitrap 
(LTQ-Orbitrap) (ThermoFisher Scientific) mass spectrom-
eter. The combined analyses yielded 12,288 distinct protein 

UniProt accessions across all samples and both instruments. 
The gene expression data were performed on the Affymetrix 
U133 2.0 Plus Array. For complete details of the microarray 
and proteomic studies, see Day et al.4

For the second test-bed, we turned to TCGA. TCGA has 
multiple levels of genomic, transcriptomic, somatic mutation, 
and protein expression data for many types of cancer data. The 
ovarian serous cystadenocarcinoma sample data set is especially 
useful here. The ovarian cancer data has 401 samples with various 
types of genomic, transcriptomic, and proteomic data. The data 
utilized here come from two platforms: the U133 A Affyme-
trix Array, with 22,277 probesets, and the RPPA studies on 68 
proteins performed by MD Anderson Cancer Center.2,20,26 The 
proteins selected for the RPPA studies were chosen for their 
cancer relevance. Using the IdMappingRetrieval Bioconductor 
package,22 we obtained 151 probeset-to-protein pairs.

Filtering methods and strategies to be evaluated. 
Nine filtering methods were evaluated and compared, and 
they are listed in Table  1. AT removes probesets for which 
the Affymetrix identifier (ID) contains a qualifier, that is, the 
ID ends in “_[agirxsf]_at,” reflecting original doubts con-
cerning the correct and unique hybridization of the probes in 
each probeset, as documented by Affymetrix when the array 
was designed.8,27 Although the identifier tags were initially 

Identifier
map 

Set of all identifier pairs p

Protein
identifiers

and
expression

values 

mRNA
Identifiers

and
expression

values 

For each pair p, calculate
MQ(p) = correlation across samples

Fit mixture model for the MQ values:
Mixture of “+” group and “0 or −” group

For each
filtering method M,

create its subset of pairs
S(M)

User specifies:
LFP = loss from including

a false positive
UTP = gain from including

a true positive

For each M,
estimate P+M = probability that
 p ∈ “+” group given  p ∈S(M)

For each M,
calculate expected utility (EU)

across S(M)

For each pair p, calculate
π+p = probability that p ∈ “+” group∗

Figure 1. Identifier filtering evaluation flowchart. Flowchart summarizes the steps of evaluating identifier filtering methods.
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used as the de facto quality measure, these tags had reliability 
problems. We include this tag-based probeset quality measure 
to verify that our quality assessment paradigm can detect the 
expected deficiency of performance in a superseded method 
relative to the more recent measures. AffyGrade (AG), pro-
vided by the NetAffx array annotation file, is a quality grade 
labeled as A, B, C, R, and others. Only probesets with A grade 
were accepted, since A grades represent at least nine matching 
probes to the target mRNA.27 The National Cancer Institute 
(NCI) Masker28 filter removes probesets omitted from the 
NCI masked chip description file (CDF). The Masker was 
produced by the NCI Laboratory of Population Genetics. The 
CDF file eliminates any probes that do not have at least 24 
out of 25 nucleotides match the target GenBank transcript. 
In addition, it eliminates any nonspecific probes that map to a 
different chromosome, strand, or are part of a gene cluster that 
could cause cross-hybridization. The CDF file can be obtained 
from http://masker.nci.nih.gov/ev/.

We test three filters utilizing Geneannot,9 a database of 
gene expression annotations and quality that evaluates the 
Affymetrix probesets on the following criteria. For each of the 
probesets on the Affymetrix chip, sensitivity, specificity, and 
an overall quality score is determined. Sensitivity is defined as 
the fraction of the probes in a probeset that match Watson–
Crick nucleotide base pairs in the nominal gene. This classi-
fication is labeled as GSEN. The next classification is labeled 
as GSPE and is a sum over the number of matching probes 
with lower weight placed upon nonspecific probes. Thresh-
olds defining GSEN and GSPE were, respectively, sensi-
tivity metric $0.9 and specificity metric $0.5, each chosen 
by maximizing expected utility. Finally, the GQ measure is 
determined from the ordinal rank assigned by Geneannot 
to demonstrate the confirmation of the probeset to mRNA 
match. A score of 1 is reported to be the best, which dem-
onstrates that the probes were confirmed using the Gen-
eCards data via EntrezGene or Ensembl. The worst score is 
6, which is defined as probesets where the only information 
available is original NetAffx annotation.27 For the purposes of 
this study, GQ accepts only probesets with a score of 1. Our 
EnCode (E) filter utilizes the EnCode29 project’s determina-
tion of protein-coding status of the target sequence location 
in the genome to remove probesets of non-coding targets. 
The files are available at http://encodeproject.org/ENCODE/
downloads.html. The GENCODE version 12 annotation 
files were used to determine gene status from human genome 
build 37. The gene status is classified as protein coding, tran-
scribed pseudogene, untranscribed pseudogene, lincRNA, not 
identified by GENECODE, etc.29 Only probesets with the 
protein coding Ensembl code were accepted. The Ensembl 
codes were matched to the UniProt accession codes present in  
our analysis.

The PD filter uses the PD7 database, which uses the 
probeset sequence and the BLAT database to align probe 
nucleotide sequences to the target and assign to each probe 

a grade reflecting alignment mismatches, alignment to other 
sequences risking cross-hybridization, and intronic versus 
exonic location. The PD filter was defined to accept a probeset 
if 30% of the probes within the probeset were classified as 
perfect exonic, noncross-hybridization matches. To set the 
threshold, we maximized expected utility, as described in Day 
and McDade.10

The Jetset (J) filter uses the Jetset6 assessment, which not 
only considers nucleotide complementarity across the probe-
sets but also considers splice isoform coverage and transcript 
degradation. In addition, Jetset (J) will score each probeset of 
a target gene and select the best probeset (of currently defined 
probesets) for each gene on the chip. Therefore, Jetset (J) is a 
stringent eliminator of probesets.

Methodology for identifier filtering evaluation. The 
identifier filtering evaluation of probesets uses a previously 
published methodology for comparison of bioinformatics 
workflow options to determine the evaluation metric. The 
steps in this application to identifier filtering are summarized 
in Figure  1. For more details, see Day and McDade.10 The 
method requires the following inputs:

•	 A large number of biological samples from a biological 
repository, such as TCGA, or a private collection of bio-
logical samples.

•	 Two high-throughput platforms each with a feature list 
of identifiers; the two platforms must be on the same bio-
logical samples.

•	 A planned set of workflow options to compare.
•	 An identifier map, which connects the pairs of data across 

the platforms (ie, transcript to protein).
•	 A model quality score for each pair p, designated MQp. The 

MQ scores are treated independently for modeling the 
mixture distribution. In applications thus far, this score is 
a correlation coefficient.

•	 For each method M, the set of pairs accepted or produced 
by this method is designated as S(M).

In the current application, each pair is an mRNA tran-
script feature paired with a protein feature linked through the 
ENvision identifier mapping resource. Membership of a pair 
p in the set S(M) means that the method M claims that the 
transcript feature in p should be included for any data analysis. 
The two platforms, respectively, assess the two processes: gene 
expression and protein expression.

The model quality score in this application is the cor-
relation of the two measurements across the biological 
samples. We consider the probability density of the correla-
tion values for all pairs produced by the method M (Fig. 2, 
black line). This density is modeled as a mixture with the 
following components:

•	 “+”: The transcript feature and the protein feature are  
correctly identified, and they are truly biologically 
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coupled. This means that a pair in this component is 
correctly mapped between transcript and protein iden-
tifier, and transcript abundance and protein abundance 
are monotonically related. The blue line in Figure 2 
represents the “+” component.

•	 “0”: The transcript feature and the protein feature are 
correctly mapped but biologically decoupled. This means 
that the expected monotonic relationship between a 
transcript and a protein is not observed. There are many 
biological reasons for decoupling, including RNA inter-
ference by microRNA, post-translational processing, 
and any other mechanism causing the protein abun-
dance to fail to reflect the transcript abundance. The 
green line in Figure  2 represents the distribution of 
correlations for decoupled pairs, which we refer to as the 
“0” component.

•	 “x”: An incorrect mRNA/protein pair relationship 
was assigned. The red dashed line in Figure 2 repre-
sents the distribution of correlations for misidentified 
pairs, which we refer to as the “x” distribution. Pairs 
included in this distribution should not be assigned. 
These assignments may be due to incorrect actions 
on the part of the identifier mapping or the workflow  
in general.

Estimation of the “+” posterior probability. We would 
like to identify the features in either “+” or “0” for inclu-
sion. However, the data cannot distinguish between the “0” 
and “x” groups. Under mild assumptions, the method with 

the highest posterior probability for “+” is also the method 
with the highest posterior probability for “+” or “0.” We refer 
to the combined “0” and “x” groups as the “-” group. Even 
though groups “0” and “x” cannot be distinguished, basing 
the relative performance of workflow methods on the mix-
ture distributions from the observed correlations is likely to 
yield the correct decision; the argument for this statement is 
previously reported.10

Let G(p) be the component, whether “+”, “0”, or “x”, to 
which the pair p belongs to. A better workflow option should 
do a better job at excluding incorrectly mapped pairs (ie, those 
with G(p) =  “x”). Increasing the probability that G(p) =  “+” 
should reduce the G(p) = “x” component. Let the proportion 
of pairs in group g be Pr G p g g( ) =( ) = π  for g x∈{ }" " "0" " "+ , , .  
The mixture model provides the opportunity to estimate 
Pr(G(p) =  “+”) for each pair p. This probability provides the 
metric we need to evaluate workflow options.

We now assume that the true correlations for all the 
pairs in group g are distributed as a mixture of normal dis-
tributions with mean ϕg and variance Vg. There is also mea-
surement error, so the correlation of each pair p in group g 
is normally distributed with marginal mean ϕg and marginal 
variance τ σgp g pV= + 2, where σ p

2  is the measurement error 
variance specific to pair p. We estimate σ p

2  by the bootstrap 
method, as described in Day and McDade.10 To estimate the 
probability of a pair belonging to the “+” group, we use an 
expectation conditional maximization (ECM) algorithm to 
determine the following parameters: (1) the prior probabil-
ity π+ of belonging to the “+” group, (2) the within-group 

ID pair group True correlation Description Pair counts for method M (A or B)

Observed Mixture All observed pairs

+: coupled >0 True biological coupling

0: decoupled =0 Biological decoupling

:mis-identified =0 Mapping error, etc.

Coupled
DecoupledObserved1.2

0.8

0.4D
en

si
ty

0.0

mis-identified

−1.0 −0.5 0.0 0.5 1.0

Correlation

Figure 2. Hypothetical mixture components for correlation. Reproduced from Day RS, McDade KK. A decision theory paradigm for evaluating 
identifier mapping and filtering methods using data integration. BMC Bioinformatics. 2013;14(1):223, under the terms of the Creative Commons 
Attribution License.
Notes: Observed (black): marginal density of correlations. Misidentified (red, dotted): density of correlations where features are either misidentified 
or incorrectly mapped. Decoupled (green): density of correlations of pairs correctly mapped but biologically uncorrelated (discordant). Coupled (blue): 
density of correlations of pairs correctly mapped and biologically coupled. 
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true variance V+ of the correlations in “+” group, and (3) the 
within-group true variance V− = V0 + Vx. Here true signifies 
without sampling error. This is possible since we are able to 
constrain the variance of the “0” and “x” groups to 0. For a 
complete description of the ECM algorithm, see Additional 
File 1 of Day and McDade.10

Having determined the maximum likelihood estimates 
of the parameters, we can now calculate for each pair p the 
posterior probability of belonging to the “+” group by defining 
the following:

π +
∗ = = +p pG p MQPr( ( ) | and parameter estimates)

	
π π π π−

∗
+
∗ ∗ ∗= − = +p p xp p1 0

This calculation provides the posterior probability of esti-
mation of pair p belonging to the “+” component, given the 
correlation MQp and its sampling variance σ p

2 , from bootstrap 
sampling. To convert this variance into the variance of the 
posterior probability, the approximation in the delta method is 
used. This consists of multiplying the variance of the correla-
tion times the square of the derivative of the posterior prob-
ability as a function of the correlation.

	   
v MQ

d
dMQp p p

p

p
+
∗

+
∗ += ( ) ≅ ( ) × 







var var .

*

π
π

2

The expression for the derivative is presented in an 
appendix.

A weighted mean of the “+” proportion provides an 
expected proportion of “+” group pairs for a given identifier 
filtering method. The weighted mean is estimated using the 
posterior probabilities of each pair and the variances of these 
posterior probabilities.

	   

P
v

v
M

p p
p S M

p
p S M

+

+ +

−

∈

+
∈

−=
( )

( )
∑

∑

π * *

( )

*

( )

1

1

This quantity provides the basis for comparing the 
methods, M ∈ {M1,…,Mk}.

Expected utility model. It is important to consider that 
different analysts have different analysis goals. One method 
may include a pair or a feature, while another excludes it. 
The pair will be either a true positive of the first method or 
a true negative of the second method. The relative value of 
including a true positive versus excluding a false positive 
will be different for different scientific goals. Utility values 
can express these valuations. We utilize the Bayesian deci-
sion principle of maximizing expected utility. This principle 
is useful for selecting a single filtering method, choosing 

a threshold for a method (Geneannot, PD), or selecting 
a Boolean composite filtering strategy (described in the  
next section).

For this study, we set the following values:

•	 LFP = the loss associated with a false positive, ie, 1.
•	 UTP = the utility of including a true positive, ie, 2.

We explored sensitivity of the comparisons between 
methods to these three values, and found that the comparisons 
are relatively insensitive (data not shown).

The Bayesian expected loss calculation is as follows:

	     EU U P L PTP M FP M= −+ −

This is the mean expected utility (MEU). As an alter-
native, the analyst may choose to use total expected utility 
(TEU), which simply is the product of the number of methods 
compared and MEU.

Composite filtering strategies. Boolean conjunction 
(intersection; “and”) and disjunction (union; “or”) operators 
can create composite filtering strategies, which are easily eval-
uated. An analyst may consider whether the union or intersec-
tion of two or more filtering methods is worth the extra effort. 
Given a current strategy, for each so-far-unused method, one 
can automatically construct and evaluate the strategies formed 
by conjoining this method to the current strategy via conjunc-
tion or disjunction. A forward selection assesses the expected 
utility for each of these conjoined strategies and chooses the 
one with the highest expected utility. This is referred to as 
greedy selection because it takes the apparent best step, in 
sequence. In contrast is the exhaustive search of every Bool-
ean combination of the methods, which in principle could find 
better strategies, but is impractical.

Results
Odd ratios demonstrating the disagreement between 

filtering methods. The nine filtering methods are far from 
redundant. Many analysts who use one of the filtering meth-
ods listed in Table 1 might expect only minimal differences 
in the probesets retrieved and retained. Instead, the nine fil-
tering method strategies do not demonstrate similar probeset 
decisions. Table  2 compares the classifications of each pair 
of methods.

Each table entry is the odds ratio from the 2 × 2 table 
cross-classifying probesets as either filtered or retained 
by the two methods. The odds ratio is the product of the 
agreements divided by the product of the disagreements. 
An odds ratio of 1.0  indicates that the two classifications 
are providing independent information; an odds ratio much 
larger than 1 indicates redundant information, and an odds 
ratio much smaller than 1 indicates contradictory informa-
tion. For example, the odds ratio of 5.9 comparing Jetset 
to EnCode in Table  2A indicates considerable redundant 
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information. The odds of a probeset being excluded by 
EnCode are 5.9 times greater if the probeset is also excluded 
by Jetset versus if it is included by Jetset. In contrast, the 
odds ratio of 1.07 comparing PD to Masker indicates 
nearly independent information: knowing whether Masker 
includes a probeset says almost nothing about whether 
PD does. More remarkable still is the odds ratio of 0.35 
for Jetset and Masker, which indicates that knowing that 
Masker includes a probeset considerably decreases the odds 
that Jetset includes it; Jetset and Masker provide contra-
dictory information. (One might hope that they usefully 
complement each other. The analysis of Boolean combina-
tions will address this hope). For details about odds ratios, 
see Szumilas.30

Fitted mixture models for the correlations. For each of 
the test-beds (endometrial and ovarian), a correlation mixture 
model was fitted to all feature pairs as described in the 
Methods section. Figure 3 shows the fitted mixture compo-
nents for the two test-beds. They appear considerably different. 
Nevertheless, as we will see, the two mixture models lead to 
similar comparative evaluations of the filtering methods, sug-
gesting that the best-practices conclusions we are seeking may 
have general application.

Each mixture distribution has two components: one 
centered at 0 and the other with mean .0. The right-most 
component, labeled “+”, corresponds to the pairs where 
both features are correctly identified and mapped and also 
biologically coupled through the translation process, protein 
synthesis. For each pair, we calculated the posterior probabil-
ity for belonging to the “+” component. Summing or averaging 
across the pairs accepted by a filtering method, we calculated 
the expected utility for that method.

Expected utility. The purpose of probeset filtering is to 
remove incorrectly identified or ineffectively designed probe-
sets without removing too many correct probesets. Some 
investigators may want to apply stringent filtering criteria, for 
example, to reduce multiple comparisons penalties and false 
discoveries, while others would be more concerned with miss-
ing a true discovery. For purposes of illustration, we fix a util-
ity of a true positive to 2 and a loss of a false positive to 1 (see 
the Methods section). This implies that an investigator would 
wish to include a true positive at the cost of including a false 
positive feature, but not at the cost of including three false-
positive features, with indifference if the cost is two false posi-
tives. The different quantity–quality priorities of investigators 
are represented by two ways of combining expected utilities: 

Table 2. Odds ratio chart for probeset filtering. 

For abbreviations, see Table 1. The table cell entries are the odds ratios assessing the degree of association of each pair of filtering methods. 
Each table entry is the odds ratio from the 2 × 2 table cross-classifying probesets as either filtered or retained by the two methods. The odds ratio 
is the product of the agreements divided by the product of the disagreements. For details regarding the interpretation of the odds ratios, see text.

Panel A: all probesets on Affymetrix HGU133 Plus 2.0 Array

Filter J E PD GSEN GSPE GQ AT AG M

J – 5.9 3.7 3.1 24.7 29.3 1.2 20.3 0.35

E – 11.4 29.3 32.5 46.4 0.3 14.1 0.60

PD – 6.8 6.8 6.4 0.5 4.7 1.07

GSEN – 50.0 1103.0 0.2 301.0 0.45

GSPE – 760.0 0.3 53.2 0.79

GQ – 0.3 50.1 0.69

AT – 0.3 0.93

AG – 1.85

M –

Panel B: the 887 probesets from the ID pairs in the endometrial sample

Filter J E PD GSEN GSPE GQ AT AG M

J – 1.87 2.34 0.96 2.62 2.73 4.91 2.81 5.05

E – 4.00 7.34 4.24 21.60 0.68 16.20 1.49

PD – 1.23 35.90 2.13 2.19 1.45 1.46

GSEN – 0.74 Inf 0.42 70.80 1.26

GSPE – Inf 5.23 2.08 1.29

GQ – 0.03 127.00 1.32

AT – 0.31 2.77

AG – 0.90

M –
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the TEU and the MEU. An analyst choosing TEU wants as 
many features as possible, perhaps driven by the need to feed 
some systems biology algorithm. An analyst choosing MEU 
is more concerned with the quality of the resulting data set. 
Summary figures demonstrate the greedy forward selection 
for the endometrial and ovarian data sets (Fig. 4). For each 
of the filters applied in Figure 4A, there is a removal of poor 
quality probesets with a gain in TEU. Figure 4B illustrates 
the MEU over a series of filters; each successive filter reduces 
probesets with an increase in expected utility.

Figure 5 demonstrates a more detailed picture with each 
circle data point representing a set of probesets obtained from 
the application of an identifier filtering method. The two paths 
represent using TEU or MEU as the metric for the greedy 

forward selection. For the endometrial data, Figure 5A plots 
the estimated proportion of true coupled (quality) data versus 
the number of remaining pairs of data (quantity). The point 
at the upper left corresponds to including all 887 features 
pairs obtained with no filtering. The proportion of “+” pairs 
is only 0.30, which implies that the TEU is −81.9 and the 
MEU −0.0923. The conclusion is that, without filtering, one 
should not analyze these data. The labeled points correspond 
to reduced feature sets created by a single filtering method. The 
paths correspond to successive application of filters selected by 
a greedy forward selection of intersections and unions.

Jetset filtering provided the best single-method strategy 
for both TEU and MEU criteria (label = J). It is notable that 
Jetset was optimal even for TEU despite removing roughly 
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half of the probesets (from 887 to 434; 51.1% probesets 
removed). For Jetset, TEU = 80.3 and MEU = 0.185, both in 
the positive zone, suggesting at least that after filtering, a data 
set is of sufficient quality to deserve analysis. Figure 5 shows 
the subsequent improvements by greedy selection of higher 
order Boolean combinations for the TEU (Panel A) and MEU 
(Panel B) criteria. Intersecting Jetset with GSPE was the best 
next step for the TEU criterion (filtering away 56.1% of the 

probesets), 138.9 TEU; intersecting with PD was the best next 
step for MEU criterion (filtering away 59.8%), 0.3868 MEU. 
Further selection did not improve either criterion noticeably 
(maximum TEU 148.5, maximum MEU 0.4864).

In the endometrial data set, the estimated proportion of 
true coupled (Pr(“+”)) is 0.303 with 887 mRNA–protein pairs. 
The endometrial greedy forward selection shows a very similar 
path, and in fact after one greedy node, both greedy search modes 
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find Jetset as the methodology of option, increasing the Pr(“+”) 
from 0.303 to 0.396. The optimal set for TEU is Pr(“+”) = 0.496, 
while the MEU finds a set with Pr(“+”) = 0.503.

In the ovarian cancer data set (Fig.  5B), Jetset filter-
ing again provided the best single-method strategy for MEU 
criteria. Jetset reduced the number of probesets even more 
severely, from 151 to 47 (78.9% probesets filtered away) for 
the MEU selection criterion. The benefit in terms of the qual-
ity was quite dramatic, but the cost in terms of pair reduc-
tion actually decreased the TEU from 290 to 131. Figure 5B 
shows the subsequent improvements by greedy selection of 
higher order Boolean combinations. Intersecting Jetset with 
EnCode was the best next step for the TEU criterion (fil-
tering away 18.5% of the probesets), 1.58 TEU; taking a 
union with Jetset after the EnCode intersection restored four 
probesets and increased the TEU very slightly to 1.60. No 
further union or intersection provided any improvement.

In the ovarian serous carcinoma TCGA data set, the 
Affymetrix to reverse phase protein assay data provide 151 pairs 
at a high Pr(“+”), 0.733. Unlike the endometrial data, the TEU 
and the MEU provide two different paths to best practice of 
probeset filtering. The MEU path chooses the Jetset filter 
method by throwing away all but the 47 pairs in the Jetset opti-
mization with a Pr(“+”) of 0.961. After two levels, the MEU 
maximizes to a Pr(“+”) of 0.997 and eliminated all but 44 pairs. 
The TEU favors quantity by keeping 123 pairs and a Pr(“+”) of 
0.862. The TEU actually adds back in the union of the Jetset 
of four probesets to bring the total pairs to 127 and a Pr(“+”) of 
0.867. Whether filtering with two methods rather than one is 
worth the extra effort is, of course, the judgment of the analyst.

Discussion
The goal of this work is to provide guidance for choosing a 
probeset filtering strategy in transcript expression experiments. 
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It is not to guide analysis of paired data sets. The usefulness of 
linking with the protein abundance data is specifically to help 
evaluate and compare different filtering methods.

Many investigators assume that the filtering methods 
available are close enough that the choice of filtering method 
will have a negligent effect on the overall results of an analysis. 
The odds comparing the methods pairwise demonstrate that 
some of the methods differ considerably.

The two test-beds both selected Jetset as the best single-
method strategy for the MEU criterion. This happens despite 
the fact that both the mRNA expression platform and the 
proteomics platform are different between the two test-beds 
and the range of correlations is quite different as well. This 
result provides encouragement that the evaluation methodol-
ogy applied here can produce best-practices conclusions that 
can be useful for external microarray data sets.

Jetset eliminates as many as 80% of probesets. This 
may seem extreme to a user of microarrays but considering 
that there are roughly three times the probesets as there are 
protein-coding genes in the human genome, if (as Jetset does) 
a method selects only the best probeset for each gene, then a 
minimum of two-third of the probesets must be eliminated. 
When the goal of the biological research requires more fea-
tures than a strict filtering method like Jetset would allow, 
then Jetset would not be used. Our method reflects this by 
granting the user goal-specific utility values that will penal-
ize false negatives more stringently. If increasing this penalty 
leads to an unacceptable number of false positives, then the 
research goal cannot be achieved, and it is best that the inves-
tigator know this.

In the ovarian data set, an investigator leery of discard-
ing such a large proportion of probesets would be attracted to 
using EnCode, guided by our TEU criterion. In both test-beds, 
EnCode removes few probesets, but in the ovarian test-bed, the 
probesets removed are of especially poor quality. This may be 
related to the fact that the mass spectrometry platform in the 
endometrial test-bed is not designed for accurate quantification. 
In contrast, the RPPA platform uses selected validated anti-
bodies so that one source of poor correlations is greatly reduced. 
Since RPPA data are a ligand-based local protein expression 
assay, the sensitivity for an individual protein is much higher 
than the LC-MS/MS data. This method is sensitive to correla-
tion of mRNA expression to protein, and the RPPA data have a 
more reliable protein measurement at low protein expression.

Conclusions
Many investigators use publicly available data, such as the TCGA 
data warehouse, to unlock discoveries at the genome, transcript, 
and protein levels of cancer biology. Previously, in merging and 
analyzing data from an expression data set and proteomic data 
on the same samples, our team found startling differences in the 
identifier mapping services. We developed a principled, data-
grounded method to evaluate and compare these services. This 
method has broad generalizability to evaluating many kinds of 

data pipeline choices and strategies, including identifier filtering 
methods and read filtering methods to remove erroneous or poor 
quality features, and tuning parameter settings in pipelines. 
We are developing a new package that will support much wider 
applications to all kinds of workflow options. This package will 
include the decision theory component as well.

In conclusion, the evaluation methodology applied here 
has some major virtues. First, the identifier filtering decisions 
are based on real, not simulated, data. In addition, these results 
can be subject to replication independently on multiple test-
beds. Lastly, the identifier filtering methodology is respon-
sive to the needs of investigators through the decision theory 
framework, which helps an investigator decide how much data 
to filter away based on mRNA to protein correlation.
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Appendix: The Derivative of the Variance of the Posterior Probability
We suppose that the correlations MQp are from an approximate mixture of normal distributions with means ϕ+ and ϕ−,  
and variances V+ and V−. The mean of the zero-correlation component, ϕ−, is fixed at zero, and the other parameters are fitted with 
an ECM (expectation-conditional-maximization) method. The posterior probability that pair p belongs to group “+” is obtained 
from Bayes Theorem in its formulation in terms of prior and posterior odds.
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To apply the delta method to the variance of the posterior probability, we apply the differential operator D to the posterior 
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We have confirmed this computation against the numerical derivative in R.
It is worth noting that, if σ p

2 is very large, then changing the correlation changes the posterior probability very little. The slope 
is small. So ironically, a large measurement variance for the correlation means a small variance in the posterior probability, but in 
those cases, the posterior probability is near the prior probability. Again, this is confirmed by R code.
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