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Abstract

Estimating differences in gene expression among alleles is of high interest for many areas in biology and medicine.

Here, we present a user-friendly software tool, Allim, to estimate allele-specific gene expression. Because mapping

bias is a major problem for reliable estimates of allele-specific gene expression using RNA-seq, Allim combines two

different strategies to account for the mapping biases. In order to reduce the mapping bias, Allim first generates a

polymorphism-aware reference genome that accounts for the sequence variation between the alleles. Then, a

sequence-specific simulation tool estimates the residual mapping bias. Statistical tests for allelic imbalance are

provided that can be used with the bias corrected RNA-seq data.
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Introduction

After microarrays revolutionized, the analysis of gene

expression (Schena et al. 1995), 2nd-generation-sequencing-

based transcriptome profiling has become the method of

choice (Garber et al. 2011; Ozsolak & Milos 2011). This

RNA-seq technique does not only offer the advantage of a

higher sensitivity than microarrays, but also provides

information about the expression levels of different

isoforms (Trapnell et al. 2010). Because RNA-seq provides

the sequence of individual reads, it is possible to distin-

guish alleles and thus to estimate allele-specific gene

expression (ASE). Given the importance of ASE for

understanding variation in cis-regulatory effects, there is

considerable interest in tools that provide reliable esti-

mates of allelic imbalance in gene expression (Rozowsky

et al. 2011; Skelly et al. 2011; Turro et al. 2011; Satya et al.

2012).

Probably the biggest challenge for accurate estimates

of ASE comes from the fact that reads from both alleles

are mapped against a common reference. If one of the

alleles is more similar to the reference than the other

one, this results in an unequal success rate of read

mapping (mapping bias) (Degner et al. 2009; Kofler

et al. 2011).

Several studies exist that propose frameworks to iden-

tify allele-specific gene expression from RNA-seq data

(Rozowsky et al. 2011; Skelly et al. 2011; Turro et al. 2011;

Graze et al. 2012; Satya et al. 2012; Shen et al. 2012). How-

ever, only two studies, AlleleSeq (Rozowsky et al. 2011)

and MMSEQ (Turro et al. 2011) provide a software pipe-

line, which can be used by researchers to conduct similar

analysis. In accordance with the proposed frameworks

for ASE identification, both software tools generate a

polymorphism-aware diploid genome as a reference for

read mapping to reduce the mapping bias. However,

their usage is limited to specific data sets. AlleleSeq does

not infer polymorphisms between parental genomes, but

requires these polymorphisms as input (Rozowsky et al.

2011). MMSEQ allows polymorphism detection on the

RNA-seq data directly, but requires phasing of genotype

calls prior to reconstruction of the parental haplotypes

(Turro et al. 2011). Both software tools use Bowtie (Lang-

mead et al. 2009b) for short read mapping, which does

not support gapped alignments, split mapping and SNP

aware mapping. Furthermore, the statistical framework

of AlleleSeq does not account for replicate data, and

neither tool considers a residual mapping bias.

Here, we introduce a new comprehensive and user-

friendly software tool, Allim, for measuring allele-specific
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gene expression in F1 individuals, which accounts for the

inevitable mapping bias by combining two strategies.

First, a polymorphism-aware diploid reference genome is

constructed from parental RNA or genomic short read

data. Second, a sequence-specific simulation tool esti-

mates the residual mapping bias. Furthermore, within

Allim, a statistical framework is provided, which includes

a correction of the residual mapping bias and can take

advantage of replicate data. For optimal short read map-

ping, Allim uses GSNAP, which is capable of SNP tolerant

mapping, split mapping and allows gapped alignments

(Wu&Nacu 2010).

Methods

Implementation and basic usage

The Allim pipeline was developed in Python 2.7.3

(http://www.python.org), R 2.15.0 (http://cran.r-

project.org/) and other third-party packages/tools (Allim

user manual; Appendix S1). The Allim pipeline consists

of five modules (Fig. 1), which can be run with one single

command. All parameter settings can be specified in a sin-

gle configuration file. An extensive user manual covering

all important aspects including dependency installation,

Allim usage, sample input, validation, benchmarking and

detailed step-by-step description of Allim pipeline is

given in Appendix S1 (Allim user manual). The Allim

pipeline runs on Mac OS, Linux and other Unix-like oper-

ating systems.

Allim input requirements

Allim determines ASE in F1 individuals and requires

SNP information from both parents and RNA-seq data

from the F1 individual. However, in order to be applica-

ble to a broader range of experimental designs, Allim

offers several options to provide parental information.

1 RNA-seq data from both parents/parental lines

2 DNA-seq data from both parents/parental lines

3 Two parental genomes in FASTA format.

Options 1 and 2 further require a reference genome as

input. Fixed SNPs between both parents are determined

in Module 1 (Fig. 1) and two parental genomes are cre-

ated. If no reference genome is available, option 1 can

also be used with a reference transcriptome. If option 3 is

chosen, Module 1 of the pipeline is skipped.

Improving the reference genome

We specifically designed Allim to account for the well-

described mapping bias. Recently, it has been shown that

the inclusion of polymorphism data in the reference

significantly improves the mapping of reads to the refer-

ence genome (Satya et al. 2012). Most importantly, this

strategy is superior to masking polymorphic sites (Degner

et al. 2009). As a first step, Allim uses GSNAP (Wu &

Nacu 2010) to map either genomic DNA or RNA-seq

reads from both parents to an available reference gen-

ome. Based on the mapped reads, fixed SNPs between

both parents are identified. To increase mapping success

of reads, the fixed SNPs are used to create a polymor-

phism-aware genome via GSNAP, which is used as a ref-

erence genome in a subsequent round of read mapping.

This procedure of read mapping, fixed SNP calling

and construction of an improved polymorphism-aware

genome via GSNAP can be iterated to fine-tune the iden-

tification of fixed SNPs. In case two parental genomes

are available, these can be used directly. Consistent with

previous results (Satya et al. 2012), we find that the modi-

fied reference genome improves the mapping success

and reduces the extent of mapping bias (Table 1, Fig. 2).

Quantification of ASE and assessment of allelic
imbalance

Previous benchmark tests of split read mappers consis-

tently found that GSNAP is one of the most reliable

mapping tools for RNA-seq data (Grant et al. 2011).

Furthermore, GSNAP is designed to account for poly-

morphisms when mapping reads against a reference

(Wu & Nacu 2010). Allim quantifies ASE for F1 individu-

als by determining the number of reads that can be unam-

biguously assigned to one of the parental genotypes. The

unit, for which expression strength is measured, can be

either an entire gene or a single exon (paired-end reads

mapping to the same focal region are only counted

once even if they span multiple SNPs). Thus the later

option allows testing for allelic differences in isoform

representation.

Correcting the residual mapping bias by computer
simulations

While the reconstruction of the two parental genotypes

substantially reduced the mapping bias, we use com-

puter simulations to estimate the residual mapping bias.

A grid of RNA-seq reads from both parental alleles are

generated using the two genomes (i.e.: 2 9 100 bp

paired ends with 78 bp insert size). For each polymor-

phic site, the same number of reads is generated for both

genomes. Thus, in absence of a mapping bias, all genes

should have an expression ratio of one. In contrast to this

expectation, we observe for Drosophila pseudoobscura, a

residual mapping bias for about 11% of the genes. Most

of those biased genes show a weak bias � 5%, while

strong residual biases are limited to relatively few genes
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(Fig. 2). Reasoning that the experimental RNA-seq reads

experience the same mapping bias, we propose to correct

for this residual mapping bias before we test for statisti-

cal significance of allelic imbalance. We further com-

pared the mapping bias before SNP adjustment and after

SNP adjustment with the same simulated data set. We

show that the mapping bias has been reduced signifi-

cantly with SNP adjustment (Fig. 2).

Statistical tests for allelic imbalance

To assess the statistical significance of allelic imbalance

for samples without biological replication for each gene

(exon), Allim relies on the G-test. This test may, however,

overstate the statistical significance, as some sources of

variation can only be taken into account when replicates

are available. Allim, therefore, also provides analysis of

variance (ANOVA) tests for allelic imbalance across rep-

licates. Both approaches inherently account for different

library sizes and are complemented with two additional

scaling factors. The residual mapping bias is integrated

via the observed expression ratios of the simulated data.

Additionally, libraries are normalized via the TMM fac-

tor (Robinson & Oshlack 2010). The TMM normalization

eliminates biases in the data due to technical differences

between the samples or vast expression changes of a few

genes under only one condition that can affect expres-

sion ratios for all remaining genes.

Allim validation

We used RNA-seq data from two different D. pseudoobs-

cura isofemale lines (library sizes: ~80 million read pairs,

2 9 100 bp, insert size 78; Table 2) and ran our Allim

Fig. 1 Flowchart of the Allim pipeline.

The five modules of the Allim pipeline

are (1) Identification of fixed SNPs and

creating two parental genomes, (2) Com-

puter simulation of RNA-seq reads from

both parental genotypes, (3) Estimation

of the remaining mapping bias with sim-

ulated data, (4) Estimation of allele-spe-

cific expression in F1 and (5) Statistical

test of significant allelic imbalance. All

these five modules can be run with a sin-

gle command. All input parameters can

be specified in a single configuration file.

This configuration file is one of two

options. ‘AllimOptions_2Pexpr ‘is used

when parental genomes have to be gen-

erated from parental expression or

parental genomic short read data. ‘Alli-

mOptions_2Pgenomes’ is used when

two parental genomes are available.
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pipeline after pooling the reads from both libraries. In

contrast to experiments measuring allelic imbalance, the

origin of each read is known, which allowed us to mea-

sure the performance of Allim.

Our results show that accounting for the sequence

divergence of the two lines allowed to map on average

0.23% more reads (Table 1) and reduced the total map-

ping bias from 69 to 11% of all genes (Fig. 2). Furthermore,

Allim assigns between 98.60 and 99.97% of the reads con-

taining fixed SNPs to the correct parental allele (Table 3).

Simulated reads were assigned slightly better (99.99%)

(Table 3). We attribute this difference to confounding sig-

nals of SNPs, which are not fixed between the two isofe-

male lines.

Comparison with similar tools

Two similar tools to assess allele-specific expression are

freely available: AlleleSeq (Rozowsky et al. 2011) and

MMSEQ (Turro et al. 2011). In comparison with these

tools, Allim includes several advanced and user-friendly

features.

Input requirements and inference of parental variants

AlleleSeq requires polymorphism data in form of fam-

ily trios as input, which consist of SNP information of

Table 1 Improvement of mapping success via genome modification (SNP inclusion). The performance of Allim was validated with

experimental as well as simulated RNA-seq reads. The experimental data consisted of paired-end RNA-seq reads from males and

females of two different isofemale lines (ps88 and ps94) of Drosophila pseudoobscura (Table 2). (An ‘isofemale line’ is established by a sin-

gle female, typically caught and inseminated in the wild. Due to inbreeding over multiple generations, genetic heterozygosity in the line

is reduced.) For the experiment, male and female flies from both lines were pooled and sequenced. Via Module 1 fixed SNPs between

both parental lines were identified and used to create two parent-specific genomes. The simulation of reads was based on the two

parental genomes (see Methods). The two parental genomes are later used as a reference to map F1 offspring RNA-seq reads

RNA-Seq data

Total number of single reads

Mapped single reads (%) Improvement

(% of total

number of

reads)

Before SNP

adjustment

After SNP

adjustment

No. of reads p88 No. of reads p94 ps88 ps94 ps88 ps94 ps88 ps94

Female data 79 981 000 79 998 000 91.18 92.15 91.49 92.22 0.31 0.07

Male data 76 877 000 79 207 000 85.97 86.73 86.19 87.05 0.22 0.32

Simulated data 122 682 000 122 682 000 90.94 90.96 91.05 91.03 0.11 0.07

Fig. 2 Distribution of gene counts with percent mapping bias.

In Drosophila pseudoobscura, approximately 96% of all genes

(5820) show a residual mapping bias before SNP adjustment

(blue bar), whereas only 11% of all genes (686) show a residual

mapping bias after SNP adjustment (red bar). Biased genes

show mapping biases of various strengths. In both cases, the

majority of the biased genes 96% before and ~69% (472 genes)

after the SNP adjustment show only a weak residual mapping

bias of � 5%. The reduction in genes with mapping bias before

and after SNP adjustment is significant (Fisher’s exact test;

P-value = 1e-06).

Table 2 Number of paired-end RNA-seq reads of Drosophila

pseudoobscura used for Allim validation. The data was generated

on an Illumina GA IIx sequencer. The Drosophila pseudoobscura

isofemale lines ps94 (stock number 14011-0121.94) and ps88

(stock number 14011-0121.88) were obtained from the UC San

Diego Drosophila Stock Center. Flies were reared on standard

cornmeal-molasses-yeast-agar medium and maintained at 19 °C
under constant dark conditions. For each line, virgin females

and virgin males were collected from 15 to 20 replicate vials,

pooled and allowed to age for 3–7 days before shock-freezing in

liquid nitrogen (Palmieri et al. 2012)

Samples

Read pairs

(in millions)

Insert size

(bp)

Read length

(bp)

ps88 males 79.21 78 100

ps88 females 80.00 78 100

ps94 males 79.21 128 100

ps94 females 80.00 68 100
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the reference allele, the maternal, paternal and child

genotypes along with phase information. MMSEQ calls

genotypes for every given individual from the

sequence data itself. The phase can then be estimated

with the integrated software tool polyHap (Su et al.

2010). As the phase information has to be imputed

from the genotype data, complete and accurate phasing

results can only be obtained when input data for a

large number of individuals are provided. Allim also

determines SNP information from the provided

sequence data directly, which can either be transcrip-

tome or genome data from both parents. Alternatively,

genome sequences of both parents can be provided. In

both cases, the full phase of both parental genotypes is

known.

Output options and statistical testing

The final output of MMSEQ is a table of allele-specific

expression counts on either gene or isoform level. To

assess allelic imbalance, this table can be used with any

statistical test or software tool based on raw count data.

Allim similarly produces expression tables for allele-

specific expression on the gene and the exon level. Addi-

tionally, Allim has implemented two statistical tests

(G-test, ANOVA) to assess allelic imbalance, while

accounting for the residual mapping bias. The tests for

allelic imbalance provide p-values and FDR corrected

q-values per gene or exon. In contrast to the gene/exon-

wise approach, AlleleSeq assesses allelic imbalance for

every heterozygous SNP. Statistical significance is

assessed via a binomial P-value assuming 50/50 probabil-

ity including FDR correction. Important features of Allim

and the other two available tools are given in Table 4.

Conclusion

Allim is an open-source and user-friendly tool, which

estimates allele-specific gene expression in F1 crosses. It

provides an integrated pipeline for estimating the allele-

specific gene expression and allelic imbalance tests.

Compared to other available software tools, Allim pro-

vides a range of additional features and allows for a

wide range of input options.

Obtaining Allim

Allim requires Python 2.7.3, R 2.15.0 and other third-

party tools and works on all Unix operating system. The

source code, user manual and test data sets are available

online from http://code.google.com/p/allim/.
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