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Abstract

Motivation: Rooted species trees are a basic model with multiple applications throughout biology, including under-
standing adaptation, biodiversity, phylogeography and co-evolution. Because most species tree estimation methods
produce unrooted trees, methods for rooting these trees have been developed. However, most rooting methods ei-
ther rely on prior biological knowledge or assume that evolution is close to clock-like, which is not usually the case.
Furthermore, most prior rooting methods do not account for biological processes that create discordance between
gene trees and species trees.

Results: We present Quintet Rooting (QR), a method for rooting species trees based on a proof of identifiability of
the rooted species tree under the multi-species coalescent model established by Allman, Degnan and Rhodes (J.
Math. Biol., 2011). We show that QR is generally more accurate than other rooting methods, except under extreme
levels of gene tree estimation error.

Availability and implementation: Quintet Rooting is available in open source form at https://github.com/ytabata
baee/Quintet-Rooting. The simulated datasets used in this study are from a prior study and are available at https://
www.ideals.illinois.edu/handle/2142/55319. The biological dataset used in this study is also from a prior study and is
available at http://gigadb.org/dataset/101041.

Contact: warnow@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Phylogenetic trees provide insight into many biological questions
and are typically estimated using statistical methods that assume a
model of evolution. While rooted phylogenies are the final objective,
estimated gene trees (i.e. trees on a single locus) and estimated spe-
cies trees (i.e. trees considering multiple loci and potentially full
genomes) are usually unrooted: gene trees are generally estimated
under time-reversible models of sequence evolution, and species
trees are then estimated under models for gene evolution within spe-
cies trees, using techniques such as ASTRAL (Mirarab et al., 2014a),
StarBEAST2 (Ogilvie et al., 2017) or SVDquartets (Chifman and
Kubatko, 2014) that also do not produce rooted trees. As a result,
additional techniques for rooting species trees are used.

When evolutionary rates follow a strict molecular clock (so that
the expected number of substitutions is proportional to time), then
rooting trees is straightforward. However, since evolution does not
follow the strict molecular clock [see discussion and references in
Pascual-Garc�ıa et al. (2019)], ‘relaxed clock’ models have been pro-
posed and then used to root phylogenies (Lepage et al., 2007).
Outgroup rooting (i.e. rooting the species tree on the edge that sepa-
rates the outgroup species from the rest of the species) is another
common approach. Both relaxed clock and outgroup rooting meth-
ods are used, but no methods have been found to be entirely success-
ful (Wertheim et al., 2010; Wilberg, 2015). Moreover, very few
methods for rooting species trees have been developed that specific-
ally address genome-scale processes, such as incomplete lineage sort-
ing (ILS) or gene duplication and loss, that result in discordance

between gene trees and species trees (Degnan and Rosenberg, 2009;
Maddison, 1997).

Here, we introduce a new statistical method, ‘Quintet Rooting’
(QR), for rooting species trees that can be used with multi-locus
datasets and take into consideration gene tree discordance due to
ILS, as modeled by the multi-species coalescent (MSC) (Hudson,
1983) model. QR is based on the theoretical work by Allman,
Degnan and Rhodes (henceforth, ‘ADR’) in Allman et al. (2011)
that establishes that under the MSC, each five-leaf rooted species
tree is identifiable from the distribution of the unrooted gene trees
that it defines. ADR provide phylogenetic invariants and inequalities
defined by the distribution on unrooted quintet trees that they prove
hold under the MSC and that establish identifiability of any rooted
five-leaf species tree. However, ADR do not suggest an estimation
method that uses these invariants and inequalities. This study shows
that QR is able to use these invariants and inequalities to more ac-
curately root species trees under the MSC than previous methods.

2 Background

2.1 Previous methods for rooting trees
Rooting methods can generally be divided into three groups based
on their assumptions about the input data. The technique most com-
monly used by biologists is outgroup rooting (Maddison et al.,
1984). In this approach, one or more species (called ‘outgroups’)
that are distantly related to all the taxa in the original input set
(called the ‘ingroup’) are added to this set, and a species tree is then
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estimated on the resulting expanded set. When the outgroup species
are separated by an edge from the ingroup species, then the tree can
be rooted on that edge (Kinene et al., 2016). Although outgroup
rooting is a natural and simple technique, it is not always reliable. If
the outgroup species are too distant from the ingroup, they can func-
tion as ‘rogue taxa’ and estimation methods may be unable to find
the correct placement for them in the final tree (and with sufficiently
distant relationships, they can be placed on any edge in the tree with
equal probability); this makes the root specification impossible.
Conversely, when they are too closely related to the ingroup, this
can produce very short edges in the species tree that also makes it
difficult to find the correct root location (as accurate resolution of
trees with very short edges is known to be difficult; Erd}os et al.,
1999). Finally, sometimes a species that is supposed to be an out-
group is actually part of the ingroup. Moreover, previous work has
shown that adding outgroups can even change the topology of the
induced estimated tree on the ingroup species set, making the ap-
proach unreliable in some situations (Holland et al., 2003).
Therefore, choosing an appropriate outgroup needs prior biological
knowledge as well as careful consideration of these scenarios, which
may not be readily possible for some datasets and groups of species
(Tarr�ıo et al., 2000; Wheeler, 1990).

Distance-based methods are another type of rooting method that
can be used. These methods take an unrooted phylogeny with
branch lengths as input and estimate the most likely location for the
root based on specific assumptions about the model of evolution
(Bettisworth and Stamatakis, 2021; Huelsenbeck et al., 2002; Mai
et al., 2017; Tria et al., 2017). Most methods of this type (e.g. mid-
point rooting) are either based on molecular clock analysis or non-
reversible models of DNA substitution. When a strict molecular
clock holds, midpoint rooting and other distance-based methods can
be statistically consistent and estimated root locations can be highly
accurate. However, as the evolutionary rate deviates from strict mo-
lecular clock, midpoint rooting can perform poorly. Minimum an-
cestor deviation (MAD) (Tria et al., 2017) and minimum variance
rooting (MinVar) (Mai et al., 2017) address this problem by mini-
mizing a cost based on the deviation from the strict molecular clock.
However, even MinVar and MAD can have poor accuracy as the de-
viation from the molecular clock and ILS level increases (Mai et al.,
2017).

Another method for rooting a species tree was introduced in
Tian and Kubatko (2017). This method assumes that genes evolve
within a species tree under the MSC and that sequences evolve with-
in each gene tree under the Jukes and Cantor (1969) substitution
model and with the strict molecular clock. This method takes a set
of unrooted gene trees and their sequence alignments as input and
uses a series of hypothesis tests on site pattern probabilities to infer
a rooted quartet tree for every four species; it then uses these rooted
quartet trees to root a given larger species tree. While the method
performs well when the strict clock holds, its accuracy degrades as
the clock is violated (Tian and Kubatko, 2017).

RootDigger (Bettisworth and Stamatakis, 2021) is an interesting
new statistical method for rooting species trees. Given an unrooted
species tree T and a sequence alignment, RootDigger computes the
likelihood of each rooted version of T under a non-reversible model
of evolution (specifically UNRESTþT þ I). In its default mode (i.e.
‘search’), RootDigger uses local search heuristics to find the most
likely position for the root; for small enough trees, the ‘exhaustive’
mode can be used, which scores every rooted version to quantify
root placement uncertainty by computing the likelihood weight ratio
for placing the root on each branch of the tree. Because RootDigger
is very recent, less is understood about its performance compared to
the other methods we have discussed here.

Finally, STRIDE (Emms and Kelly, 2017) is relevant to rooting
species trees when genes evolve with duplication and losses, so that
the gene trees have multiple copies of the species. STRIDE uses
properties about gene duplication and loss models to estimate the
probability of the root being located on each edge in the species tree.
However, by design, STRIDE cannot be used for rooting a species
tree given single-copy gene trees.

2.2 The Allman, Degnan and Rhodes theory
Allman et al. (2011) (here given as ADR) provided one of the funda-
mental theorems underlying species tree estimation under the MSC:
they proved that for any four species, the unrooted topology of the

species tree is the same as the topology of the most probable
unrooted gene tree. This theorem has been used to establish statistic-

al consistency for quartet-based methods, such as ASTRAL, wQFM
(Mahbub et al., 2021) and the population tree in BUCKy (Larget
et al., 2010). Interestingly, Theorem 9 from ADR has received much

less attention and (to the best of our knowledge) is not used in any
species tree estimation method. This theorem states that every five-

leaf rooted species tree topology is identifiable from the distribution
of the unrooted gene tree topologies.

In deriving Theorem 9, ADR note that for any five species there
are 105 possible rooted binary trees (i.e. there are 15 different
unrooted binary gene tree topologies on 5 leaves, and each can be

rooted on any of its 7 edges). Using the MSC, for any given rooted
species tree on 5 leaves, ADR establish relationships (invariants and

inequalities) between the probabilities for each of the 15 unrooted
gene tree topologies, denoted by u1; u2; . . . ;u15. Every rooted five-
leaf species tree has a particular topological shape (i.e. caterpillar,

balanced or pseudo-caterpillar; Rosenberg, 2007), and ADR estab-
lish that the set of inequalities and invariants for a given rooted bin-
ary model species tree only depends on its shape and not on the

numeric model parameters (i.e. branch lengths in coalescent units).
Thus, the set of ADR invariants and inequalities fall into three cate-

gories, one for each shape. An example of these linear invariants and
inequalities for each tree shape category is provided in Table 1.
Theorem 9 in ADR establishes that under the MSC, these invariants

and inequalities suffice to identify the rooted species tree and its in-
ternal branch lengths, for all rooted model species trees with five

leaves. In other words, if the probability distribution on unrooted
gene tree topologies is known exactly, then there will be exactly one
rooted species tree topology that satisfies all the invariants and

inequalities.

3 Quintet Rooting

3.1 General algorithmic design for QR
We propose a general class of methods for rooting that can be used

when given an unrooted five-leaf species tree and a set of k unrooted
five-leaf gene trees: First, compute the empirical probability distribu-
tion of the unrooted gene tree topologies and then score each rooted

version of the given species tree to determine how well its topology
fits the distribution as predicted by the ADR theory. Computing the
(empirical) distribution on gene tree topologies is straightforward:

divide the frequency for each unrooted gene tree topology by k.
Scoring a rooted species tree, however, presents several non-trivial

challenges. The first challenge is computational: each rooted species
tree defines a different set of invariants and inequalities, and these
must be calculated separately. The more significant challenge is how

to define the fit between the ADR invariants and inequalities and a
given rooted species tree so that the rooted species tree with the best

fit is likely to be the true species tree. As we will see in the next sec-
tion, defining the fit appropriately required that we correct for a
topological bias in a naive definition of the fit.

In what follows, we will define cost functions for measuring the
fit between the ADR invariants of a rooted five-leaf species tree and

a given distribution of five-leaf unrooted gene trees, g1; g2; . . . ; gk.
Then, given a cost function, distribution of five-leaf unrooted gene
trees and an unrooted five-leaf tree T, we will seek the rooting of T
that minimizes the cost. QR follows this design:

• Estimate the unrooted gene tree probability distribution û
! ¼

ðû1 ; û2 ; . . . ; û15 Þ from g1; . . . ; gk.
• For a given cost function CostðR; û

!Þ (for an example, see

Equation 2), search all rooted versions of T to find R̂ such that
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R̂ ¼ argmin
R

CostðR; û
!Þ (1)

and return R̂ as the rooted species tree.
In Section 3.3, we present extensions of this approach to enable

us to root trees with more than five leaves.

3.2 Cost function
The ADR invariants lead to equivalence classes for ui values, exam-
ples of which are shown in Table 1. All the ui values in one equiva-
lence class must be the same, and the ADR inequalities suggest

certain inequality relationships across these classes. We define CR as
the set of equivalence classes for a five-species rooted species tree R.

For example, according to Table 1, the set of equivalence classes for
the caterpillar tree R1 ¼ ðððða;bÞ; cÞ; dÞ; eÞ is given by

• CR1
¼ ffu1g; fu2g; fu3g; fu4;u13g; fu6;u9g; fu5; u12g;

fu7;u8; u10; u11;u14;u15gg:

For two classes c; c0 2 CR, we write c > c0 if the inequalities for

that specific tree state that each ui value in class c must be larger
than each ui value in class c0. For instance, for R1, the inequalities in
Table 1 requires that fu1g > fu4;u13g.

Each of the 105 possible five-species rooted trees has a unique
set of equivalence classes, meaning that no two CR’s are exactly the

same when considering the inequalities that hold among classes (see
Supplementary Section S2 for a complete list of equivalence classes
for all trees).

For a given vector of estimated gene tree probabilities û
! ¼

ðû1 ; û2 ; . . . ; û15 Þ and a rooted tree R, we seek to define a cost that

measures the degree to which û
!

violates the ADR invariants and
inequalities defined for that rooted tree R. Therefore, we seek to

find a rooted species tree R̂ for which this cost is minimized, which
we will interpret as indicating that R̂ best explains the given
unrooted gene tree distribution according to ADR theory. If we let

CostðR; û
!Þ denote this cost function, then we want CostðR; û

!Þ ¼ 0
to indicate that the given gene tree distribution satisfies the ADR
invariants and inequalities for that rooted species tree perfectly, and

we want CostðR; û
!Þ > 0 to indicate that the gene tree distribution

violates some of these ADR invariants and inequalities.
In Experiment 1 (see Section 4), we explored different cost func-

tions on our training datasets (based on a mammalian simulation);

here, we present the one we selected.

CostðR; û
!Þ ¼

X
c2CR

1

jcj
X

ua ;ub2c

jûa � ûbj
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Invariants Penalty

þ
X

c>c02CR

1

jc0j
X

ua2c;ub2c0
maxð0; ûb � ûaÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Inequalities Penalty

(2)

The ‘Invariants Penalty’ component of Equation 2 considers a
penalty for each pair ûa; ûb that are in the same equivalence class for
R but have different values in û

!
. Since membership in the same

equivalence class indicates that ua ¼ ub, the penalty for any pair
ûa; ûb with different values is the magnitude of their difference.
Summing these penalty terms is a natural way of penalizing the vari-
ation of ui’s inside equivalence classes. The ‘Inequalities Penalty’
component of Equation 2 is defined similarly, this time considering
the inequalities between classes. For two classes c and c0 where
c > c0, we expect to have ûa > ûb for all ua 2 c; ub 2 c0 for the true
tree (provided we have a good enough estimation of the probability
distribution on quintet tree topologies). Therefore, we consider a
penalty term equal to ûb � ûa when this relationship is reversed
(which means ûb � ûa is a positive penalty). Note that all the indi-
vidual penalty terms will be 0 when scoring the true species tree
with respect to the true gene tree distribution.

Normalization: correcting for bias. The number of invariant pen-
alty terms (i.e. jûa � ûbj) in the cost function provided in Equation 2

for a rooted tree R is equal to
P

c2CR

jcj
2

� �
. Therefore, the number

of invariant penalty terms for caterpillar, balanced and pseudo-
caterpillar trees are 18, 23 and 31, respectively, which can be com-
puted from class sizes in Table 1. Similarly, the number of inequality
penalty terms for a tree R is equal to

P
c>c02CR

jcjjc0j. This leads to

28 inequality penalty terms for caterpillar trees, 44 for balanced
trees and 54 for pseudo-caterpillar trees. Therefore, the overall num-
ber of penalty terms varies significantly between different tree
shapes (46, 67 and 85, respectively), which could lead the algorithm
to generally assign smaller costs to one tree category, and return an
output tree from that category with much higher probability. In
other words, using a cost function without modification would pro-
duce a ‘category bias’.

To alleviate this problem, we have used a normalization factor 1
jcj

for the sum of invariant terms in a class c and a factor 1
jc0 j for the sum

of inequality terms between classes c and c0, where c0 is the class
with smaller values. After including these factors, the weighted num-
ber of inequalities and invariants becomes 19, 20 and 19 for

Table 1. Examples of invariants, inequalities and equivalence classes for rooted species trees of different categories according to ADR

ðððða; bÞ; cÞ; dÞ; eÞ ððða; bÞ; cÞ; ðd; eÞÞ ððða; bÞ; ðd; eÞÞ; cÞ
Caterpillar Balanced Pseudo-caterpillar

Invariants

u14 � u15 ¼ 0
u11 � u15 ¼ 0
u10 � u15 ¼ 0
u8 � u15 ¼ 0
u7 � u15 ¼ 0
u6 � u9 ¼ 0
u5 � u12 ¼ 0
u4 � u13 ¼ 0

u2 � u3 þ u9 � u12 ¼ 0

u14 � u15 ¼ 0
u11 � u15 ¼ 0
u10 � u15 ¼ 0
u9 � u12 ¼ 0
u8 � u15 ¼ 0
u7 � u15 ¼ 0
u6 � u12 ¼ 0
u5 � u12 ¼ 0
u4 � u13 ¼ 0
u2 � u3 ¼ 0

u14 � u15 ¼ 0
u12 � u15 ¼ 0
u10 � u15 ¼ 0
u9 � u15 ¼ 0
u8 � u11 ¼ 0
u7 � u15 ¼ 0
u6 � u15 ¼ 0
u5 � u15 ¼ 0
u4 � u13 ¼ 0
u2 � u3 ¼ 0

Inequalities
u1 > u2; u4 > u5 > u7

u3 > u2; u6 > u5 > u7
u1 > u2; u4 > u5 > u7 u1 > u2; u4; u8 > u5

Equivalence

Classes

fu1g; fu3g
> >

fu4; u13g; fu2g; fu6; u9g
>

fu5; u12g
>

fu7; u8; u10; u11; u14; u15g

fu1g
>

fu2; u3g; fu4; u13g
>

fu5; u6; u9;u12g
>

fu7; u8; u10; u11; u14; u15g

fu1g
>

fu2; u3g; fu4; u13g; fu8; u11g
>

fu5; u6;u7;u9;u10; u12; u14; u15g
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caterpillar, balanced and pseudo-caterpillar trees respectively.
Hence, this results in roughly the same number of invariant and in-
equality penalty terms for each tree category.

3.3 Extending to larger trees
We have explored two ways of extending Quintet Rooing to trees
with more than five leaves. Both operate by examining each of the
2n� 3 possible ways to root the input unrooted n-leaf tree T (i.e. on
each of the 2n� 3 edges) and then evaluates the cost of the resultant
rooted tree R by adding up the costs for a selected subset Q� of the
rooted quintet trees within R. We describe this as a two-step pro-
cess: (i) preprocessing: compute the cost for each rooted quintet tree
using Equation 2 and (ii) for each of the 2n� 3 candidate rooted
trees R corresponding to T, compute the score of R as below:

ScoreðR;TÞ ¼
X
q2Q�

Costðq; ûq
�!Þ; (3)

where Q� is the selected subset of rooted quintet trees and ûq
�! is the

probability distribution of unrooted five-species gene trees corre-
sponding to a rooted quintet q. Thus, the two methods differ only in
how the subset Q� of rooted quintet trees is defined. The first way
looks at all possible rooted quintet trees, and so has Hðn5Þ quintets
to examine, but the second way looks at a carefully selected subset
of O(n) quintets (where the selection is based on the unrooted spe-
cies tree being evaluated). Moreover, by calculating the costs of the
rooted quintet trees in a preprocessing step, the first approach uses
Oðkn5Þ time and the second approach uses only O(kn) time, where
there are k gene trees and n species. Thus, while the first approach
has the advantage that it relies on more information, it is much less
computationally tractable than the second approach. For the specific
linear encoding approach we use, see Supplementary Section S4.

4 Experimental study design

Overview. In Experiment 1, we explored different cost functions for
use in QR on training simulated datasets; this produced our selected
cost function, presented in Section 3.2, which we used in all subse-
quent experiments for QR. In Experiments 2 and 3, we compared
QR to four other rooting methods (three based on distances and
RootDigger, which is based on gene sequence alignments as well as
distances). In Experiment 2, we evaluated rooting methods on simu-
lated ‘testing’ datasets with up to 30 leaves. In Experiment 3, we
explored rooting methods on five-leaf subsets of an avian biological
dataset.

We used the avian and mammalian simulated datasets from
Mirarab et al. (2014b) and the biological avian dataset from Jarvis
et al. (2014). We created subsets of 5 to 30 species each from these
datasets to explore accuracy for rooting methods, using both true
and estimated species trees. The model trees for the simulated data-
sets have model parameters (topology and coalescent unit branch
lengths) based on the trees constructed on associated biological
datasets, as described in Mirarab et al. (2014b) and below. We used
both true species trees and estimated species trees, as computed
using ASTRAL (Zhang et al., 2018), and we reported the ‘clade dis-
tance’ between the estimated rooted trees and the true rooted trees
as the error.

All experiments were run on the University of Illinois campus
cluster, which limits each run to 4 h and explored the following
questions: (i) How do different cost functions impact the accuracy
of QR?, (ii) How does the accuracy of the species tree impact the
relative and absolute accuracy of the different rooting methods? and
(iii) How do the number of species and gene tree estimation error
impact the relative and absolute accuracy of the different rooting
methods?

Evaluation criteria. We use the normalized clade distance be-
tween the estimated rooted tree T and the true rooted tree T� as the
main measure of error, where clade distance is the natural extension
of the standard Robinson and Foulds (1981) error rate that is used
to evaluate methods for estimating unrooted trees. Thus, the

normalized clade distance between two binary rooted trees T� and
T, both on the same set of n leaves, is given by:

jCladesðT�ÞnCladesðTÞj þ jCladesðTÞnCladesðT�Þj
2n� 4;

(4)

where Clades(t) denotes the set of clades of the rooted tree t. Thus,
the normalized clade distance is a value between 0 and 1 and indi-
cates the fraction of the non-trivial clades in the estimated rooted
tree that are not in the true rooted tree. When evaluating error in
rooting the unrooted true tree t, another technique that can be used
is the root distance, which is the distance in t between the edge con-
taining the correct root location and the estimated root location.
Letting T denote the result of applying a method to root t and letting
T� denote the true rooted tree, the clade distance between T and T�

is twice the root distance between T and T� (Lemma 1 in
Supplementary Section S5). In our experiments, however, we are
also interested in rooting estimated species trees, and for this case,
we cannot use the root distance to measure error. For this reason,
we use the clade distance (in its normalized form), which allows us
to evaluate error in both cases. We also reported the proportion of
test cases in which the tree was correctly rooted as a measure of ac-
curacy for each method; results for this criterion show nearly identi-
cal relative performance as for the clade distance criterion, and are
provided in Supplementary Section S6.2.

Biological dataset. We used the biological dataset studied in
Jarvis et al. (2014) containing 48 avian species and 4 non-avian out-
groups (American Alligator, Green Sea Turtle, Green Anole Lizard
and Human). Jarvis et al. (2014) used 14 446 genes [8251 exons,
2516 introns and 3679 ultraconserved elements (UCEs)]; the main
tree produced (the ‘TENT’, or total evidence nucleotide tree) was
constructed using maximum likelihood and has branch lengths and
branch support values. Because of the substantial levels of gene tree
heterogeneity (e.g. every estimated gene tree was different from the
estimated species tree) and because the estimated species tree had
many very short branches suggestive of a rapid radiation which
would produce high ILS, the avian dataset is considered to be a
good example of a dataset with a high level of ILS (Jarvis et al.,
2014). The gene trees in this dataset exhibited exceptionally low
branch support (on average about 32%), due to low rates of evolu-
tion in the exons and UCEs (Jarvis et al., 2014), so that this is a chal-
lenging dataset for methods that are based on estimated gene trees.

We produced 12 subsets, each a random selection of 5 avian spe-
cies. For each set of five avian species, we included any gene from
the 14 446 genes that had all five species; this resulted in varying
numbers of genes (ranging from approximately 10K to 13K genes)
for each of the five-species subsets. For each selected subset of five
species, we gave the unrooted TENT (restricted to those five species)
to each of the rooting methods. We provided the published esti-
mated gene trees to QR (after restriction to the selected five species),
and we derived branch lengths on the five-leaf trees using the
implied branch lengths in the TENT for the distance-based methods.
To evaluate accuracy, we used the 48-species TENT, rooted at the
edge leading to the outgroup, as the ‘true tree’.

Simulated datasets. We used mammalian simulated datasets for
Experiment 1 (designing QR) and avian simulated datasets for
Experiments 2 and 3 (evaluating QR in comparison to other meth-
ods). These datasets were generated by Mirarab et al. (2014b), and
the true species trees, estimated and true gene trees and sequence
alignments per gene are available at Mirarab et al. (2022).

Here, we briefly describe how Mirarab et al. (2014b) produced
these datasets. The mammalian simulated datasets were evolved
down a 37-species model tree based on a species tree constructed in
Song et al. (2012) and the avian simulated datasets were evolved
down a 48-species model tree based on the TENT constructed for
Jarvis et al. (2014). [The Mirarab et al. (2014b) paper varied the ILS
level by rescaling the branch lengths before simulating gene evolu-
tion, but here we only use the initial (default) species tree branch
lengths.] Thousand gene trees were evolved down these model trees
under the MSC, and the branch lengths were modified to create
deviations from the molecular clock. Sequences of varying lengths
were then evolved down each gene tree under a GTRGAMMA
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model of sequence evolution. Estimated gene trees were produced
for each gene sequence alignment using maximum likelihood. Thus,
the public repository contains true and estimated gene trees, true
alignments and the true species trees (with branch lengths) for the
mammalian and avian simulated datasets.

In Experiment 1, we only used true gene trees from the mamma-
lian simulation, but in Experiment 2, we used both estimated and
true gene trees from the avian simulation. We report the average
gene tree estimation error (GTEE) for each model condition, where
GTEE is the Robinson–Foulds error rates (i.e. the percentage of the
non-trivial bipartitions in the true gene tree that are not found in the
estimated gene tree). For the avian simulation, sequence lengths
ranging from as long as 1600 down to 250 were provided, so that
GTEE rates for the ML trees ranged from 30% to 67%. The ILS lev-
els for these model conditions is reported using ‘average discord-
ance’, or AD, defined as follows: AD is the average normalized
bipartition distance between the true species tree and true gene trees.
Thus, AD measures the percentage of bipartitions defined by intern-
al branches in the species tree that are not in the true gene trees. The
ILS level for the mammalian simulation used in our experiments is
29%, which is a moderate level of ILS, and the AD level for the
avian simulation is 47%, which is moderately high.

To generate datasets with k-leaf trees, we randomly sampled k
species from the species set and extracted the induced subtrees on
these taxa from the model species tree and all gene trees in each
model condition. For the five-species datasets, we generated 20 rep-
licates (corresponding to the 20 replicates in the original datasets) of
a dataset with 1000 random samples, and for all other datasets, we
generated 20 replicates with 200 samples.

Methods. We compared QR to other rooting methods: midpoint
rooting (Midpoint) as provided by the FastRoot (Mai et al., 2017)
package, minimum variance (MinVar) rooting (Mai et al., 2017),
MAD (Tria et al., 2017) and RootDigger (Bettisworth and
Stamatakis, 2021). The software versions and commands are pro-
vided in Supplementary Section S1. We did not include outgroup
rooting, as it needs additional information about the taxa in the spe-
cies set. We did not include STRIDE (Emms and Kelly, 2017), as it
cannot be used on single-copy gene trees, and we did not include the
rooting method from Tian and Kubatko (2017), as the software is
not publicly available.

These methods require different types of input. The input to QR
is a set of unrooted gene trees in addition to an unrooted species tree
topology. The input to MinVar, MAD and Midpoint is an unrooted
tree with branch lengths. Following the recommendations in Binet
et al. (2016), who found that maximum likelihood was one of the
two most accurate techniques for estimating branch lengths in spe-
cies trees, we used RAxML (under GTRGAMMA) to estimate
branch lengths on the given species trees, using a concatenated align-
ment of all gene sequences. Finally, the input to RootDigger is an
unrooted tree with branch lengths as well as a multiple sequence
alignment. To produce a multiple sequence alignment for
RootDigger, we concatenated gene sequence alignments for all genes
in a replicate. RootDigger has two modes of running that are called
‘search’ and ‘exhaustive’ modes. The default search mode provides a
prediction of the root location quickly using heuristics, with early
stopping on by default, and the exhaustive mode can be used to do a
more thorough search and compute the confidence probabilities for
the predicted root position. We ran RootDigger in both of these
modes in our experiments, although the original paper only com-
pared RootDigger in the ‘search’ mode with other methods. Our
experiments included both the true unrooted species tree topology
and an estimated unrooted species tree, computed by ASTRAL on
the given gene trees.

5 Results and discussion

5.1 Experiment 1: Designing the cost function
Recall that QR can be used with any given cost function; hence,
here, we compare four different cost functions to understand the im-
pact of the cost function on the final accuracy. The final cost

function, Cost4, is identical to the cost function given in Equation 2,
and the first three cost functions are obtained by modifying Cost4.
Cost1 only considers penalties for the invariants and not the inequal-
ities, Cost2 considers both but does not normalize them, and Cost3
is similar to Cost4 in structure (i.e. it considers penalties for both
invariants and inequalities) but uses a different normalization
scheme. The equations for the first three cost functions are provided
in Supplementary Section S3, but results comparing these cost func-
tions are presented here.

Figure 1 shows that QR using the first three cost functions pro-
duces biased results and overall lower accuracy: the rooting error
rates (average normalized clade distance) on caterpillar trees are
much lower than on balanced and pseudo-caterpillar trees.
However, QR with Cost4 has approximately the same rooting error
across the four different shape categories and overall has the lowest
rooting error.

This bias results from the number of penalty terms (based on
invariants and inequalities) for the caterpillar category being smaller
than the number of penalty terms for the other categories, so that
appropriate normalization is needed to eliminate the bias. Clearly
not using the inequalities (Cost1) or not normalizing at all (Cost2)
does not produce overall good results. A comparison between Cost3
and Cost4 is also interesting, as each uses both types of penalty terms
and differ only in how they weight the inequalities. The approach
used in Cost4 comes close to an equal weighted cost per category
(see discussion in Section 3.2), explaining why using Cost4 results in
lower overall error and greatly reduced bias.

5.2 Experiment 2: Evaluation on simulated datasets
Here, we compare QR to other rooting methods on 5-leaf and
10-leaf subtrees of the avian simulated datasets, with varying gene
sequence lengths. We explore all conditions with both the true spe-
cies tree and with the estimated species tree computed using
ASTRAL. The distance-based methods and RootDigger were given
branch lengths estimated by RAxML on the concatenated sequence
alignments of all genes. Results shown for ‘true gene trees’ reflect
performance when QR is given 1000 true gene trees and the other
methods (which all require branch lengths on the species trees) are
given branch lengths based on gene sequences of length 1600; all
other conditions reflect performance given shorter sequences.

Results for rooting five-leaf trees. Figure 2 explores rooting error
(computed using normalized clade distances) for three distance-
based methods, two ways of running RootDigger and QR, when
rooting five-leaf subtrees of the true species tree and varying the se-
quence length.

As expected, gene trees computed on shorter sequences have
higher GTEE. Given true gene trees, QR has very low rooting error,
but as GTEE increases its rooting error also increases. Even so, QR
has much lower error than the other methods when GTEE is not
high (i.e. GTEE <54%). However, for GTEE¼54%, QR is better

Fig. 1. Average normalized clade distance for quintet rooting on mammalian simu-

lated datasets using four different cost functions, across the different shape catego-

ries. The results are shown across 1000 sample five-leaf trees with 800 true gene

trees. The ratio of caterpillar, balanced and pseudo-caterpillar trees in this dataset is

53.8%, 21.2% and 25%, respectively. The ILS level is 29% AD. This figure shows

the effect of Category Bias, and the importance of how the cost function is defined.

Based on this experiment, we selected Cost4 as our cost function
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than the distance-based methods but slightly worse than RootDigger
run in its default search mode, and when GTEE¼67% then QR is
less accurate than the other methods.

Other trends in Figure 2 are also worth noting. For example, the
three distance-based methods (MAD, Midpoint and MinVar) do not
seem impacted by the gene sequence length, so that at all sequence
lengths the rooting error is very high. RootDigger run in search mode
is impacted by sequence length, but not when run in exhaustive mode,
and RootDigger run in exhaustive mode is much less accurate than
RootDigger run in search mode for all sequence lengths (with big dif-
ferences for longer sequences). Finally, although the differences be-
tween the distance-based methods are very small and to some extent
depends on the model condition, Midpoint rooting is slightly more ac-
curate than both MinVar and MAD, and when there was a difference
between MinVar and MAD it tended to favor MinVar.

Figure 3 shows a comparison between methods when rooting
five-leaf estimated species trees computed by ASTRAL. In this ex-
periment, we omitted RootDigger in exhaustive mode due to its
poor accuracy when given the true species tree. Here, we observe the
same trends as the experiments on the true species tree, with the
relative performance between methods remaining the same. In par-
ticular, we still see QR having lower error than the other methods
except for high GTEE (54%) and very high GTEE (67%), and
Midpoint rooting more accurate than the other remaining methods.
We also see that increases in sequence length improve accuracy for
QR but do not impact the distance-based methods, and have only a
minor impact on RootDigger.

Results on rooting larger trees. We now discuss results on root-
ing trees with 10–30 species. We begin with 10-leaf subtrees, com-
paring two ways of running QR, the three distance-based methods,
and RootDigger in search mode. When rooting the true species tree
(Fig. 4), both ways of running QR (i.e. looking at all five-leaf sub-
trees or the linear encoding) are more accurate than the other meth-
ods (except for the very high GTEE condition), and the linear
encoding version is less accurate than the version that uses all five-
leaf subtrees. Because both ways of running QR are (relatively) close
in accuracy and have the same relative performance to other meth-
ods, we will refer to them jointly as ‘QR’ henceforth.

RootDigger is the least accurate, and the three distance-based
methods are in between. For the highest GTEE rate (67%), QR is
less accurate than the distance-based methods but still more accurate
than RootDigger. The relative performance between distance-based
methods is also noteworthy: Midpoint is the most accurate, fol-
lowed by MinVar, and then by MAD. Changes in sequence length
impact QR but not the distance-based methods, and impact
RootDigger only slightly. Overall these trends are similar to trends

observed on five-leaf trees, except that there are larger differences
between the three distance-based methods and QR maintains its su-
perior accuracy until the highest GTEE.

Figure 5 presents results when rooting 10-leaf trees computed by
ASTRAL, instead of the true species trees. We see the same relative
performance as before, but error rates are slightly higher than when
rooting true species trees (which is unsurprising). And as when root-
ing true species trees, both ways of running QR are more accurate
than the other methods except for the highest GTEE.

Results on trees with up to 30 leaves are shown in Figure 6,
where we evaluate QR with the linear encoding in comparison to
the other rooting methods when rooting subsets of the true species
tree and given 1000 genes of length 1000. Note that QR with the
linear encoding differs from default QR only on trees with more
than five leaves, so that results for rooting five-leaf trees are identical
to results in Figure 2. Here, we focus on the trends on the larger
trees, and especially on results with more than 10 leaves.

QR using the linear encoding produces more accurate rootings
than the other methods. Midpoint is the most accurate of the
remaining methods, and RootDigger is the least accurate method
(except when rooting five-leaf trees). All methods have relatively
high error for five-leaf trees, but improve in accuracy as the tree size
increases. Although there is a large gap between QR and the next
best method starting at 10-leaf trees, the gap between QR and the

Fig. 3. Average normalized clade distance on five-leaf avian simulated datasets by

each rooting method given an estimated species tree computed by ASTRAL. The

branch lengths on the estimated species tree are estimated using RAxML with the

concatenated gene multiple sequence alignments. The results are averaged over

1000 sample five-species trees. The number of genes is 1000 and the error bars are

shown across 20 replicates

Fig. 2. Average normalized clade distance of rooting methods on five-leaf subsets of

the avian simulated datasets when given the true species tree topology. The number

of genes is 1000 and the error bars are shown across 20 replicates, each on 1000

samples. Branch lengths are estimated using RAxML on the concatenated alignment

(CA) of the gene sequence alignments. Results shown for ‘true gene trees’ reflect

quintet rooting given 1000 true gene trees and the other methods given branch

lengths estimated on the true species tree using gene sequences of length 1600

Fig. 4. Average normalized clade distance on 10-leaf avian simulated datasets given

the true (model) species tree by each rooting method. The results are averaged over

200 sample 10-species trees. The number of genes is 1000 and the error bars are

shown across 20 replicates. The branch lengths are estimated using RAxML on the

concatenated gene sequence alignments
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other methods decreases with the tree size. However, even at
30 leaves, the error rate for QR is very low (6.2%) and about half
that of the next best method, Midpoint (12.3%).

Discussion of results on simulated datasets. A comparison of
results across these different conditions is informative. We see that
QR run using all quintets is slightly more accurate than QR using
the linear encoding and that both ways of running QR are much
more accurate than all the other methods whenever GTEE is at most
moderate. When GTEE is sufficiently high (i.e. at least 54%), then
the relative performance between QR and the other methods
depends on the number of species and whether true or estimated spe-
cies trees are used. Specifically, QR maintains an advantage even at
GTEE¼54% when rooting estimated species trees or when given
10-leaf trees. The distance-based methods were generally close in ac-
curacy, but comparisons in terms of clade distances showed a con-
sistent pattern of Midpoint somewhat more accurate than MinVar,
and MinVar more accurate than MAD. Another trend that is con-
sistently seen across all these conditions is that sequence length per
gene always impacts QR, but does not impact distance-based meth-
ods, and has a very minor impact on RootDigger.

Some aspects of the relative performance, however, depended on
the model condition. As an example, while RootDigger run in de-
fault mode was more accurate than the distance-based methods on
5-leaf trees, it was less accurate when rooting 10-leaf trees. We also
saw that QR, using the linear encoding, was able to root trees with

up to 30 leaves, and maintained an advantage over the other meth-
ods across all tree sizes we tested. However, the gap between QR
and the next best method, Midpoint, decreased with the tree size.
Finally, we observed that differences between methods were larger
on true species trees than on estimated species trees, but relative per-
formance remained the same.

In interpreting these trends, we make the following hypotheses.
Clearly, QR is impacted by GTEE, which is why sequence length
has an impact on it. However, the lack of impact on distance-based
methods as well as the very minor impact on RootDigger (which
also uses branch lengths) suggest that using 1000 genes is sufficient,
even for short gene alignments, to produce a reasonable estimate of
the branch lengths of the given species tree. The improvement in ac-
curacy for the distance-based methods and even RootDigger as the
tree size increases suggests that these methods benefit from denser
taxon sampling, which may break up long branches and possibly
improves branch length estimation.

5.3 Experiment 3: Evaluation on the biological dataset
Because we observed that QR is impacted by gene tree estimation
error, we selected a biological dataset in which this was likely to be
a challenge for it: the Avian Phylogenomics project dataset studied
in Jarvis et al. (2014). Gene tree branch support (measured using
bootstrapping) was on average about 32% (Mirarab et al., 2014b),
resulting from low phylogenetic signal in the gene sequences, and
suggesting that the gene trees likely had high gene tree estimation
error (Mirarab et al., 2014b). Evaluating how well QR performed
on this dataset would give us an estimate of its reliability under very
challenging conditions. [Here, we note that many other phyloge-
nomic datasets are not as challenging; for example, the average
branch support in the Thousand Plant Transcriptome project from
Wickett et al. (2014) was much higher.]

We selected 12 random subsets of 5 avian species each from the
maximum likelihood ‘TENT’ tree computed on the genome-scale
data and used the outgroups to root the trees as the ‘reference rooted
tree’ for evaluation purposes. The normalized clade distances for
QR and the three distance-based rooting methods on the 12 avian
subtrees are provided in Table 2, with the trees shown in Figure 7.
The two methods with the lowest average error are QR and
Midpoint, but MinVar is close behind and MAD is in last place.
One of the striking observations is that the distance-based methods
tend to root the tree on the longest branch in the tree, but this is not
true for QR. We also see that there are datasets for which no method
is able to find the correct root (see ADS8 and ADS11, for example).

The trends on these biological datasets are consistent with results
on the simulated datasets. As noted, the biological dataset gene trees
have low bootstrap support indicating that for these datasets the

Fig. 6. Average normalized clade distance on subsets of the avian simulated datasets

with 5–30 leaves for each rooting method, given the true species tree topology and

estimated gene trees with L¼1000 (39% GTEE). The branch lengths on the model

tree are estimated using RAxML with the concatenated gene multiple sequence

alignments. The results are averaged over 200 samples for each number of species.

The number of genes is 1000 and the error bars are shown across 20 replicates

Fig. 5. Average normalized clade distance on 10-leaf avian simulated datasets by

each rooting method given an estimated species tree computed by ASTRAL. The

branch lengths on the ASTRAL tree are estimated using RAxML with the concaten-

ated gene multiple sequence alignments. The results are averaged over 200 sample

10-species trees. The number of genes is 1000 and the error bars are shown across

20 replicates

Table 2. Normalized clade distances are shown for Quintet

Rooting, Midpoint, MinVar and minimum ancestor deviation

(MAD) for rooting five-leaf subtrees of the TENT avian tree

Dataset No. of genes Quintet rooting Midpoint MinVar MAD

ADS1 12 878 0.67 0.00 0.33 0.33

ADS2 12 000 0.00 0.00 0.00 0.00

ADS3 11 745 0.00 1.00 1.00 1.00

ADS4 12 863 0.00 0.00 0.00 0.00

ADS5 11 960 0.33 0.00 0.00 1.00

ADS6 12 285 0.33 0.67 0.67 0.67

ADS7 12 095 0.00 0.00 0.00 0.00

ADS8 12 612 0.33 0.33 0.33 0.33

ADS9 11 714 0.33 0.00 0.00 0.00

ADS10 12 584 0.00 0.00 0.00 0.00

ADS11 11 483 0.67 0.67 0.67 0.67

ADS12 11 860 0.00 0.00 0.00 0.00

Average �12 173 0.22 0.22 0.25 0.33

Note: The reference tree is the TENT tree from Jarvis et al. (2014), rooted

on the edge leading to the outgroups.
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gene tree estimation error is probably in the 50–80% range. Thus,
the corresponding cases among the simulated data are when GTEE
is high or very high. On the biological dataset, QR was in first place
but tied with midpoint rooting (MP), with MinVar somewhat less
accurate than QR and MP, and then MAD in last place. On simu-
lated datasets, we saw QR in first place except when gene tree esti-
mation error is high or very high. The relative performance between
the three distance-based methods is also similar on the biological as
well as simulated data, since MP was first in the simulated data, fol-
lowed by MinVar and then by MAD, which is what we see here.

6 Conclusions

We have presented QR, a polynomial time method for rooting a
given species tree that uses phylogenetic invariants and inequalities
established by Allman et al. (2011) under the MSC model. The
trends observed on both biological and simulated data suggest that
QR is a promising approach to rooting species trees under a range
of model conditions, generally more accurate than all the tested
competing methods except when GTEE is very high, in which case
all methods have poor accuracy.

The study suggests several directions for future work. For ex-
ample, we have not established whether QR is a statistically consist-
ent method for rooting species trees, not even for the simplest case
of five-leaf trees. We conjecture that this is the case, but a proof is
needed. In addition, alternative cost functions need to be explored
to determine if even more accurate methods can be developed and
established statistically consistent.

Further study under a wider range of conditions is also needed. In
particular, although QR (using the linear encoding) was able to main-
tain an accuracy advantage over the competing methods with up to
30 leaves, the gap between QR and the next most accurate method
had reduced, and it is possible that on much larger trees QR might be
less accurate than other methods. Thus, evaluating QR and other
rooting methods on larger trees is needed. Evaluating methods when
given larger numbers of genes is another important direction to con-
sider, especially since many phylogenomic studies use 1000 or more
genes to estimate species trees (e.g. Jarvis et al., 2014 used 14 000
genes). Future work should also evaluate conditions with varying lev-
els of ILS, and the model conditions we explored were based on data-
sets with moderately high ILS. Deviation from the strict molecular
clock has the potential to impact all methods, even if the main impact
would be on methods that try to minimize the deviation from the
clock or from a relaxed clock model, and its impact should be
explored systematically. Another question is why RootDigger per-
formed poorly in this study. Since RootDigger depends on likelihood
calculations, one possibility is inadequate search of the parameter
space, but another possibility is model misspecfication. All the meth-
ods we explore depend on stochastic models of evolution, either for
computing distances or for estimating gene trees; hence, the impact of
model misspecification should be explored more generally.

The theoretical foundations for the method, provided in Allman
et al. (2011), are specific to the MSC model, but this does not mean

that the approach would not perform well under other conditions,
such as cases where there is (for example) HGT or GDL. Future
work should evaluate QR under a wider range of model conditions
with these and other causes for gene tree discord.

Finally, a closely related problem is the estimation of the rooted
species tree from a set of unrooted gene trees, under the MSC. This
is a strictly harder problem than estimating a rooted species tree
from rooted gene trees under the MSC, which has been addressed by
methods such as MP-EST (Liu et al., 2010). Hence, this is another
direction for future work.
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Fig. 7. Analyses on the five-leaf subsets of the total evidence nucleotide tree (TENT) computed on the avian biological dataset by Jarvis et al. (2014). The branch lengths are

obtained from the published TENT species tree using Dendropy (Sukumaran and Holder, 2010). The branch selected as the root by each method is color-coded. The number

of genes used in each analysis (defined to be those genes that have all five of the selected species) is also shown beside each figure. Results are shown for quintet rooting (QR),

midpoint (MP), MinVar (MV) and minimum ancestor deviation (MAD). The trees are visualized using ETEToolkit v3 (Huerta-Cepas et al., 2016)
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