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A B S T R A C T   

The main protease (Mpro) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) catalyzes the 
cleavage of polyproteins for viral replication. Here, large-scale quantum molecular dynamics and metadynamics 
simulations for ligand-free Mpro were performed, where all the atoms were treated quantum-mechanically, 
focusing on elucidation of the controversial active-site protonation state. The simulations clarified that the 
interconverting multiple protonation states exist in unliganded Mpro, and the catalytically relevant ion-pair state 
is more stable than the neutral state, which is consistent with neutron crystallography. The results highlight the 
importance of the ion-pair state for repurposing or discovering antiviral drugs that target Mpro.   

1. Introduction 

In 2019, a novel coronavirus, severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), was observed in Wuhan, Hubei province, 
China, and rapidly spread worldwide, resulting in a worldwide 
pandemic of coronavirus disease 2019 (COVID-19) [1,2]. Until January 
2022, more than 300 million cases and more than 5 million deaths had 
been reported. The development of effective vaccines and/or drugs, 
particularly oral antiviral drugs, is still urged [3–5]. 

The main protease (Mpro) or 3CLpro, which is one of the target pro-
teins in SARS-CoV-2 against COVID-19, has an essential role in viral 
replication via proteolytic processing [6–9]. Mpro in the dimeric form 
(Fig. S1) catalyzes the hydrolysis reaction for the cleavage of poly-
proteins generated after SARS-CoV-2 infection. As SARS-CoV-2 Mpro has 
96% identity with SARS-CoV Mpro in the amino-acid sequence [10,11], 
therapeutics targeting Mpro are expected to be effective even for mutated 
SARS-CoV-2. As a result, covalent drugs such as N3 [12], GC373 [13], 
YH-53 [14], and PF-07321332 [15], and non-covalent drugs such as 
ebselen [16] and S-217622 [17] have been proposed as effective drug 
candidates for Mpro. 

Recently, docking and/or classical molecular dynamics (MD) 

simulations for Mpro [18–25], starting from the crystal structures 
captured from X-ray crystallography, have been widely conducted to 
search for effective inhibitors by evaluating the affinity for the active site 
of Mpro, mainly consisting of the catalytic dyad, i.e., Cys145 and His41 
(Fig. 1a). As hydrogen/proton is not resolved in the usual X-ray crys-
tallography due to the spatial resolution, the protonation states should 
be presumed in these simulations. The neutral state is the protonation 
state of the catalytic dyad usually employed in these simulations, except 
for the limited case [22,24,25], to the best of our knowledge. The neutral 
state is consistent with the findings from previous theoretical studies 
based on the quantum-mechanics/molecular-mechanics (QM/MM) 
method, in which Mpro initiates the catalytic cycle via proton transfer 
from Cys145 to His41 [26,27], indicating that the ligand-free Mpro re-
mains in the neutral form as the resting state before binding the sub-
strate or inhibitors. In contrast, a recent experimental study based on 
neutron crystallography at room temperature with the resolution of 
2.50 Å, the PDB ID of 7JUN, which can determine the positions of 
hydrogen/deuterium in principle, revealed that the active site of Mpro 

forms an unusual ion-pair (IP) state instead of a neutral state in the 
absence of ligands (Fig. 1b) [28]. 

In the present study, large-scale quantum MD (QMD) and 
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metadynamics (MetaD) simulations for ligand-free Mpro were performed 
focusing on the protonation states of the active site. The QMD/MetaD 
simulations for large-scale systems including more than 10,000 atoms 
can be achieved using the divide-and-conquer density-functional tight- 
binding (DC-DFTB) method [29,30]. Thus far, DC-DFTB-MD/MetaD 
simulations have been successfully applied to solutions [31,32], batte-
ries [33,34], perovskites [35], catalysts [36,37], and biomolecular sys-
tems [38,39]. Here, the DC-DFTB-MD/MetaD and free energy analysis 
revealed that the functionally relevant IP state consistent with neutron 
crystallography [28] pre-exists even without ligands, and that this IP 
state is the most stable protonation state. 

2. Computational method 

The crystal structure of apo-Mpro resolved from serial femtosecond 
crystallography with X-ray free electron laser (XFEL) at room tempera-
ture with the resolution of 1.90 Å, the PDB ID of 7CWB [9], was adopted 
as the initial structure. The standard protonated states at pH 7, including 
the neutral catalytic dyad suggested in previous QM/MM studies 
[26,27], were employed as the initial protonation states. The missing 
hydrogen atoms of Mpro were added, and the apo-Mpro dimer was sol-
vated with 23,521 water molecules and 8 Na+ ions for neutralization, 
using the LEaP module in Amber14 software [40]. As shown in Fig. S2, 
the total number of atoms was 79,935 with the periodic boundary 
condition, transcending the previous QM/MM studies [26,27] by two 
orders of magnitude in the number of atoms in the QM region. 

Classical MD simulations were performed for the pre-equilibration 
using the Sander module of Amber 14 [40] with the restraint for the 
non-hydrogen atoms of Mpro and the internal water molecules with a 
harmonic force constant of 100.0 kcal/mol/Å2. Amber ff99SB-ILDN [41] 
for standard amino acids and TIP3P [42] for internal water molecules 
and water solvent were used as the empirical force fields. The NPT 
ensemble simulations were performed with the restraint described 
above for 10 ns under a pressure of 1.0 atm and temperature of 300.0 K. 
The pre-equilibrated structures were used as the initial structures for the 
subsequent DC-DFTB-MD simulations, where the restraint was 
completely eliminated. 

DC-DFTB-MD simulations were conducted for equilibration using the 
DCDFTBMD program [30]. The DFTB3 method was employed with the 3OB 
[43] and 3OBw [44] parameter sets. Grimme’s DFT-D3 dispersion 

correction [45] was applied with the Becke-Johnson damping scheme. 
The accuracy of the DFTB parameters for describing the proton transfer 
between the catalytic dyad was assessed for the small model system, i.e., 
imidazole and methanethiol (CH3SH) in the gas phase (15 atoms in 
total), through a comparison with the corresponding DFT and MP2 
calculations. The details are described in the Supplementary Material 
(Figs. S3 and S4). 

The criteria of the self-consistent charge (SCC) convergence were 
10− 9 and 10− 6 au for the total energy and Mulliken charge, respectively. 
The modified Broyden method was used with a mixing parameter of 0.3. 
The DC method with 3 × 3 × 3 Å3 cubic grids and a buffer radius of 5.5 Å 
was employed to reduce the computational costs. The resulting number 
of subsystems was 21,700. The pre-equilibrated structures were ther-
malized for 30 ps under the NVT ensemble at 298.15 K, controlled by the 
Andersen thermostat with a time step of 0.5 fs. Note that the proton 
transfer reaction in the active site was not observed during the unbiased 
30 ps DC-DFTB-MD simulation due to the limitation of the timescale 
(Fig. S5), indicating the necessity of the enhanced sampling method 
such as MetaD for free energy analysis of the protonation state. The 
structural analysis such as the probability function was performed on the 
basis of the last 20 ps trajectories. The other analysis of the distances 
between the counter ions (Na+) and the catalytic dyad was provided in 
the Supplementary Material (Fig. S6). 

DC-DFTB-MetaD simulations were conducted using a well-tempered 
scheme [46]. The effective coordination number for the S atom on 
Cys145 with respect to the proton was selected as a collective variable 
(CV). The distance between the S and H atoms of Cys145 was used as a 
variable of coordination number expressed in rational functional form 
with a cutoff distance of 1.6 Å. The initial height of the Gaussian func-
tion for the biasing potential was set to 0.63 kcal/mol. The width of the 
Gaussian function was set to 0.04, which was estimated from the stan-
dard deviation of the CV in unbiased DC-DFTB-MD simulations. The 
Gaussian biasing potential was deposited at a time interval of 20 fs. The 
bias factor of the well-tempered MetaD technique was set to 15, corre-
sponding to a bias temperature of 4,200 K. All the biased histograms of 
MetaD trajectories were merged using the weighted histogram analysis 
method, which effectively estimates the converged unbiased histogram 
[47]. Furthermore, the reweighting technique was employed to obtain 
the free energy profiles with respect to the reaction coordinates different 
from the CV [47]. 

Fig. 1. (a) Close view of the active site in one of the protomers (protomer A) in the crystal structure of the Mpro dimer captured with XFEL at room temperature with 
the resolution of 1.90 Å (PDB ID: 7CWB). (b) Corresponding active site from neutron crystallography at room temperature with the resolution of 2.50 Å (PDB ID: 
7JUN), where the deuteron in the catalytic dyad is highlighted with the light green circle. Note that the numbers indicate the distances in Å. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. 2D FES in kcal/mol with respect to the dis-
tance difference between Sγ(Cys145) − Hγ(Cys145) 
and Nε(His41) − Hγ(Cys145) and Sγ(Cys145) −

Nε(His41) distance projected with the reweighting 
method, merged from four 70-ps DC-DFTB-MetaD 
trajectories. The white cross indicates the neutron 
crystal structure. Representative snapshots of N1, N2, 
IP1, and IP2 states are also shown, in which the 
proton in the catalytic dyad is highlighted with the 
light green circle. (For interpretation of the refer-
ences to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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3. Results and discussion 

Fig. 2 shows the two-dimensional (2D) free energy surface (FES) 
obtained from the reweighting method merged from four 70-ps DC- 
DFTB-MetaD trajectories. The horizontal axis denotes the difference 
between the Sγ(Cys145) − Hγ(Cys145) distance and the Nε(His41) −
Hγ(Cys145) distance, associated with the proton transfer between 
Cys145 and His41 in protomer A. A negative value corresponds to the 
neutral state, whereas a positive value is related to the IP state. The 
vertical axis indicates the Sγ(Cys145) − Nε(His41) distance, which is 
related to the hydrogen bond (or salt bridge) distance in the neutral (or 
IP) state. Both the horizontal and vertical axes are given in Å. The 2D 
FES shown in Fig. 2 is characterized by the most stable state, IP1, and 
three metastable states, N1, N2, and IP2. The global minimum located at 
(1.8, 3.6) of the horizontal and vertical axes, corresponding to IP1, is in 
reasonable agreement with the neutron crystal structure located at (2.0, 
3.8) in Fig. 2. The overall conformation of Mpro in the IP1 state is also 
consistent with the neutron structure (Fig. S7). These results support the 
experimental finding that the IP state is the most stable in ligand-free 
Mpro [28]. 

The metastable IP state, IP2, located at (2.8, 4.5) in Fig. 2, can be 
accessed from IP1 across the free energy barrier of 4.2 kcal/mol by 
cleaving the salt bridge between the charged Cys145 and His41. This 
structure is stabilized by the solvent water molecule bridging the 
charged catalytic dyad, as shown in Fig. 2. The elongation of the 
Sγ(Cys145) − Nε(His41) distance and the cleavage of the salt bridge 
resulted in the flip of the Nε(His41) − Hγ(Cys145) bond from Sγ(Cys145) 
to the P1′ position, which is occupied by the solvent water molecules in 
the absence of ligands. This flip motion is relevant to the acylation 
process in the catalytic cycle of holo-Mpro, where the proton transfer 
occurs from Nε(His41) to N(P1′) during the cleavage of the C(P1) − N 
(P1′) bond and the formation of the substrate-enzyme complex [26,27]. 
The existence of IP2 in apo-Mpro implies that the functionally relevant 
structure of His41 pre-exists without the substrate. 

The N1 state located at (− 0.6, 3.2) in Fig. 2 can be accessed from the 
IP1 state across the free energy barrier of 11.5 kcal/mol, which is the 
rate-limiting step in the interconversion between the neutral and IP 
states in unligated Mpro. Although the N1 state was adopted as the 
protonation state of the active site in the previous docking and classical 
MD simulations for Mpro, the relative free energy compared with the 
most stable IP1 was found to be 6.4 kcal/mol in the present free energy 
analysis, indicating that the N1 state is not the resting state, at least in 
the ligand-free situation. The elongation of the hydrogen bond between 
Cys145 and His41 in the N1 state resulted in the transition to the N2 
state with the free energy barrier of 2.8 kcal/mol, in which Cys145 
exchanged the hydrogen-bond partner from Nε(His41) to O(His165), as 
shown in Fig. 2, via the side-chain flip of Cys145. This hydrogen bond 
was apparently irrelevant for the catalytic proton transfer from Cys145 
to His41 in Mpro. Therefore, the development of an inhibitor that en-
hances this inactive hydrogen-bond structure via steric and/or electro-
static interactions is essential for prohibiting the enzymatic function of 
Mpro. 

The free energy profile for proton transfer in the catalytic dyad was 
also calculated using QM/MM simulations for SARS-CoV-2 Mpro with 
and without ligands [48]. The previous study concluded that the free 
energy cost of the reaction from the N1 to IP1 states in Mpro without any 
ligands (2.9 kcal/mol) is lower than that with the peptide substrate or 
inhibitor because the charged residues in the IP1 state can be stabilized 
by solvent water molecules in the apo-form [48]. In the present study, 
the difference in the solvent environment surrounding the catalytic dyad 
between the N1 and IP1 states was analyzed using radial distribution 
functions (RDFs). Fig. 3a and b show the RDFs for the O and H atoms, 
respectively, of the solvent water molecules around the Sγ atom of 

Cys145 obtained from the unbiased DC-DFTB-MD simulations for 
ligand-free SARS-CoV-2 Mpro in both the N1 and IP1 states. In the 
Sγ(Cys145) − H RDF, the first broad peak was located at 3.00 Å in the N1 
state, whereas the first sharp peak was located at 1.75 Å followed by the 
second peak at 2.25 Å in the IP1 state, indicating that the hydrogen-bond 
network of water molecules around the catalytic dyad in the IP1 state 
was considerably more structured (Fig. 3b). A similar tendency was also 
observed in the Sγ(Cys145) − O RDF (Fig. 3a). Therefore, the stability of 
the IP1 state found in the present simulations can be associated with the 
enhancement of the hydrogen-bond network by the solvent water 
molecules. 

In addition to the catalytic dyad, the functional role of the conserved 
internal water molecule, referred to as the catalytic water, Wcat, was 
investigated in a previous study using X-ray crystallography and kinetic 
experiments together with classical MD simulations for the wild-type 
and mutants of MERS-CoV and SARS-CoV Mpro [49]. The catalytic 
water, Wcat, located in the cavity surrounded by His41, Gln167, and 
Asp190 in MERS-CoV Mpro (corresponding to His41, His164, and 
Asp187 in SARS-CoV-2 Mpro, respectively), was suggested to mediate the 
remote interaction between the catalytic dyad and a partial negative 
charge cluster composed of Arg-Tyr-Asp, which is essential for catalytic 
activity [49]. In particular, changing the protonation state of the cata-
lytic dyad from the neutral form to the catalytic ion pair was clarified to 
induce the approach of Wcat to Met168 via the weakening of the 
hydrogen-bond interaction between Wcat and Gln167/Asp190 in MERS- 
CoV Mpro [49]. 

Fig. 4a and b show the 2D FESs for the hydrogen-bond distances 
between Wcat and His164/Asp187 in the N1 and IP1 states, respectively, 
obtained from the corresponding potential of mean force calculated 
from the unbiased DC-DFTB-MD simulations for ligand-free SARS-CoV-2 
Mpro. Here, the horizontal (vertical) axis denotes the distance between 
the O atom of Wcat and the Nδ atom of His164 (the Oδ atom of Asp187). 
In the N1 state, the shape of the 2D FES was relatively narrow, indicating 
that the motion of Wcat was restricted by the stable hydrogen-bond 
interaction between Wcat and His164/Asp187 (Figs. 4a and c). In 
contrast, the basin of the 2D FES in the IP1 state was relatively broad, 
indicating that the hydrogen bond between Wcat and His164/Asp187 in 
this state was more fragile than that in the N1 state (Figs. 4b and d). The 
flexibility of the hydrogen bonds for Wcat arising from the transition 
from the N1 to IP1 states was consistent with the previous finding for 
MERS-CoV and SARS-CoV Mpro determined from the integration of 
experimental and theoretical studies described above [49]. 

Finally, we compare the present results with the previous theoretical 
and experimental studies focusing on the relationship between the 
protonation state and binding affinity of ligands in SARS-CoV-2 Mpro. 
Gumbart and co-workers performed the classical MD simulations of 
SARS-CoV-2 Mpro in both the apo form and the ligand-bound form with 
N3 and α-ketoamide for several different protonation states of the cat-
alytic dyad and histidine residues in its close proximity [24]. The pre-
vious study clarified that the relevant protonation state for the structural 
stability of the bound inhibitor depends on the ligands, illustrating the 
importance of evaluating the binding affinity for the appropriate pro-
tonation state. Procacci and co-workers carried out the classical MD 
simulations of SARS-CoV-2 Mpro in the ligand-bound form with PF- 
07321332 for the IP and neutral states using two different kinds of 
force fields [25]. They found that the active-site protonation state and 
force fields have implications for the inhibitor-bound structure, high-
lighting the necessity of the QMD simulation in addition to the classical 
MD simulation based on empirical force fields. Moreover, as in the apo 
form [28], Kovalevsky and co-workers determined the crystal structure 
of SARS-CoV-2 Mpro in the ligand-bound form with α-ketoamide inhib-
itor telaprevir using neutron crystallography [50]. A comparison with 
the corresponding apo form [28] reveals that the binding of the inhibitor 
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might give rise to the different protonation state in the active site, 
indicating that the ligand binding is coupled with the alteration of the 
protonation state in the active site. Considering these previous results 
and the present finding that the IP state is the most stable in the apo 
form, in silico drug discovery targeting inhibitors with high binding af-
finity for the IP state rather than the neutral state could be beneficial to 
developing potent inhibitors against COVID-19. Furthermore, investi-
gating the protonation-coupled binding mechanism using the QMD 
simulation could be helpful for gaining atomic-level insight into the 
reactive inhibition process in SARS-CoV-2 Mpro as one of the future di-
rections for solving the COVID-19 pandemic. 

4. Conclusion 

In the present study, large-scale DC-DFTB-MD/MetaD simulations 
for ligand-free Mpro dimer in aqueous solution and free energy analysis 
of the active-site protonation states were conducted. The results indicate 
that the functionally relevant IP state, IP1, was more stable than the 
conventionally accepted neutral state N1. This behavior is consistent 
with recent neutron crystallography. In addition, the cleavage of the salt 
bridge in the IP1 state resulted in a pre-existing structure relevant for 

proton transfer from His41 to N(P1′) in the catalytic cycle, whereas the 
breaking of the hydrogen bond in the N1 state yielded an inactive 
hydrogen-bond formation between Cys145 and His164. The present 
results highlight the importance of the IP1 state for estimating the 
binding affinity of covalent/non-covalent inhibitors targeting Mpro. 
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