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Abstract: In order to develop film electrodes for the surface acoustic wave (SAW) devices operating
in harsh high-temperature environments, novel Al2O3/Pt/ZnO/Al2O3 multilayered film electrodes
were prepared by laser molecular beam epitaxy (LMBE) at 150 ◦C. The first Al2O3 layer was used
as a barrier layer to prevent the diffusion of Ga, La, and Si atoms from the La3Ga5SiO14 (LGS)
substrate to the film electrode and thus improved the crystalline quality of ZnO and Pt films. It was
found that the resistance of the Al2O3/Pt/ZnO/Al2O3 electrode did not vary up to a temperature of
1150 ◦C, suggesting a high reliability of electrode under harsh high-temperature environments.
The mechanism of the stable resistance of the Al2O3/Pt/ZnO/Al2O3 film electrodes at high
temperature was investigated by analyzing its microstructure. The proposed Al2O3/Pt/ZnO/Al2O3

film electrode has great potential for application in high-temperature SAW devices.

Keywords: high temperature electrode; SAW sensor; electrical conductivity; langasite; Al2O3

barrier layer

1. Introduction

There has been a long-standing research interest in surface acoustic wave (SAW) sensors for
their wide applications in recent years [1–4]. Meanwhile, with the progress of science and technology,
SAW sensors that operate stably in high temperatures are in high demand [5]. As is widely known,
the major challenge in fabricating SAW sensors for operating at high temperatures is to prepare film
electrodes which can work stably at high temperatures. The main existing problem is that all the
film electrodes undergo rapid agglomeration, recrystallization, and atom diffusion at temperatures
higher than 700 ◦C, resulting in the destruction of film electrodes and the failure of SAW sensors. Until
now, great efforts have been made to investigate the working of film electrodes at high temperatures.
Moulzolf [6,7] co-deposited Pt/Rh (10%) as film electrodes and used HfO2 as a passivation coating
layer to hinder the agglomeration. Taguetta [8] used Ir-Rh alloy electrodes of different compositions
and found that Ir-based film electrodes can withstand temperatures as high as 800 ◦C. Rane [9,10] used
tungsten film electrodes to prevent the diffusion of Ga and O atoms from the substrate and obtained
stable sensors up to 800 ◦C. Pereira da Cunha [11] investigated a Pt-Ni/Pt-Zr electrode containing an
Al2O3 interfacial layer that was used to reduce the degradation of the electrode layer by inhibiting
the interdiffusion and interfacial reactions. In our previous work [12], we prepared a AlN/Pt/ZnO
multilayered electrode on Langasite (LGS, La3Ga5SiO14) substrate and found that the ZnO buffer layer
improved the crystalline quality of Pt by inhibiting the recrystallization of Pt film at 1000 ◦C, showing
that the crystalline quality is an important factor in determining the stability of film electrodes at high

Materials 2017, 10, 1377; doi:10.3390/ma10121377 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://dx.doi.org/10.3390/ma10121377
http://www.mdpi.com/journal/materials


Materials 2017, 10, 1377 2 of 8

temperature. However, the abovementioned AlN/Pt/ZnO film electrode was unable to work steadily
above 1100 ◦C because both agglomeration and the interdiffusion (of the Ga, Si, and La atoms) were
difficult to control at such high temperatures.

According to previous reports, we can find that the agglomeration in metal electrodes and the
interdiffusion always occur at high temperatures. It is therefore necessary to find a barrier layer
to prevent the interdiffusion from substrate to the film electrode. In this work, we inserted an
Al2O3 film as a barrier layer between LGS substrate and ZnO buffer layer to prevent the interfacial
diffusion. The Al2O3/Pt/ZnO/Al2O3 electrode was then fabricated on LGS to explore its characteristic,
from room temperature to 1200 ◦C.

2. Results and Discussion

Figure 1 shows the X-ray photoelectron spectroscopy (XPS) spectra of ZnO(160 nm)/Pt(30 nm)/
ZnO(60 nm)/LGS and Al2O3(160 nm)/Pt(30 nm)/Al2O3(60 nm)/LGS samples after annealing at
1000 ◦C for 1 h. In Figure 1a, the Ga 3p and Si 2p peaks of the two samples after annealing
at 1000 ◦C are presented. It can be seen that the intensities of the Ga 3p and Si 2p peaks of
Al2O3/Pt/Al2O3/LGS sample are much lower than those of ZnO/Pt/ZnO/LGS sample. Similarly,
from Figure 1b, we can see that the La 3d5 peaks of Al2O3/Pt/Al2O3/LGS sample are so low that it
can barely be observed. On the other hand, the XPS spectrum of ZnO/Pt/ZnO/LGS sample shows
obvious La 3d5 peaks. These results reveal the greater presence of Ga, Si, and La atoms at the surface of
ZnO/Pt/ZnO/LGS sample compared to Al2O3/Pt/Al2O3/LGS sample. Therefore, it can be concluded
that the Al2O3 layer can prevent the diffusion of the Ga, Si, and La atoms from the LGS substrate to
film electrode and the ZnO layer cannot prevent the atoms’ diffusion. The reduction of the diffusion in
Al2O3/Pt/Al2O3/LGS sample was attributed to the higher chemical stability of Al2O3 [13–15]. Until
now, the Al2O3/Pt-Ni/Al2O3 film electrode [11] has demonstrated that the Al2O3 film can be used as a
suitable diffusion barrier layer for LGS substrate. It was the reason why we focus on the film electrode
by using Al2O3 barrier layer next.
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indicate that its surface was cleaned well. Figure 2b shows the RHEED pattern of ZnO directly 
deposited on LGS at 150 °C. The obvious diffraction rings indicate that the ZnO crystals were 
uniaxially textured, with the preferred orientation being out-of-plane. It shows that the ZnO 
deposited on LGS directly did not have sufficient crystalline quality. No diffraction spots were 
observed in Figure 2c, suggesting that the Al2O3 barrier layer either was not preferentially oriented 
or remained amorphous due to a low deposition temperature and the complete mismatch in the 
lattice structures of Al2O3 and LGS. However, as shown in Figure 2d, the RHEED pattern of the ZnO 
film deposited on an Al2O3 barrier layer shows bright diffraction spots that indicate the ZnO film was 
biaxially textured, with both the out-of-plane and in-plane preferred orientations. Thus, the deposition 

Figure 1. XPS (X-ray photoelectron spectroscopy) spectra of (a) Ga 3p, Si 2p and (b) La 3d5 for
ZnO/Pt/ZnO/LGS and Al2O3/Pt/Al2O3/LGS samples after annealing at 1000 ◦C for 1 h.

The reflected high energy electron diffraction (RHEED) patterns obtained during the deposition
of Al2O3/Pt/ZnO/Al2O3 are shown in Figure 2. Figure 2a shows the bright diffraction spots of LGS
that indicate that its surface was cleaned well. Figure 2b shows the RHEED pattern of ZnO directly
deposited on LGS at 150 ◦C. The obvious diffraction rings indicate that the ZnO crystals were uniaxially
textured, with the preferred orientation being out-of-plane. It shows that the ZnO deposited on LGS
directly did not have sufficient crystalline quality. No diffraction spots were observed in Figure 2c,
suggesting that the Al2O3 barrier layer either was not preferentially oriented or remained amorphous
due to a low deposition temperature and the complete mismatch in the lattice structures of Al2O3 and
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LGS. However, as shown in Figure 2d, the RHEED pattern of the ZnO film deposited on an Al2O3

barrier layer shows bright diffraction spots that indicate the ZnO film was biaxially textured, with
both the out-of-plane and in-plane preferred orientations. Thus, the deposition of ZnO on an Al2O3

barrier layer resulted in a better crystalline quality compared to that for a ZnO film deposited on
LGS directly. In this study, we deposited 10 nm of ZnO and the ZnO buffer layer was kept so thin
to reduce the influence of their mass effects on the properties of SAW devices. The Pt film deposited
on the ZnO buffer layer also revealed bright diffraction spots, as shown in Figure 2e, indicating the
good crystalline quality of the as-deposited Pt. Finally, the Al2O3 deposited as a protective layer was
amorphous, as can be inferred from the absence of diffraction spots in Figure 2f.
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Figure 3a shows the cross-sectional TEM (transmission electron microscope) image of
Al2O3/Pt/ZnO/Al2O3/LGS heterostructure. We can see the clear interfaces. Figure 3b–e show
the enlarged cross-sectional high resolution TEM image of Al2O3 barrier layer, ZnO buffer layer,
Pt layer, and Al2O3 protective layer, respectively. From these figures, we can determine that the Al2O3

layers are both in amorphous states and the ZnO, Pt films have preferred orientations. These results
are consistent with the RHEED patterns as shown in Figure 2.

Figure 4 shows the θ–2θ and omega XRD (X-ray diffraction) scans of the Al2O3/Pt/ZnO/LGS and
Al2O3/Pt/ZnO/Al2O3/LGS samples. From Figure 4a, we can see that only the Pt (111) peaks appear
in these two samples. No ZnO peaks can be observed in these patterns because this this ZnO film was
too thin to be detected [12]. The intensity of the Pt (111) peak is much lower for Al2O3/Pt/ZnO/LGS
than Al2O3/Pt/ZnO/Al2O3/LGS. The full width at half maximum (FWHM) of these two peaks
are shown in Figure 4b, and were determined to be 7.5◦ and 18.3◦ for Al2O3/Pt/ZnO/Al2O3/LGS
and Al2O3/Pt/ZnO/LGS respectively. These results show that the crystalline quality of the Pt (111)
layer was greatly improved by inserting the Al2O3 barrier layer. The large FWHM of the Pt peak
of Al2O3/Pt/ZnO/LGS is due to the low temperature of deposition of the ZnO buffer layer, which
results in the poor crystalline qualities of both ZnO and Pt. The crystalline qualities these films are
typically improved by increasing the deposition temperature to 600 ◦C [12]. However, we have found
that by inserting an Al2O3 barrier layer we can improve the crystalline quality of the ZnO buffer layer
deposited at low temperatures; this was possible because of their similar crystal structures [16,17].
Thus, a Pt film of good crystalline quality could be deposited on an improved ZnO buffer layer
at relatively lower temperatures. The low deposition temperature of 150 ◦C is very important for
fabricating patterned film electrodes using lithography and the subsequent lift-off process.
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Figure 4. (a) θ–2θ XRD (X-ray diffraction) scans of the Al2O3/Pt/ZnO/Al2O3/LGS and
Al2O3/Pt/ZnO/LGS samples; (b) Omega XRD scans of the Al2O3/Pt/ZnO/Al2O3/LGS and
Al2O3/Pt/ZnO/LGS samples.

Figure 5 shows the real-time, relative resistance change (∆R/Rrt) as a function of temperature
for Al2O3/Pt/ZnO/Al2O3/LGS and Al2O3/Pt/ZnO/LGS samples, where Rrt is the resistance of the
sample at room temperature and ∆R is the difference between the resistances at high temperature and
room temperature. It can be seen that the resistance of the Al2O3/Pt/ZnO/LGS sample does not vary
from room temperature to 1000 ◦C and increases slowly from 1000 ◦C to 1150 ◦C. From 1150 ◦C to
1200 ◦C, the resistance increases sharply. Finally, the resistance increases by 0.55 times, from room
temperature to 1200 ◦C. For the Al2O3/Pt/ZnO/Al2O3/LGS sample, the resistance does not vary
from room temperature to 1150 ◦C and increases by only 0.02 times from 1150 ◦C to 1200 ◦C. These
results show that the stability of Al2O3/Pt/ZnO/Al2O3/LGS electrode at high temperature has been
improved greatly by the Al2O3 barrier layer.
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samples as a function of temperature from room temperature to 1200 ◦C.

Figure 6 shows the θ–2θ scans and omega scans of the Al2O3/Pt/ZnO/Al2O3/LGS samples before
and after resistance measurement at 1000, 1100, and 1200 ◦C. As shown in Figure 6a, the intensity of
Pt (111) peak doubled after the high temperature measurement at 1000 ◦C for 3 h. Besides, the FWHM
of Pt (111) peak decreased from 7.5◦ to 6.8◦ as shown in Figure 6b after resistance measurement at
1000 ◦C for 3 h. Both the intensity and FWHM of the Pt (111) peaks varied by only a little after
resistance measurement at 1000 ◦C for 3 h, showing that the recrystallization of Pt film was hindered
well at 1000 ◦C. While, after resistance measurement at 1100 ◦C for 3 h and at 1200 ◦C for 25 min,
the intensity of Pt (111) peak increased by 7 times and 10.6 times. Meanwhile, the FWHM of Pt (111)
peak varied from 7.5◦ to 3.8◦ and 2.5◦ respectively, which indicates that the recrystallization of Pt film
occurs partly at 1100 ◦C and the recrystallization cannot be prevented totally at 1200 ◦C.
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Figure 6. (a) θ–2θ scans and (b) omega scans of the Al2O3/Pt/ZnO/Al2O3/LGS samples before and
after resistance measurement at 1000 ◦C, 1100 ◦C and 1200 ◦C.

Figure 7 shows the real-time relative resistance measurement of Al2O3/Pt/ZnO/Al2O3/LGS
samples at 1000 ◦C and 1100 ◦C for 3 h, and at 1200 ◦C for 50 min. After undergoing resistance
measurement at high temperature of 1000 ◦C or 1100 ◦C for 3 h, the samples remain the same resistance
all the time, indicating that the Al2O3/Pt/ZnO/Al2O3/LGS electrode can work stably at 1100 ◦C for
3 h. For Al2O3/Pt/ZnO/Al2O3/LGS sample measured at 1200 ◦C, the resistance increases slowly
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before 25 min and increases rapidly after 25 min. The resistance increases to infinity in 55 min.
It shows that this electrode can work at 1200 ◦C only in a short period of time. Compared to other
reported multilayer electrodes such as Pt-Rh/HfO2 [6] and Al2O3/Pt-Ni/Al2O3 [11], the stability of
this Al2O3/Pt/ZnO/Al2O3/LGS electrode at high temperature has been improved greatly.
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Figure 7. Relative resistance change of Al2O3/Pt/ZnO/Al2O3/LGS sample as a function of dwell time
at 1000, 1100, and 1200 ◦C. The inset shows the enlarged figure of the relative resistance change curves
before 30 min.

Figure 8 shows the surface topography of Al2O3/Pt/ZnO/Al2O3/LGS samples after high
temperature resistance measurements at 1000, 1100, and 1200 ◦C, respectively. From Figure 8, we can
see that the surface is smooth with few and small grains (marked out by curves) after resistance
measurements at 1000 ◦C for 3 h, indicating that the film agglomerated slightly. Figure 8b shows the
surface topography of Al2O3/Pt/ZnO/Al2O3/LGS sample after resistance measurement at 1100 ◦C for
3 h. The surface was still smooth but we can observe more and bigger grains. It shows that more severe
agglomerations occurred after 1100 ◦C resistance measurement. However, these agglomerations are
both not sufficient to increase the film resistance greatly as shown in Figure 7. Finally, it can be seen from
Figure 8c that much more severe agglomeration occurred after the resistance measurement at 1200 ◦C
for 25 min, which is similar to other film electrodes after high temperature measurements [18–20].
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3. Materials and Methods

The Al2O3/Pt/ZnO/Al2O3 multilayer electrodes were grown by LMBE on LGS substrates with
Euler angle of (0◦, 138.5◦, 116.6◦) at 150 ◦C. A KrF (λ = 248 nm) excimer laser was operated with an
energy density of about 2.5 J/cm2 at a frequency of 3 Hz. Highly purified Al2O3, Pt, and ZnO targets
were used in this work and the distance from target to substrate was kept at 6 cm. Before depositing,
the LGS substrates were ultrasonically cleaned in anhydrous alcohol for 6 min, followed by a N2

drying process. Then, the substrate was loaded into the deposition chamber and heated up to 150 ◦C.
The chamber pressure was maintained at 3 × 10−5 Pa during growth. Finally, a 60 nm Al2O3 barrier
layer, 10 nm ZnO buffer layer, and 30 nm Pt and 160 nm Al2O3 protective layer were deposited on LGS
one by one. In addition, ZnO(160 nm)/Pt(30 nm)/ZnO(70 nm), Al2O3 (160 nm)/Pt(30 nm)/Al2O3(70 nm),
and Al2O3(160 nm)/Pt(30 nm)/ZnO(70 nm) electrodes were also fabricated at 150 ◦C to study their
diffusion and conductive properties at high temperature.

The growth patterns of all films were monitored by in situ RHEED diagnostic using a 20 kV
electron beam. The resistances of the samples were measured from room temperature to 1200 ◦C in air
within a tube furnace by a resistance meter (Keithley 2400, Tektronix, Cleveland, OH, USA). The heating
rate was kept as 4 ◦C per minute. After high temperature resistance measurement, the samples were
cooling down to room temperature in a natural cooling condition. Film crystal structure and texture
were measured by X-ray diffraction (XRD) (D1System, Bede, Durham, UK) and transmission electron
microscope (TEM) (Tecnai G2 F20, FEI, Hillsboro, OR, USA). A scanning electron microscope (SEM)
(JSM-7500F, JEOL, Tokyo, Japan) was used to characterize the surface topography of the samples before
and after high temperature resistance measurement. The component of each atom was characterized
by the X-ray photoelectron spectroscopy (XPS) (AXIS Ultra DLD, Kratos, Manchester, UK).

4. Conclusions

In this work, we deposited Al2O3/Pt/ZnO/Al2O3 multilayers electrode on LGS substrate at
150 ◦C. It was found that the 60 nm thick Al2O3 barrier layers can prevent the diffusion of Ga, Si,
and La atoms from LGS substrate to film electrode. At the same time, the depositing temperature for
Pt/ZnO film with good crystalline quality can be decreased to 150 ◦C due to the Al2O3 barrier layer,
which makes it possible to fabricate SAW devices by lithographing and lift-off process. Compared to
the Al2O3/Pt/ZnO/LGS sample, the Al2O3/Pt/ZnO/Al2O3/LGS sample can bear the higher working
temperature. It can work stably at 1100 ◦C for at least 3 h. This proposed Al2O3/Pt/ZnO/Al2O3 film
electrode has great potential for applications in SAW sensors and many other sensors which would
work in harsh, high-temperature environments.
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