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Abstract 

Background:  The immune infiltration of patients with colon cancer (CC) is closely associated with RNA-binding 
proteins (RBPs). However, immune-associated RBPs (IARBPs) in CC remain unexplored.

Methods:  The data were downloaded from The Cancer Genome Atlas (TCGA) and the patients were divided into 
four immune subgroups by single sample gene set enrichment analysis (ssGSEA), in which weighted gene correlation 
network analysis (WGCNA) identified modules of co-expressed genes correlated with immune infiltration. Univari‑
ate (UCR) and multivariate Cox regression (MCR) analyses were applied to screen survival-associated IARBPs. Then, a 
prognostic signature was performed on TCGA dataset. Risk model was constructed based on the TCGA dataset. Based 
on the median risk score, CC patients were subdivided into low- and high-risk groups. Furthermore, the accuracy and 
prognostic value of this signature were validated by using Kaplan-Meier (K-M) curve, receiver operating characteristic 
(ROC). We further validated the findings in Gene Expression Omnibus (GEO) database. Finally, we evaluated the asso‑
ciation between gene expression level and drug sensitivity.

Results:  Based on the infiltration of immune cells, the TCGA patients were divided into four subgroups. In total, we 
identified 25 IARBPs, after differential expression and WGCNA analysis. Subsequently, two IARBP signatures (FBXO17 
and PPARGC1A) were identified to be significantly associated with the overall survival (OS) of CC patients. K-M survival 
analysis revealed that the low-risk group correlated with prolonged OS. The prognostic signature was an independ‑
ent prognostic factor and reflects the immune status of CC patients. Finally, FBXO17 was related with drug sensitivity 
of bleomycin, gemcitabine, and lenvatinib. PPARGC1A was related to drug sensitivity of dabrafenib, vemurafenib, and 
trametinib.

Conclusion:  A novel two immune-associated RBPs that was established that may be useful in predicting survival and 
individualized treatment.
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Introduction
Colon cancer (CC), one of the most common diges-
tive malignant tumors, has become an important 
public health issue. Its ranks fourth in incidence and 
second as a cause of mortality among 36 cancer types 
worldwide [1]. The incidence of CC is high incidence 
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in the Western world and developed Asian countries 
[2]. Early detection and treatment have decreased 
morbidity and mortality. Numerous biomarkers have 
been revealed in CC [3, 4]. Unfortunately, recurrence 
or metastasis will occur in approximately 30–50% of 
patients within 5 years after treatment [5]. The effec-
tive prediction model can play a significant role for the 
accurate assessment of patients’ prognosis and to opti-
mize clinical treatment strategies [6–10]. Recently, a 
growing number of evidences indicate that the poten-
tial effect of the tumor immune microenvironment 
(TIM) have great potential for predicting the efficacy 
of immunotherapy as well as prognosis [11]. TIM 
is composed by immune cells. Adaptive anti-tumor 
immune responses have been correlated with tumor 
progression in various cancers, including CC, and 
tumor development is also dependent on the infiltra-
tion of immune cells [12].

RNA-binding protein (RBP) plays a significant role in 
tumor progression via post-transcriptional modifica-
tion [13]. Specifically, RNA-binding proteins (RBPs) play 
essential roles in RNA life, including pre-mRNA pro-
cessing, modification, localization, RNA stability, and 
translation [14]. The inflammatory response has been 
reported to be modulated by modulating mRNA pools 
in both immune and nonimmune cells [15]. Considering 
that RBPs can regulate the infiltration degrees of immune 
cells, whether there are immune-associated RBPs that 
can be used to accurately evaluate the tumor progres-
sion and prognosis of CC patients has not yet been 
considered.

In the present study, we evaluated the association 
between the expression of immune-associated RBPs 
(IARBPs) and prognosis in CC patients. To this end, we 
train a model to predict the OS of patients with CC.

Materials and methods
Data processing
The RNA-Seq data and clinical information of male CC 
patients were obtained from The Cancer Genome Atlas 
(TCGA) (398 tumor samples and 39 normal samples) 
and Gene Expression Omnibus (GEO) (GSE40967) data-
base. The gene expression profile of 580 CC (GSE40967) 
based on the GPL570 (Affymetrix Human Genome U133 
Plus 2.0 Array) platform was also downloaded. A total of 
1542 RBPs were obtained from a previous study [16].

Identification of CC subtypes based on ssGSEA score 
and differentially expressed genes identification
For each CC dataset, 27 immune cell types were deter-
mined using the single sample gene set enrichment 
analysis (ssGSEA) software implemented in the R GSVA 
package. Consensus clustering was performed using the 
“ConsensusClusterPlus” package in R to identify sub-
groups based on ssGSEA scores. In brief, k-means clus-
tering was used, with 50 iterations (each using 80% of the 
samples). The best-fit number of clusters was determined 
by the cumulative distribution function (CDF) curve and 
the changes in the area under the CDF curve. The stromal 
score, immune score, tumor purity, and estimate score of 
each included sample was calculated by ESTIMATE algo-
rithm [17]. The CIBERSORT deconvolution algorithm 
(https://​ciber​sort.​stanf​ord.​edu/ assessed on 28 December 
2020) was used to verify that the infiltration of immune 
cells from these four immune subtypes were different 
[18]. Differentially expressed genes (DEGs) between Clus-
ter1 and Cluster2 were determined using the R package 
Limma. Genes with P < 0.05, and [logFoldChange (logFC)] 
> 1 were considered DEGs. Using the gplots and heatmap 
in the edgeR package, volcano plots and heat maps of 
DEGs were constructed.

Fig. 1  Consensus clustering of colon cancer (CC). a The TCGA samples were divided into four distinct clusters when k = 4. b Relative change in area 
under cumulative distribution function (CDF) curve for k = 2–9. c Consensus clustering CDF curve for k = 2–9

https://cibersort.stanford.edu/
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Weighted gene co‑expression network analysis
DEGs were used to construct a weight co-expression 
network using the R package “WGCNA” [19]. The topo-
logical overlap measure (TOM) was clustered, and gene 
modules were identified. We calculated the module 
eigengene (ME) of each module, which represents the 
expression level for each module. The threshold was set 
as P < 0.05.

Function and pathway analysis
Gene Ontology enrichment analyses of module genes 
performed using the Metascape (https://​metas​cape.​org/), 
a gene annotation and analysis resource.

Building a prognostic model
Univariate Cox regression (UCR) analysis was performed 
to screen out which RBP-related genes associated with 
the OS of patients. Then, the multivariate Cox regression 
(MCR) test for the coefficients (bi) of the hub genes was 
performed. This model was developed as Risk score = ∑i 
= 1N(Exp(i) · coe(i)). Based on the median risk score, the 
patients were divided into low-risk or high-risk groups. 
Then, the ROC curve was conducted to evaluate the pre-
dictive accuracy. The K–M survival curve was done to 
assess whether there was a survival difference between 
2 categories. To validate the result, we implemented the 
same procedure on the validation cohort.

Fig. 2  Determination of four immune subtypes in the CC. a Heatmap of ssGSEA scores. b The differences in the infiltrating immune cells between 
four clusters. c The differences in the expressions of immune checkpoint genes consisting among four subtypes. *P < 0.05, **P < 0.01, ***P < 0.005

https://metascape.org/
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Fig. 3  Analysis of differentially expressed genes. a Heatmap of differentially expressed genes. b The volcano graph shows the distribution of 
differential genes between Cluster1 and Cluster2, the red and blue dots represent significantly up- and downregulated expressed genes, respectively

Fig. 4  Weighted co-expression gene network. a Determination of the β parameter value in the adjacency function. b Nine gene modules were merged
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Drug sensitivity correlation analysis
The drug sensitivity was downloaded from the CellMiner 
database (https://​disco​ver.​nci.​nih.​gov/​cellm​iner/) [20, 
21]. R package “impute”, “limma”, “ggplot2”, and “ggpubr” 
were used for the data processing, statistical analysis, and 
result visualization.

Statistical analysis
Overall survival was estimated by K–M analysis with 
log-rank test. The Wilcoxon rank-sum test was used to 
compare these measures between the groups. To com-
pare three or more groups, a Kruskal-Wallis test was 
used. Correlation (Pearson correlation coefficient r) 
assessed strength and direction of the linear relation-
ship between two variables. Statistical analyses and 
data visualization were performed in R programing lan-
guage. P-values (p) < 0.05 were considered statistically 
significant.

Results
Identification of CC immune subtypes based on infiltration 
of immune cells
Based on ssGSEA scores, the TCGA CC samples in 
this data set have been clustered into four immune 
infiltration subtypes: 127 cases in Cluster1, 38 cases 
in Cluster1, 132 cases in Cluster3, and 101 cases in 
Cluster4 (Figs.  1 and 2a). The CC cases with higher 
immune infiltration had higher ESTIMATE, stromal, 

and immune scores but a lower tumor purity among 
the 22 types of immune cells (P < 0.05). The infiltra-
tion of various types of immune cells showed a pro-
gressive increasing or decreasing trend, such as CD8 
T cells, T cells follicular helper, NK cells resting, mac-
rophages M1, and macrophages M2 have differences 
infiltration degree in different subtypes (P < 0.001) 
(Fig. 2b). Finally, the expression profiles of 12 immune 
checkpoint genes (ICIs) (i.e., LAG3, VSIR, CD274, 
KIR2DL1, KLRC1, HAVCR2, NT5E CTLA4, TIGIT, 
PDCD1, KIR3DL2, and KIR2DL3), which are crucial 
for immune modulation, were further examined. The 
expression correlated with high levels of immune infil-
tration cluster (Fig. 2c).

Identification of DEGs
In the TCGA dataset, we identified 3572 DEGs between 
the high- and low-infiltration subgroup (Cluster1 VS 
Cluster2) with the criteria of P < 0.05 and [logFC] > 1. Of 
the 3572 genes, 1343 genes were upregulated and 2229 
downregulated. An expression volcano plots and heat 
map were indicated in Fig. 3a and b.

Identification of co‑expression modules
We employed the WGCNA to analyze the DEGs. A 
soft threshold (power = 7) was selected by stand-
ard scale-free model fitting index R2 = 0.92 (Fig. 4a). 
Three modules shown in turquoise, green, and black 
in Fig.  4c were positively correlated with Cluster2, 

Fig. 5  a GO function analysis of turquoise and black module genes. b Venn diagrams showing the intersection of two module genes and RBPs. c 
GO function analysis of thirty-one RBPs

https://discover.nci.nih.gov/cellminer/
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Cluster4, Stromal score, Immune score, and ESTI-
MATE score. Three modules shown in magenta, yel-
low, and brown negatively correlated with Cluster2, 
Cluster4, Stromal score, Immune score, and ESTI-
MATE score (Fig. 4c). Next, turquoise and black mod-
ule were chosen to further analysis. Total 1550 genes 
from the two modules were applied to Gene Ontology 
(GO) analysis. The GO terms lymphocyte activation, 
immunoregulatory interactions between a lymphoid 
and a non-Lymphoid cell, inflammatory response, 
and positive regulation of immune response were 
the enriched GO terms (Fig.  5a). Then, we obtained 
31 RBPs by taking the intersection of turquoise and 
black module genes and 1542 RBPs (Fig. 5b; Table 1). 
GO analysis revealed that the majority of these genes 
were functionally related to Mrna processing, defense 
response to virus, and interferon alpha/beta signaling 
(Fig. 5c; Table 2).

Construction of prognostic signatures based on RBP
From UCR analysis, we identified two candidate 
RBP genes associated with the prognosis in patients 
with CC (FBXO17 and PPARGC1A) (Fig.  6). Based 
on these findings, we established a CC predic-
tion model by MCR analysis. We calculated the 
risk score for each patient by the following for-
mula: Risk score = (0.1707 × Exp [FBXO17]) + (− 
0.1515 × Exp [PPARGC1A]). Patients in the TCGA 
set were divided into high- or low-risk groups 
with the median risk score. K-M survival curves 
showed the OS was significantly worse in the high-
risk group compared with the low-risk group (P = 
6.518e− 03) (Fig.  7a). From the scatterplot and risk 
curve, the survival status of patients with different 
risk scores; the mortality rate remarkably increased 
with the higher risk score (Fig.  7b, c). Heatmap of 
expression profiles in TCGA indicated that FBXO17 
were highly expressed in the high-risk group, but 
PPARGC1A were highly expressed in the low-risk 
group (Fig.  7d). Besides, the area under the ROC 
(AUC) values were 0.733 (Fig.  8a), showing a good 
capacity of two RBP genes in predicting overall sur-
vival. The prognostic significance of the prognostic 
mode was further validated by the validation cohort 
(Figs. 7 and 8e, h and d).

Independent prognostic value of the risk model
We performed UCR analysis revealed that higher 
risk scores had shorter OS (HR, 1.984; 95% CI, 
1.280−3.075; P = 0.002) (Fig. 8b). Several clinicopatho-
logic variables displayed a relationship with prognosis 
included age, stage, metastasis, T, and N. Additional 
MCR analysis indicated that analyses indicated that 

high-level risk score served as an independent prognos-
tic factor for poor survival in CC patients (HR, 2.167; CI, 
1.366−2.346, P = 0.001) (Fig. 8c). To determine whether 
the clinical prognostic model was reliable, we then uti-
lized this same risk score formula to analyze patients in 
the GEO cohort, which was consistent with those found 
in the TCGA database (Fig. 8e, f ).

Immune profile in risk groups
We used the CIBERSORT algorithm to assess the 
composition of the immune microenvironment and 
further reveal the differences of immune cell infiltra-
tion between the two risk groups. As shown in Fig. 9a, 
plasma cells, T cells CD4 memory resting, monocytes, 
and dendritic cells activated cells were downregulated 

Table 1  The specific information of 31 RBPs

Gene Symbol Description

SIDT1 SID1 transmembrane family member 1

A1CF APOBEC1 complementation factor

IPO4 importin 4

DNMT3B DNA methyltransferase 3 beta

QKI QKI, KH domain containing RNA binding

PPARGC1A PPARG coactivator 1 alpha

MEX3A mex-3 RNA binding family member A

DZIP1 DAZ interacting zinc finger protein 1

TLR7 toll like receptor 7

RNASE1 ribonuclease A family member 1, pancreatic

POLR1G RNA polymerase I subunit G

RBFOX3 RNA binding fox-1 homolog 3

DDX27 DEAD-box helicase 27

RBM24 RNA binding motif protein 24

PABPC3 poly(A) binding protein cytoplasmic 3

ZCCHC24 zinc finger CCHC-type containing 24

IFIT2 interferon induced protein with tetratricopeptide 
repeats 2

TLR8 toll like receptor 8

DDX60 DExD/H-box helicase 60

NPM2 nucleophosmin/nucleoplasmin 2

FBXO17 F-box protein 17

ZC3HAV1L zinc finger CCCH-type containing, antiviral 1 like

DQX1 DEAQ-box RNA dependent ATPase 1

CELF3 CUGBP Elav-like family member 3

OASL 2’-5’-oligoadenylate synthetase like

CDK5RAP1 CDK5 regulatory subunit associated protein 1

PABPC1L poly(A) binding protein cytoplasmic 1 like

TSEN2 tRNA splicing endonuclease subunit 2

IFIT1 interferon induced protein with tetratricopeptide 
repeats 1

AZGP1 alpha-2-glycoprotein 1, zinc-binding

RAVER2 ribonucleoprotein, PTB binding 2
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in the high-risk group, while Macrophages M0, Mac-
rophages M2, Stromal score, and Immune score were 
significantly upregulated (P < 0.05) (Fig.  9a). Further-
more, PPARGC1A and FBXO17 expression negatively 
or positively associated with the immune gene sets, 
respectively (Fig. 9b).

Drug sensitivity analysis of FBXO17 and PPARGC1A
The CellMiner database was exploited to analyze the rela-
tionship between the drug sensitivity and the expression 

of FBXO17 and PPARGC1A. Pearson’s correlation anal-
ysis indicated that FBXO17 expression was negatively 
associated with Entinostat, LDK-378, Perifosine, PX-31, 
and Palbociclib drug sensitivity, and positively related 
to Bleomycin, Gemcitabine, Irofulven, Sonidegib, and 
Lenvatinib drug sensitivity. PPARGC1A expression was 
negatively related to Triciribine phosphate, 7-Hydroxys-
taurosporine, and Dasatinib drug sensitivity. PPARGC1A 
expression was positively related to Hydrastinine HCl, 
Vemurafenib, and Dabrafenib drug sensitivity (Fig. 10).

Table 2  The biological processes of 31 RNA-binding proteins

Category Term Description

GO Biological Processes GO:0006397 mRNA processing

GO Biological Processes GO:0006397 mRNA processing

GO Biological Processes GO:0008380 RNA splicing

GO Biological Processes GO:0048024 regulation of mRNA splicing, via spliceosome

GO Biological Processes GO:0050684 regulation of mRNA processing

GO Biological Processes GO:0043484 regulation of RNA splicing

GO Biological Processes GO:0000381 regulation of alternative mRNA splicing, via spliceosome

GO Biological Processes GO:0000377 RNA splicing, via transesterification reactions with bulged adeno‑
sine as nucleophile

GO Biological Processes GO:0000398 mRNA splicing, via spliceosome

GO Biological Processes GO:0000375 RNA splicing, via transesterification reactions

GO Biological Processes GO:0000380 alternative mRNA splicing, via spliceosome

GO Biological Processes GO:1903311 regulation of mRNA metabolic process

GO Biological Processes GO:0051607 defense response to virus

GO Biological Processes GO:0051607 defense response to virus

GO Biological Processes GO:0140546 defense response to symbiont

GO Biological Processes GO:0009615 response to virus

GO Biological Processes GO:0002221 pattern recognition receptor signaling pathway

Reactome Gene Sets R-HSA-909733 Interferon alpha/beta signaling

Reactome Gene Sets R-HSA-909733 Interferon alpha/beta signaling

GO Biological Processes GO:0060337 type I interferon signaling pathway

GO Biological Processes GO:0071357 cellular response to type I interferon

GO Biological Processes GO:0034340 response to type I interferon

GO Biological Processes GO:0043393 regulation of protein binding

Reactome Gene Sets R-HSA-913531 Interferon Signaling

GO Biological Processes GO:0051098 regulation of binding

GO Biological Processes GO:0007281 germ cell development

GO Biological Processes GO:0007281 germ cell development

GO Biological Processes GO:0022412 cellular process involved in reproduction in multicellular organism

GO Biological Processes GO:0010638 positive regulation of organelle organization

GO Biological Processes GO:0007276 gamete generation

GO Biological Processes GO:0090501 RNA phosphodiester bond hydrolysis

GO Biological Processes GO:0090501 RNA phosphodiester bond hydrolysis

GO Biological Processes GO:0090305 nucleic acid phosphodiester bond hydrolysis

GO Biological Processes GO:0040029 regulation of gene expression, epigenetic

GO Biological Processes GO:0040029 regulation of gene expression, epigenetic

GO Biological Processes GO:0034470 ncRNA processing

GO Biological Processes GO:0034470 ncRNA processing
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Discussion
CC is one of the devastating malignancies with poor 
prognosis [22, 23]. Screening for candidate biomark-
ers remains a great challenge in improving the prog-
nosis and evaluating the therapeutic effect in future. 
However, at present, no robust and effective biological 
markers can accurately predict the survival and prog-
nosis of CC patients. It is well-accepted that immunity 
also plays critical roles in cancer development and pro-
gression [24]. Immunotherapy is showing impressive 
success in cancer treatment [25, 26]. Thus, it is sig-
nificantly important to construct an immune-related 
prediction model, thus guiding the clinical treatment 
strategy.

Herein, CC patients were separated into four clus-
ters based on the immune signature score. There 
are notable differences in tumor purity, ESTIMATE, 
stromal scores, immune scores, and the expression of 
immune checkpoint markers between the four clus-
ters. The Cluster2 patients have a highest immune 

infiltration, and Cluster1 have a lowest immune infil-
tration. WGCNA analysis found turquoise and black 
module with highly relevant expression pattern. 
Then, the identified module genes, we performed 
Gene Ontology (GO) enrichment analysis in biologi-
cal processes for “turquoise” and “black” module, to 
explore the biological process of each module. Two 
modules including 1550 DEGs were involved in lym-
phocyte activation, immunoregulatory interactions 
between a lymphoid and a non-lymphoid cell, inflam-
matory response, and positive regulation of immune 
response. Many studies have confirmed that there 
is a close relationship between tumor immune and 
CC [27]. Thirty-one IARBPs in two modules were 
selected out for further screening, analysis, and con-
struction of a prognostic signature composed of two 
IARBPs.

Canonical RBPs work by binding to conserved 
sequence motifs in their target mRNAs via combi-
nations of structurally well-defined RNA-binding 

Fig. 6  Screening of thirty-one RBPs related to significant prognosis in CC. Forest plot showing the prognostic RBPs
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domains (RBDs) [28]. Classic RBDs include the RNA 
recognition motif, the K-homology, DEAD/DEAH 
helicase, and zinc-finger domains [16]. Besides, non-
canonical RBPs refer to those proteins which have 
not been proved to have classic RBDs or the estab-
lished domains by direct experimental evidence but 
have RNA-binding activity. In our prognostic signa-
ture, the FBXO17 and PPARGC1A are classic RBPs. 
FBXO17 primarily plays an oncogenic role in various 
cancers [29, 30]. Over the past few years, studies have 
increasingly documented the contribution of FBXO17 

to immune. For instance, FBXO17 inhibited activation 
of IFN-I signaling induced by various innate stimuli. 
Moreover, knockdown or knockout of FBXO17 pro-
moted the transcriptional induction of IFN-β and 
IFN-stimulated genes as well as antiviral activities 
[31]. PPARGC1A is a known master regulator of mito-
chondrial biogenesis [32]. PPARGC1A variant appears 
to be associated with the risk of CC [33]. Addition-
ally, PPARGC1A may directly affect expression of 
genes with either pro- or anti-inflammatory functions 
[34]. However, there are few studies on the role of 

Fig. 7  The RBP signature comprising two genes, which predicted the overall survival of CC, in the TCGA and GEO cohorts. a K-M survival analysis, 
b risk score distribution, c survival status, and d heatmap of a prognostic model in the CC cohort from TCGA. e K-M survival analysis, f risk score 
distribution, g survival status, and h heatmap of a prognostic model in the CC cohort from GEO
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PPARGC1A expression in tumor immunity. This needs 
further research in the future.

Next, the risk score was employed to divide patients 
into low- and high-risk group. K-M curve, score plot, and 
survival status plot, as well as ROC curve demonstrated 
that the two IARBPs had a favorable estimation potential 
in TCGA and GEO databases.

Furthermore, we researched on the relation of the 
two immune-associated RBPs prognostic signature to 
immune microenvironment. The high-risk group had 
significantly higher ESTIMATE score and immune 

score compared to low-risk group. For the type of infil-
trating immune cells, the degree of infiltration of Mac-
rophages M0 and Macrophages M2 were significantly 
upregulated. In the immune microenvironment of CC, 
tumor-associated macrophages (TAMs) are one of 
major tumor-infiltrating immune cells [35]. Although 
macrophages should be able to kill tumor cells, immu-
nosuppressive microenvironment most often polarizes 
TAMs into M2-like macrophages rather than M1-like 
macrophages, which promote immunosuppression, 
angiogenesis, and extracellular matrix [36]. Many studies 

Fig. 8  Prognostic value of two-gene signature in two datasets. a ROC curves, b UCR, and c MCR analysis of the risk score and other clinical indices 
in TCGA cohort. d ROC curves, e UCR, and f MCR, analysis of the risk score and other clinical indices in GEO cohort
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have reported that the presence of large numbers of M2 
macrophages in colorectal carcinoma is significantly 
correlated with decreased survival rates [37, 38]. M2 
macrophage infiltration is positively related with the 
expression of immune checkpoints. Furthermore, anti-
M2 macrophages combined with immune checkpoint 
inhibitors improves the therapeutic effect and provides 
a new idea for the treatment of tumors [39]. Contrary 
to the pro-inflammatory function during infections, 
tumor-associated neutrophils (TANs) promotes tumor 
progression malignancy by mediating angiogenesis [40]. 

This indicated that high-risk patients might be in an 
immunosuppressive state and have a poor effect to the 
immunotherapy.

Furthermore, the CellMiner database was exploited 
to analyze the relationship between the drug sensitiv-
ity and the expression of FBXO17 and PPARGC1A. 
The result indicated that FBXO17 was most sensitive to 
treatment with Molecular targeted therapy drugs such 
as Irofulven, Sonidegib, and Lenvatinib. In addition, 
the PPARGC1A was most sensitive to Vemurafenib and 
Dabrafenib.

Fig. 9  Analysis of the immune gene sets between different risk groups in the TCGA cohort. a The immune infiltration in high- and low-risk patients. 
b Correlation heatmap of two RBPs (FBXO17 and PPARGC1A) and immune gene sets. *P < 0.05, **P < 0.01, ***P < 0.005
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In conclusion, we performed a comprehensive bioinfor-
matics analysis of RBPs and identified a novel prognos-
tic risk score involving two RBPs in CC. This risk model 
can be used as a biomarker to independently predict the 
prognosis of CC and may offer new promising therapeu-
tic targets for CC patients. The limitation of this study is 
that further research is still needed to verify our findings.
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