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ABSTRACT
Computational models of congenital heart disease (CHD)
have become increasingly sophisticated over the last
20 years. They can provide an insight into complex flow
phenomena, allow for testing devices into patient-
specific anatomies (pre-CHD or post-CHD repair) and
generate predictive data. This has been applied to
different CHD scenarios, including patients with single
ventricle, tetralogy of Fallot, aortic coarctation and
transposition of the great arteries. Patient-specific
simulations have been shown to be informative for
preprocedural planning in complex cases, allowing for
virtual stent deployment. Novel techniques such as
statistical shape modelling can further aid in the
morphological assessment of CHD, risk stratification of
patients and possible identification of new ‘shape
biomarkers’. Cardiovascular statistical shape models can
provide valuable insights into phenomena such as
ventricular growth in tetralogy of Fallot, or morphological
aortic arch differences in repaired coarctation. In a
constant move towards more realistic simulations,
models can also account for multiscale phenomena (eg,
thrombus formation) and importantly include measures
of uncertainty (ie, CIs around simulation results). While
their potential to aid understanding of CHD, surgical/
procedural decision-making and personalisation of
treatments is undeniable, important elements are still
lacking prior to clinical translation of computational
models in the field of CHD, that is, large validation
studies, cost-effectiveness evaluation and establishing
possible improvements in patient outcomes.

INTRODUCTION
Twenty years ago, pioneering research in the field
of modelling congenital heart disease (CHD)
showed how numerical simulations based on finite
elements method (FEM) and computational fluid
dynamics (CFD) could provide insight into local
haemodynamics in the total cavopulmonary con-
nection of Fontan patients.1 This study beautifully
demonstrated how computational results (eg, vel-
ocity vector plots, particle path plots, hydraulic dis-
sipation power, energy loss quantification) could
generate clinically meaningful data, by simulating
different offsets of the Fontan baffle. This work
hinted at how simulations could eventually be
translated clinically, suggesting that different caval
anastomoses designs could be evaluated based on
numerical results. Following impressive efforts
from the bioengineering modelling community, the
use of computational simulations keeps being advo-
cated as a potentially powerful aid in decision-
making and treatment. A 2009 study commented
on ‘translating the art into science’,2 referring to

CHD patient-specific models from three-
dimensional (3D) imaging reconstructions. But how
to translate such science into clinical practice?
The uniqueness and complexity of CHD anatom-

ical arrangements (prerepair and postrepair) war-
rants a patient-specific approach, which can be
facilitated by using computational models. The
detailed insight into flow and structural phenomena
that models can provide can add to our knowledge
of CHD. Recent advances in the imaging realm, for
example, 4D cardiovascular magnetic resonance
(CMR) imaging flow quantification producing
exquisite blood flow visualisation,3 have slightly
shifted the usefulness of modelling in CHD toward
their predictive capabilities rather than on haemo-
dynamic insight, that now can be gathered directly
in patients.
This review will present engineering tools that

can have a relevant role in decision-making, surgi-
cal planning and overall pathophysiological appre-
ciation of CHD.

PERSONALISED HEALTHCARE
Computer modelling can advance personalised pre-
dictive medicine, whereby an individual’s unique
anatomy and physiology are used to define the
model, predicting outcomes of different treatments
and helping to identify optimal strategies.4

As mentioned, Fontan surgery has been one of
the first modelling applications to CHD. Early
work investigated the influence of the Fontan con-
nection on caval haemodynamics as a determinant
factor for surgical success.5 A study explored 14
different Fontan baffle type options for a single
patient, investigating possible postoperative evolu-
tions of the outlet boundary conditions and using
optimisation algorithms to identify the theoretically
optimal treatment.6 Another study applied CFD
prior to surgery in order to identify a strategy that
could guarantee the best flow distribution to the
pulmonary arteries, importantly showing good
agreement between predictions and clinical
follow-up measurements.7 Another example pre-
sented a methodology of patient-specific virtual
surgery applied to the case of a 6-month old infant,
simulating two options for stage II palliation (ie,
bidirectional Glenn vs hemi-Fontan operation).8

Direct comparison of the outcomes allowed the
quantification of the significant changes between
preoperative and postoperative conditions. CFD
simulations can also be useful to evaluate new tech-
nologies/procedures in this context, for example,
investigating the design of the Y-graft baffle for
Fontan completion on six prospective patients by
means of flow simulations.9 Results contributed to
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confirm the reliability of patient-specific simulations, whose out-
comes were successfully validated against in vivo data.

Quantification of magnitudes such as blood flow velocity, wall
shear stresses (WSSs) and pressure can be critical in planning
the treatment of other CHDs where a change in geometry can
lead to haemodynamic variations. CFD simulations have been
applied to the study of aortic coarctation (CoA), revealing how
long-term morbidity can be explained by altered biomechanical
indices such as time-averaged WSSs and oscillatory shear
index.10 CFD can be used to accurately predict the non-invasive
pressure gradient across the CoA site without the limitations of
simplified assumptions (eg, modified Bernoulli equation in echo-
cardiography), showing good agreement with invasive catheter
measurements, and further simulating aortic haemodynamics
during stress testing.11 Patient-specific modelling can also
provide valuable insight to plan the management of pulmonary
stenosis, for example, in patients with tetralogy of Fallot. In this
case, interventional planning is still exclusively based on detailed
anatomical and physiological data derived from imaging and
catheter-based modalities.12 Simulations could optimise proced-
ural planning by predicting differences in treatment outcome
based on individual variability. For instance, a case study pre-
sented the use of a model of the proximal pulmonary arteries to
investigate changes in flow and pressure following removal of
the pulmonary stenosis.13

Minimally invasive interventional procedures can benefit
from patient-specific predictions for preprocedural assessment,
when the operator lacks direct access to the implantation site,
choosing the type and size of device based mainly on imaging
data. Structural FEM simulations can provide information on
the feasibility of device implantation, and have supported min-
imally invasive procedures such as percutaneous pulmonary
valve implantation (PPVI) or CoA stenting.

Patient-specific models can be particularly useful for
‘first-in-man’ procedures, for example, implantation of a novel
PPVI device.14 In this study, simulations were useful to demon-
strate the feasibility of implanting the novel self-expanding stent
prior to the actual procedure. Postprocedural data were then
acquired to assess the success of the implantation and were in
agreement with computational predictions. This case demon-
strates how the patient-specific approach may increase safety of
preprocedural planning. Similarly, a modelling paradigm was
employed for optimal device selection for a complex PPVI case
(figure 1).15 A right ventricular outflow tract patient-specific
model was used to virtually implant four different percutaneous
devices, which theoretically could have all fit the anatomy, asses-
sing their performance (ie, anchoring, migration forces, arterial
wall stresses, paravalvular regurgitation). The later comparison
with procedural results highlighted the importance of consider-
ing the individual implantation site material properties, which
may vary considerably across cases. Another example for inter-
ventional procedural planning is the case of stenting a complex
aortic recoarctation (figure 2), where structural and fluid-
dynamic simulations contributed to identify optimal stent size.16

So far, these investigations have typically taken the form of
case studies or included few patients. A rigorous validation
framework based on a large number of cases should be advo-
cated to demonstrate the reliability of the models. Definition of
simulations training, certifications and review of the computa-
tional techniques are also important,17 as standardising CFD
and FEM techniques and certifying simulations results, if the
latter were used for clinical decision-making and developing
new devices or surgical techniques.

DEVICE DEVELOPMENT
Computational simulations in the bioengineering industry have
been confined to design development of medical devices and
instrumentation, somewhat neglecting the interaction between
the device and the biological site. However, the potential
success or failure of medical devices depends on design
characteristics of the device itself, and also on the interaction
with the implantation site, requiring knowledge of the dynamic
3D morphology, the anatomic variability between subjects, the
interaction forces exerted by the anatomy on the device under
physiological/pathological conditions, the long-term mechanical
performance of the device when subjected to cyclic in vivo
forces, and the biological and mechanical impact of the device
itself on the body. In the context of CHD, patient-specific com-
putational modelling can play a fundamental role in the design
and testing of new devices as animal models are often inad-
equate to describe the large anatomical variability encountered
in this population,18 and bench tests can be very
resource-intensive and time-intensive. Compared with adult
patients with acquired diseases, children with CHD typically
present a wide range of complex anatomies, often repaired in
childhood and evolving as the child grows. The development of
devices purposely designed for children lags a decade behind
device development for adults, as the paediatric market is far
smaller, thus less appealing for companies to invest in R&D for
such devices. Inexpensive computational modelling appears to
be the most promising approach to develop medical devices suit-
able for patients with CHD.

Patient-specific computational modelling has attracted consid-
erable funding around the world,19 and received increasing
attention from regulatory agencies due to its potential to signifi-
cantly reduce the number of manufactured prototypes and
animal experiments in phase 0 and 1 trials prior to first-in-man
implantation, thus shortening the bench-to-bed pathway. The
European Commission sponsored the Virtual Physiological
Human initiative since 2006 (http://www.vph-institute.org/,
http://www.vph-noe.eu/) and, more recently, the development of
a roadmap to introduce in silico clinical trials (http://
avicenna-isct.org). In 2013, the US Food and Drug
Administration (FDA) advocated the use of such systems as an
additional innovative research tool,20 and created the Medical
Device Innovation Consortium with the main purpose of asses-
sing new methods, approaches and standards to enhance the
quality and performance of medical devices and improve the
timeline of availability of these products to patients. The US
Congress recently put forward a bill urging the FDA to engage
with device and drug sponsors to explore greater use, where
appropriate, of in silico trials as these ‘may potentially protect
public health, advance personalized treatment, and be executed
quickly and for a fraction of the cost of a full scale live trial’.21

Third party companies, not directly involved in the Device
Industry/Regulatory Agency interaction, but providing services
to both by developing computational tools to design cardiovas-
cular devices, are advancing in this direction, for example,
leading engineering software company Dassault Systemes
Simulia (Providence, Rhode Island, USA). They recently invested
in the Living Heart Project initiative to build a computational
platform of the human heart including multiphysics capabilities,
creating a ‘complete 3D view of electrical impulses and muscle-
fiber contractions able to replicate the true motion of the
human heart’.22 The Living Heart attributes, such as geometry,
material properties, loads and boundary conditions, can be
modified in order to study cardiac defects and pathologies, and
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explore treatment options. Devices can be virtually implanted
into the model, for example, a novel annuloplasty ring for cor-
rection of ischaemic mitral regurgitation,23 evaluating effects on
cardiac function and predicting mechanical reliability under dif-
ferent conditions. The Living Heart Project just signed a 5-year
research agreement with the FDA to test implantation and per-
formance of cardiovascular devices, such as pacemaker leads.24

STATISTICAL SHAPE MODELLING
Considering CHD as ‘a gross structural abnormality […] of
functional significance’ at birth,25 the shape and size of the
heart and its components are crucial for early diagnosis and
management of patients with CHD. While non-invasive imaging
techniques provide detailed 3D anatomical data, analysis of
shape and structure in clinical practice is still often carried out
via simple morphometry on 2D image slices, neglecting the
abundance of available 3D information. Advances in medical
imaging have led to growing image databases and population-
based studies of cardiac anatomy.26 Processing and analysing
large amounts of population data combining individual 3D
shape information from multiple patients represents a challenge
that can be addressed with a statistical shape model (SSM).

An SSM is typically based on shapes obtained by segmenting a
structure of interest from medical imaging data, providing average
anatomical information as a mean shape (or ‘template’) and shape
variations around this mean. The combination of mean shape and
its variations constitutes the so-called shape atlas, which integrates
all shape information for a population of interest.26 SSMs can be
descriptive and predictive (figure 3). Descriptive models enable

exploration of particular shape characteristics to discover unex-
pected patterns such as trends, clusters or outliers. Predictive
models allow studying relationships between shape and continu-
ous or discrete (clinical or functional) parameters by applying
regression or classification techniques.27 28

SSMs are already very popular in the field of neuroscience,
while cardiac and particularly CHD applications are still
limited. Early models described the variability of 2D ventricular
shape contours derived manually from echocardiogram images,
based on few subjects.29 Today, cardiac SSMs range from
elaborate 3D models of the whole heart using CT data, to
models based on >2000 subjects.30 31 Projects such as the
Cardiac Atlas Project aim to build exhaustive image databases,
including CHD scenarios.31

SSMs are predominantly used for isolating a structure of interest
in medical image segmentation. Yet, not many studies have
exploited their capabilities of exploring 3D shape features for
diagnostic or prognostic purposes. Examples of studies seeking for
‘shape biomarkers’ include comparison of left ventricular (LV)
shape between healthy and diabetic subjects, finding regional LV
shape features such as significantly increased septal bulging; analys-
ing ventricular shape in women with pre-eclampsia for risk assess-
ment; and investigating a characteristic LV shape of preterm born
subjects.32–34 Aortic arch SSMs have explored morphological dif-
ferences linked to gender and race, and could show associations
between sinus shape and valve regurgitation in transcatheter aortic
valve replacement (TAVR) patients.35 36

In CHD, analysis of right ventricular morphology in patients
with tetralogy of Fallot established correlations between distinct

Figure 1 An example of
patient-specific simulation for virtual
device implantation in the right
ventricular outflow tract. The
patient-specific anatomy is
reconstructed from cardiovascular
magnetic resonance (CMR) imaging,
taking into account deformations over
the cardiac cycle (ie, whole heart
configuration in diastole vs systolic
configuration). All available devices
can be implanted virtually, including
simulation of prestenting.
Computational analyses can then offer
predictions, for example, stresses
exerted by the different devices on the
vessel wall, aiding in the
decision-making process.
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ventricular shape features and tricuspid and transpulmonary
regurgitation fractions.37 Regional LV shape differences have
been identified between healthy subjects and patients postarter-
ial switch operation.38 Interestingly, SSM results were found to
be associated with clinical expert shape assessment of aortic
arch morphology in patients with repaired CoA,39 suggesting
the potential for clinical decision support and diagnosis systems.

Predictive models are very appealing. A computer-aided diag-
nosis system based on healthy participants and patients with

connective aortic tissue disorder used shape modes as classifier
for distinguishing between subjects, showing promising classifi-
cation correctness.40 Particularly interesting is a statistical
growth model for patients with tetralogy of Fallot able to visual-
ise average right ventricular growth patterns.37

The manifold anatomical variety in CHD calls for novel
methods to investigate how shape affects function and ultim-
ately patient outcome, so both descriptive and predictive SSMs
could be clinically useful in a quest for shape biomarkers. Shape

Figure 2 An example of patient-specific simulation for coarctation stenting, showing virtual device positioning (A) and deployment (B), as well as
the corresponding fluoroscopy data (C and D) acquired in vivo.

Figure 3 Summarising a statistical shape analysis framework (SSM, statistical shape model). Starting from segmentation of medical imaging data
(1), the anatomical segment of interest, for example, the left ventricle, is reconstructed (2) and these two steps are repeated for all the patients in
the population, generating the inputs for computing the mean shape (3); postprocessing (4) involves methods such as principle component analysis
(PCA), allowing to compare variations in shape (eg, ±2 SD from the mean shape) and perform quantitative assessments.

Biglino G, et al. Heart 2017;103:98–103. doi:10.1136/heartjnl-2016-310423 101

Review



outliers could be automatically detected and followed-up more
closely. Clustering techniques could uncover previously
unknown shape subgroups, and subsequent classification techni-
ques could explore if any of those subgroups is at a higher risk
of following a pathological pathway or growth model.
Regression and correlation of distinct shape features with clin-
ical or functional parameters could identify shape biomarkers
for adverse cardiac events and even inspire novel surgical
approaches for repairing specific morphologies. Growth models
could assist in treatment planning. Finally, in relation to above-
mentioned in silico trials, shape atlases could be used to develop
devices that fit the majority or different classes of CHD
populations.

As for every statistical model, increasing numbers will
strengthen the models, building up on existing small sample
studies that often focus on novel algorithms and moving toward
larger-scale studies driven by clinical questions. This needs close
collaboration between clinical and engineering centres, multi-
centre studies and pooling data from various imaging modalities
or existing models.

MERGING FUNCTIONAL AND MOLECULAR DATA
Having considered structural, haemodynamic and morpho-
logical variables, it is important to remember that a strong inter-
action exists between mechanical phenomena and biological
processes. Computational models can, for example, output mea-
sures of WSS, that can be interpreted in the light of thrombus
formation (low WSS) or potential vessel rupture (high WSS). A
relevant CHD example can be represented by a validated com-
putational model of repaired transposition of the great arteries
showing regional increased WSS compared with an age-matched
healthy control subject.41 Taking this argument further, a recent
elegant study looking into patients with bicuspid aortic valve
measured differences in WSS between bicuspid and tricuspid
scenarios as well as different bicuspid valve fusion patterns,
relating regional differences in aortic WSS from in vivo CMR
and underlying histological differences.42 This is an important
observation and leads to considering that, in order to fully
exploit the predictive potential of CHD models, it is critical to
take into account multiscale processes, especially if considering
a time-related phenomenon (eg, effect of flow-related stresses
on the aortic wall over time) versus an immediate phenomenon
(eg, stent positioning in the implantation site at the instant of
deployment). Refined simulations can incorporate such coupling
between vascular growth and CFD, by means of a
fluid-solid-growth framework.43 The application of this type of
models to CHD would also require taking into account paediat-
ric blood rheological properties.44 Furthermore, a multiscale
approach can also be used to model phenomena such as blood
clot formation,45 which can be relevant in CHD simulations.
For instance, in the above-mentioned scenario of Fontan
patients receiving a Y-graft, flow simulations can identify pos-
sible areas of low WSS leading to potential thrombus formation
and obstruction of a limb of the baffle.9

While technically challenging and not required for all applica-
tions, inclusion of multiscale phenomena can considerably
strengthen the power of numerical models, particularly growth
models, which in turn could be very relevant for CHD evolu-
tion predictions. Some of these associations are known, not just
at a histological level (eg, aortic aneurysmal disease and related
upregulation/downregulation of several microRNAs).46

Integration of such information in the models is particularly
interesting for phenomena such as calcification, clotting and

changes in arterial wall properties, for example, surgical
patches.

MULTIMODAL DATA AND UNCERTAINTY
Recent advances in technologies such as 3D echocardiography
can also enrich models, for example, including detailed valve
morphologies.47 Merging imaging data from different sources
(eg, CMR+3D echo) can lead to creating and setting new
models with functional and anatomical data from multiple
sources.

Another important development is the inclusion of uncer-
tainty analysis and optimisation algorithms in the modelling
process. An application of this uncertainty quantification in
virtual surgery for patients with single ventricle showed statis-
tical variability in the predictions, importantly allowing includ-
ing a CI in the simulation results.48 Indeed, the fact that
simulations would previously output a single result has historic-
ally represented a limitation with regards to clinical translation
of the models, as clinicians remain sceptical unless models are
robustly validated, as realistic as possible, and accounting for
naturally occurring uncertainties (including variability of the
input data).

Biomechanical modelling is a powerful tool, not just for
CHD, and also in other areas of cardiovascular medicine, for
example, simulating stent behaviour and stent implantation in
coronary arteries in adult patients.49 Nevertheless, it has been
recently reiterated that it is essential to establish an impact on
patients’ outcomes if we are ultimately to demonstrate the use-
fulness of simulations for improved diagnostics, surgical plan-
ning or device implantation.50 Despite colossal advances on the
technical side since those first pioneering Fontan simulations,
and despite the undeniable potential for simulations to enrich
clinical practice with their predictive capabilities, questions still
remain to be answered. Will the uptake of simulation improve
clinical success in treating patients with CHD? How cost-
effective is the paradigm of embedding computational modelling
in the clinical reality? Will the development of patient-specific
paediatric devices be supported by the industry? Particularly in
CHD, it is possible to learn lessons from computational simula-
tions, and this translational effort is driven at its core by a col-
laborative effort between engineers and clinicians.
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