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Despite remarkable strides in microbiome research, the viral compo-
nent of the microbiome has generally presented a more challenging
target than the bacteriome. This gap persists, even though many
thousands of shotgun sequencing runs from human metagenomic
samples exist in public databases, and all of them encompass large
amounts of viral sequence data. The lack of a comprehensive
database for human-associated viruses has historically stymied ef-
forts to interrogate the impact of the virome on human health. This
study probes thousands of datasets to uncover sequences from over
45,000 unique virus taxa, with historically high per-genome com-
pleteness. Large publicly available case-control studies are reana-
lyzed, and over 2,200 strong virus–disease associations are found.
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The human virome is the sum total of all viruses that are in-
timately associated with people. This includes viruses that

directly infect human cells (1, 2) but mostly consists of viruses
infecting resident bacteria (i.e., phages) (3). While the large
majority of microbiome studies have focused on the bacteriome,
revealing numerous important functions for bacteria in human
physiology (4), information about the human virome has lagged.
However, a number of recent studies have begun making inroads
into characterizing the virome (5–13).
Just as human-tropic viruses can have dramatic effects on

people, phages are able to dramatically alter bacterial physiology
and regulate host population size. A variety of evolutionary dy-
namics can be at play in the phage/bacterium arena, including
Red Queen (11), arms-race (14), and piggyback-the-winner (15)
relationships, to name just a few. In the gut, many phages enter a
lysogenic or latent state and are retained as integrated or episomal
prophages within the host bacterium (16). In some instances, the
prophage can buttress host fitness (at least temporarily) rather
than destroy the host cell. To this effect, prophages often encode
genes that can dramatically alter the phenotype of the bacteria,
such as toxins (17), virulence factors (18), antibiotic resistance
genes (19), photosystem components (20), other auxiliary meta-
bolic genes (21), and CRISPR-Cas systems (22), along with
countless genes of unknown function. Experimental evidence has
shown that bacteria infected with particular phages (i.e., “viro-
cells”) are physiologically distinct from cognate bacteria that lack
those particular phages (21).
There have been a few documented cases in which phages

have been shown to be mechanistically involved in human health
and disease, sometimes through direct interactions with human
cells. This includes roles in increased bacterial virulence (17),
response to cancer immunotherapy (23), clearance of bacterial
infection (24), and resistance to antibiotics (25). Furthermore,
phage therapy, the targeted killing of specific bacteria using live
phage particles, has shown increasing promise for treatment of
antibiotic-resistant bacterial infections (26). Considering the
progress already made, phages represent attractive targets of and
tools for microbiome restructuring in the interest of improving
health outcomes.

In addition, several studies have conducted massively parallel
sequencing on virus-enriched samples of human stool, finding
differential abundance of some phages in disease conditions (6,
27–29). A major issue encountered by these studies is that there
is not yet a comprehensive database of annotated virus genome
sequences, and de novo prediction of virus sequences from met-
agenomic assemblies remains a daunting challenge (3). Further,
though some tools are able to predict virus-derived sequences with
high specificity (30, 31), these tools have not been applied to
human metagenomes at a large scale [with a possible exception
(13)], and, regrettably, most uncovered virus genomes do not end
up in central repositories. One study suggests that only 31% of the
assembled sequence data in virion-enriched virome surveys could
be identified as recognizably viral (32). On the other hand, an-
other study of 12 individuals was able to recruit over 80% of reads
from virus-enriched samples to putative virus contigs (11). Still,
most of the potential viral contigs from this study were unclassi-
fiable sequences, and a large majority of contigs appeared to
represent subgenomic fragments under 10 kb.
The current study sought to overcome the traditional challenges

of sparse viral databases and poor detection of highly divergent
viral sequences by using Cenote-Taker 2, a new virus discovery
and annotation tool (33). The pipeline was applied to sequencing
data from nearly 6,000 human metagenome samples. Strict criteria
identified over 180,000 viral contigs representing 45,033 specific
taxa. In most cases, 70 to 99% of reads from virus-enriched stool
datasets could be back-aligned to the Cenote-Taker 2–compiled
Human Virome Database. Furthermore, the curated database
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allowed read-alignment–based abundance profiling of the virome
in human metagenomic datasets, enabling the reanalysis of a panel
of existing case-control studies. The reanalysis revealed previously
undetected associations between chronic diseases and the abun-
dance of 2,265 specific virus taxa.

Results
Characteristics of the Human Virome. Read data were downloaded
from the National Center for Biotechnology Information’s (NCBI’s)
Sequence Read Archive (SRA), including data from the Human
Microbiome Project (34) and several other studies (25 Bioprojects in
total) pursuing massively parallel sequencing of humanmetagenomic
samples (Dataset S1) (11, 35–48). These data spanned multiple body
sites, including gut (stool), mouth, nose, skin, and vagina. A subset of
the projects performed enrichment for viral sequences (49–52). Al-
most all of the projects pursued DNA sequencing, but a small
number of metatranscriptomic (i.e., ribosome-depleted total RNA)
samples were analyzed as well (53). Read data were binned and
assembled by Biosample rather than by individual run-in order to
combine read sets from the same individual. A total of 5,996
Biosamples were analyzed, encompassing 16,210 sequencing runs.
Cenote-Taker 2 (33) was used to check contigs for two common

end features of complete viral genomes: direct terminal repeats
(DTRs) (suggesting a circular or long terminal repeat–bounded
viral genome) or inverted terminal repeats (ITRs). Sequences with
DTRs were arbitrarily assumed to represent circular DNA ge-
nomes. Sequences were then scanned for the presence of “virus
hallmark genes.” Circularized sequences >1,500 nucleotides (nt)
with at least one viral hallmark gene and ITR-containing con-
tigs >4,000 nt with at least one viral hallmark gene were desig-
nated as putative viruses. Linear (no discernable end features)
contigs >12,000 nt with two or more viral hallmark genes were
also kept as putative viruses. Since phages are often integrated
into bacterial chromosomes, each linear contig was pruned with
the Cenote-Taker 2 prophage pruning module to remove flanking
host sequences. The analysis resulted in over 180,000 putative
viral sequences. The sequences were classified into operational
taxonomic units (OTUs) by clustering at 95% average nucleotide
identity across 85% of contig length, according to the community-
recommended standard (54, 55) (Materials and Methods). A final
database of 45,033 sequences representing nonredundant virus
OTUs was generated (Fig. 1), and this database will herein be
referred to as the Cenote Human Virome Database (CHVD,
download available at https://zenodo.org/record/4498884) (56).
A total of 8,081 virus OTUs consisted of contigs with DTRs,

and 112 were ITR bounded. To formally estimate the genome
completeness of the virus OTU sequences, CheckV (55) was
applied to the entire CHVD dataset (Fig. 1B). A total of 14,034
contigs (31.2%) were estimated to be high-quality (90 to 100%
complete), 13,234 contigs (29.4%) were estimated to be medium
quality (50 to 90% complete), 17,270 contigs (38.3%) were es-
timated to be low-quality genome fragments (1 to 50% complete),
and 495 contigs (1.1%) were “not-determined.” Not-determined
contigs could either be sequences too divergent from the CheckV
references to be categorized, too short to categorize, or they
could be false positives. Compared to other human-associated
metagenome-assembled virus databases, such as the human subset
of IMG/VR (versions 1 and 2) (55, 57) (in which ∼75% of contigs
were estimated to be low-quality genome fragments or not-de-
termined) or the recently published Gut Virome Database (GVD)
(13) (Fig. 1B), CHVD is populated with a higher proportion and
number of high- and medium-quality virus genomes, see Fig. 4B.
Although it is often challenging to obtain very long virus

contigs from de novo assemblies, 119 virus OTUs over 200 ki-
lobases (kb) were detected in the survey with the largest being
Siphoviridae species ctpHQ1, at 501 kb. A total of 33 family- or
order-level taxa were observed, and 2,087 sequences could not be
classified by Cenote-Taker 2, representing many unrecognized

high-level taxa (SI Appendix, Fig. S1). It is important to note that virus
taxonomy, especially taxonomy of double stranded DNA (dsDNA)
phages, is currently in flux (54, 58–60), and these taxonomic statistics
will likely change as taxonomic groupings are revised. The vast
majority of classified sequences represent dsDNA tailed phages
in the order Caudovirales (including Siphoviridae, Podoviridae,
Myoviridae, Ackermannviridae, Herelleviridae, and Cross-Assembly
phage-like viruses [CrAss-like phage]). Relatively small numbers
of known human-tropic viruses were uncovered, including members
of families Adenoviridae, Anelloviridae, Circoviridae, Herpesviridae,
Caliciviridae (Human norovirus), Papillomaviridae, and Polyomaviridae.
Most of the human-tropic viruses mapped to previously reported
virus species, but 16 previously undiscovered anelloviruses were de-
tected (download available from: https://zenodo.org/record/4498884)
(56). Dataset S2 provides spreadsheet information on each virus,
including OTU, hallmark genes, CRISPR hits (see Fig. 2), and sta-
tistical information. In total, 757/5,996 Biosamples were virus-like
particle libraries, resulting in 3,756 virus OTUs in the final database.
Fig. 1 presents a graphical summary of observed virus taxa.

One taxon, designated “Phyco-like_phage,” is represented by 36
contigs. This is an interesting group of sequences initially binned
with Phycodnaviridae due to distant similarity of the terminase/
packaging gene of these viruses to a gene encoded by eukaryotic
phycodnaviruses (∼30% AA similarity). However, most of the
inferred virion structural genes that co-occupy these contigs are
distantly similar to those of crAss-like phages, not phycodnavi-
ruses, suggesting that they represent phages. This and the fact
that most of the 2,087 “Unclassified” viral sequences have virion
hallmark genes corresponding to dsDNA phage models (SI Ap-
pendix, Fig. S1) (Cytoscape network file available from https://
zenodo.org/record/4498884) (56) supports the idea that sub-
stantial phage diversity remains unclassified and undescribed.
To evaluate the degree to which the observed CHVD virus

OTUs are already represented in public databases, Mash (61)
was used to measure roughly intraspecies-level nucleotide se-
quence similarity to 23,386 genomes from annotated virus spe-
cies found in GenBank. With a Mash distance threshold of <0.05
(∼95% Average Nucleotide Identity [ANI]), 334/45,033 (0.7%)
CHVD viruses had at least one strict cognate sequence in
GenBank (Dataset S3). If the Mash distance threshold is relaxed
to <0.1 (∼90% ANI, 2,310/45,033 (5.1%) CHVD viruses have a
GenBank cognate (Dataset S3).
Recently, Gregory et al. (13) published a human GVD using

different virus discovery methods and some overlapping datasets.
The CHVD presented in this manuscript contains sequences
from multiple human body sites, so comparisons are not perfect.
However, we note that CHVD has 35% more contigs (45,033
versus 33,242) and 143% more sequence information (1.446
gigabases versus 0.596 gigabases) than GVD. The same Mash
distance analysis was applied to compare the two datasets. With
a Mash distance threshold of <0.05, 5,782 (12.8%) virus sequences
from this study had a cognate in the GVD (matching to 5,614 se-
quences in GVD). Comparing just the subset of CHVD contigs
derived from the gut, 5,704/30,863 (18.5%) had a GVD cognate. At
a looser threshold (Mash distance <0.1), 18,002 (40.0%) CHVD
sequences had cognates to 10,996 GVD sequences (Dataset S4).
Genome maps for all virus genomes (excluding those that were

strict cognates to extant entries) were deposited in GenBank
and given accession numbers in association with the Bioproject
PRJNA573942. Per NCBI guidelines, the files will be released
upon publication of this manuscript. Refer to Dataset S2 for
accession numbers.

The Large Majority of Reads from Well-Enriched Virome Preparations
Are Identifiable. It is unclear how much of the human virome is
cataloged by CHVD. One way to address this question is to look
at datasets that are physically enriched for viral sequences and
determine what fraction of reads in the dataset are identifiable.
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Fig. 1. CHVDmetrics. (A) Each classified contig is represented as dot, with the x-axis position representing contig length.Width of violin diagrams represent the density
of sequences at a given position and are proportional between categories. Larger (> 4 kb) Circular Rep-Encoding Single Stranded DNA [CRESS] virus OTUs consist of
contigs in a previously reported taxon that combines CRESS-like replication genes with inovirus-like virion genes (107, 108). (B) Genome quality bins are derived from
CheckV analysis, and body site labels are derived from sample metadata from the exemplar sequence of each virus OTU. (C) Data from virion-enriched stool samples
are plotted. To measure the degree to which enrichment for viral sequences was achieved, a ViromeQC Enrichment Score (32) was calculated for each sample (x-axis).
The enrichment score is essentially the inverse abundance of known bacterial single-copy marker genes. (Top) Dotted lines of the top panel are moving averages of
samples from the same study. Asterisks indicate Bioprojects/samples with data used in the production of the CHVD. (Bottom) Production samples are removed. Data
are binned by ViromeQC score, and boxplots represent IQR values, center lines representingmedian, andwhiskers representing 1.5 IQRs. Amodified database in which
sequences were clustered at 99% identity instead of 95% identity was used for the index to better capture microdiversity and metaviromic islands (109) (e.g., in-
traspecific structural variations consisting of insertions/deletions of gene cassettes; Materials and Methods). (D) Plots are the same as C but for oral virion preps.
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Reads from 983 human stool samples (representing 11 different
studies) that were physically enriched for virions and subjected to
nuclease digestion to remove nonencapsidated nucleic acids
were aligned to the CHVD (Fig. 1 C, Upper) (Dataset S5). To
quantify how well CHVD recruits reads from previously unan-
alyzed virion preps, samples used in the production of CHVD
were removed, and median and interquartile range were calcu-
lated for different bins of ViromeQC score. This analysis shows
that the percentage of reads aligning to CHVD scales with the
ViromeQC enrichment score. Poorly enriched (<10 ViromeQC
score) gut samples aligned about 10% of reads on average, and
samples with high enrichment scores (>30) aligned on average 70
to 80% with many samples achieving 99% alignment.
Though well-enriched viromic data were not as available

for other body sites, roughly 75% of reads were classifiable in
well-enriched oral samples enriched for virus DNA (Fig. 1D)
(Dataset S5).

CRISPR Spacer Analysis Reveals Candidate Hosts for Most Phages as
well as Phage–Phage Competition Networks. Many bacteria encode
CRISPR-Cas systems, which contain CRISPR spacer arrays of
short (∼32-nt) sequences copied from and used against invading
mobile genetic elements, especially phages (62). Matching bac-
terial CRISPR spacer sequences to phage genomes is one way to
determine whether a bacterial lineage has previously been ex-
posed to a particular phage. Advances in cataloging of CRISPR
spacers from bacterial genomes and optimization of phage/host
matching pipelines allowed the association of most of the phages
discovered in this project to bacterial hosts (http://crispr.genome.
ulaval.ca/) (63). Specifically, 31,259 of the 45,033 virus sequences
had at least one CRISPR spacer match from a known bacterium
or multiple bacteria, with 369,465 total spacers matched to
unique loci in CHVD sequences (Dataset S2). CRISPR spacer
density varied dramatically among different bacterial taxa (Fig.
2A). For example, members of genus Bifidobacterium were con-
firmed to have relatively large and diverse CRISPR spacer li-
braries (64), while Clostridium, Capnocytophaga, and Leptotrichia
typically encoded only one or a handful of spacers per phage.
Phages themselves can encode CRISPR arrays, and some phages

have intact and functional CRISPR-Cas systems (22, 65). These
CRISPR components can target host defenses as well as other
phages competing for the same host (66). Among phage sequences
in the CHVD, 1,971 CRISPR spacers were detected in arrays from
the genomes of 203 phages. Of these, 799 spacers targeted a total
of 2,036 other phages, suggesting complex phage–phage competition
networks in human metagenomes (Fig. 2B) (download Cytoscape
file from https://zenodo.org/record/4498884) (56). The bacterial
host pool of CRISPR-encoding phage and their target phage
should be the same. Therefore, bacterial CRISPR spacer matches
for phage–phage pairs were documented, and, when a bacterial
host could be determined for both the CRISPR-encoding phage
and target phage, this bacterial genus was the same for 85.1% of
pairs (Dataset S6).

The Most Commonly Abundant Viruses on Several Body Sites. With
this library of viruses and the large sampling effort from the
Human Microbiome Project (34, 67), the question of “which
viruses are the most commonly abundant” for a given body site
can be answered more confidently than was previously possible.
It should be noted that the Human Microbiome Project data
were collected from healthy Americans between 18 and 40 y of
age, and the conclusions here may not be generalizable to other
populations.
It is often challenging to precisely determine the border be-

tween an integrated prophage and host chromosomal sequences
without experimental validation, making virus quantification in
whole-genome shotgun (WGS) datasets challenging. Our pre-
liminary analyses revealed that inclusion of even a few hundred

nucleotides of flanking host sequence in a viral OTU contig can
greatly distort abundance measurements because of inadvertent
measurement of uninfected host bacterial sequences. We there-
fore performed a more stringent analysis in which contigs were
trimmed from the first recognized virus hallmark gene through the
last virus hallmark gene. While removing some of the virus se-
quence, this method preserves the most indelible sequences of the
virus genome while all but ensuring that no bacterial chromosome
will be retained. We refer to these more stringent units as “virus
cores” (download from https://zenodo.org/record/4498884) (56).
Data were downloaded from SRA and analyzed for hundreds

of patients at six body sites (anterior nares, buccal mucosa,
posterior fornix, tongue dorsum, supragingival plaque, and gut
[stool]). Reads were then aligned to the more stringent virus
cores database. As a proxy for the relative abundance of a given
virus OTU, the average number of reads per kilobase of virus
genome per million reads in the parent dataset (RPKM) was
calculated for each sequence (Fig. 3, SI Appendix, Figs. S2 and S3,
and Dataset S2). Virus prevalence was determined as proportion
of samples with >0.1 RPKM. The most commonly abundant virus
OTUs were calculated as (mean RPKM × prevalence). The right
panel of Fig. 3 shows the inferred host for each of the top 30 most
commonly abundant virus OTUs based on CRISPR spacer target
information. A majority of the most commonly abundant viruses
appear to infect members of the common bacterial family
Bacteroidaceae, which is generally abundant in the human gut.
Further, despite a large increase in alignable virus sequences
compared to past studies, the observation that crAss-like phages
are highly abundant in human gut ecosystems (12) seems to hold
remarkably well.
The data suggest an interesting bifurcation in prevalence of

gut virus OTUs with high abundance (RPKM). Although some
virus OTUs, such as Podoviridae sp. ctBGm1 and Siphoviridae sp.
ctrxw1, are present in nearly all samples and have an average
abundance of >10 RPKM, perhaps representing prophage of
ubiquitous bacterial lineages. Others, including all displayed crAss-
like viruses andMyoviridae sp. ctNBA1, are absent or low abundance
in most samples but highly abundant in a minority of samples. The
latter group could either represent viruses that periodically undergo
large replicative bursts, or viruses that constitutively dominate the
virome in certain individuals but not others.
As expected, most virus OTUs were prevalent at only one body

site, but 186 “cosmopolitan” OTUs had a prevalence of >0.2 (i.e.,
20% of samples) in at least two body sites (Dataset S7). Bacterial
CRISPRs targeted 128/186 sequences, with 36 being targeted by
genus Cutibacterium, 17 being targeted by Staphylococcus, 16 being
targeted by Strepococcus, and 14 by Bacteroides.

Specific Virus OTUs Are Associated with Human Disease.A number of
prior studies have looked for associations between the virome
and human diseases (27–29, 52, 68–72). However, these studies
were limited by the lack of a comprehensive virus reference
database, and nearly all studies used samples physically enriched
for viral sequences (71). Virus enrichment methods can be highly
variable, however (Fig. 1C), and can inadvertently remove some
viral taxa while failing to significantly select against host se-
quences (10, 32). Indeed, Gregory et al. (13) report that studies
employing different virus enrichment protocols to investigate the
same disease state (e.g., inflammatory bowel disease) rarely
contain the same virus populations in their data. Instead, studies
using similar enrichment protocols (regardless of disease state of
patients) shared more virus populations. Furthermore, sequences
encapsidated within virions may not be the best reflection of the
total viral population, especially in human digestive tracts, where
many phages are believed to exist primarily in lysogenic (nonlytic)
states (73), and some have been “grounded,” losing their ability to
independently excise from the host genome (74). It is possible that
the most important phages for human physiology are those that
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Fig. 2. Summary of CRISPR spacer match data. (A) Plots represent matches of bacterially encoded CRISPR spacers to virus contigs. Categories are defined by
bacterial genera (or higher taxon when genus is not clearly defined; Materials and Methods). Only genera with 200 or more CRISPR spacer matches to CHVD
OTUs are displayed. The x-axis values represent the number of unique bacterial CRISPR spacer hits for each virus OTU. Filamentous phage = Inoviridae and
other filamentous phages (e.g., certain CRESS viruses). (B) Network diagram of phage–phage interaction landscape based on CRISPR spacer matches. Each line
represents a match of a particular spacer sequence to its target phage.
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express accessory genes from an integrated provirus state, as op-
posed to phages that are producing abundant virions. It is thus
ideal to examine total DNA (also known as WGS) sequencing,
which can detect all DNA virus genomes.
Our study reanalyzed publicly available WGS data from 12 large

case-control studies analyzing stool and/or saliva (35, 41, 75–81).
These studies examined Parkinson’s disease, obesity, colon carci-
noma, colon adenoma, liver cirrhosis, type 1 diabetes, ankylosing
spondylitis, atherosclerosis, type 2 diabetes, hypertension, and
nonalcoholic fatty liver disease. The virus cores database was used
to compare the abundance of each virus OTU between case and
control cohorts. Fig. 4 shows an analysis of case-control compar-
isons of Parkinson’s disease (population size, n = 182) (Fig. 4 A–
C) and obesity (population size, n = 595) (Fig. 4 D–F). RPKM was
used to measure virus OTU abundance in each sample, and
Wilcoxon rank-sum tests with 100 bootstraps were conducted for
each comparison to calculate the P value (Fig. 4 A and D
“Virome,” SI Appendix, Figs. S4 and S5). Statistically significant
virus OTUs were determined by a false discovery rate < 1%
(Materials and Methods). All analyses compared associations be-
tween the virome and the “bacteriome,” measuring the bacter-
iome in terms of bacterial OTUs (i.e., species-level single-copy

bacterial marker gene abundance) using IGGsearch (82) (Fig.
4 A and D “Bacteriome,” SI Appendix, Figs. S4 and S5). A higher
number of statistically significant taxa were found for the virome
than the bacteriome in eight studies. The four other studies ana-
lyzed yielded no significant OTUs for either the virome or the
bacteriome (Fig. 4 and SI Appendix, Figs. S4 and S5). P values for
each virus OTU detected in each study are documented in Dataset
S2. Furthermore, random Forest Classifiers, trained on either all
virus OTUs or all bacterial OTUs, were more successful or equally
successful, on average, in discriminating healthy and diseased
patients using the virome data rather than the bacteriome data in
7/12 case-control populations (Fig. 4 B and E and SI Appendix,
Figs. S6 and S7).
The importance of considering effect size when reporting

microbiome associations has become apparent in recent years
(83, 84). Therefore, for all virus and bacterial OTUs with sig-
nificant differences between cases and controls, Cohen’s d effect
size is reported for each disease state (Fig. 4 C and F and SI
Appendix, Figs. S6 and S7).
It is not possible to make one-to-one comparisons of virus OTUs

and bacterial OTUs because many phages are capable of infecting
and replicating in multiple bacterial species (85), sometimes even

Bacteroidaceae

Pastuerellaceae

No CRISPR matches

Stool, n=466

<

Fig. 3. Most common viruses, Stool (Gut). (Left) A scatter plot of RPKM (a measure of relative read abundance for a given virus OTU, y-axis) versus prevalence
(proportion of samples with >0.1 RPKM, x-axis). For display purposes, the y-axis is a linear scale from 0 to 1 (100) and log10 above 1. The top 30 most commonly
abundant virus OTUs (based on the product of coordinates) are colored. (Right) Histogram and rug plot of RPKM values across all samples for the most
commonly abundant virus OTUs. Colors of dots in the Left correspond with the colors in the Right. The x- and y-axis are log scale. RPKM values below 0.1 are
binned at the left extremity of the plots for display purposes.
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in multiple bacterial genera (86), while, at the same time, lineages
within a single bacterial species have different abilities to resist or
acquire immunity to specific phage (87). Therefore, it is beyond the
scope of this study to investigate how specific virus OTUs could be
bolstering or depressing the fitness of particular bacterial OTUs in
individual gut ecosystems. Nevertheless, it can be informative to
qualitatively compare statistically significant virus OTUs and their
putative host bacterial genera (per CRISPR spacer match) (SI
Appendix, Fig. S8). At a glance, significant virus OTUs targeted by
CRISPR spacers from the same bacterial genus seem to all trend
the same direction and the same direction of most possible bac-
terial hosts that have significant differences between cases and
controls. This is consistent with lysogenic prophages as well as
increase in available hosts supporting larger virus populations (15).

Discussion
This study shows that, by leveraging virus-specific hallmark genes,
it is possible to mine human metagenomic data at a large scale to
create a database composed largely of previously unknown virus
sequences that captures most reads generated from virion-
enriched datasets from stool and saliva. This advance, in turn,
revealed hidden associations between a variety of chronic disease
states and specific virus taxa. It should be stressed that association
does not necessarily imply causation, and a variety of associative
relationships between viruses and a given disease state are possi-
ble. For instance, virus abundance might simply be an epiphe-
nomenon reflecting bacterial host abundance, the human genetics
that predispose people to a disease might also provide a more
favorable environment for the virus or its bacterial host, the ex-
ternal causes of a disease may create a more favorable environ-
ment for the virus, or the virus may contribute to the disease
presentation in some way but ultimately does not cause the disease
in isolation from other important factors. Verifying the associa-
tions we have detected with independent studies of the same
diseases in additional populations will be key to understanding the
extent to which the findings presented here are generalizable. If
the associations are confirmed, it might be possible to experi-
mentally test the causality question by adding or removing phages
of interest from gut ecosystems in animal model systems (88).
A limitation of the case-control studies analyzed here is that

they only consisted of a single timepoint for each subject. Virome
composition can be noisy, and longitudinal data on individual
patients might be more effective for discerning stable viral pop-
ulations (11). This problem may have been partly offset by use of
large cohort sizes (mostly over 150 total patients). Furthermore,
just as individual bacterial strains host a diversity of nonessential
“accessory genes” not shared by all strains within the bacterial
species (89), virus strains have unique sets of genes compared to
intraspecific relatives (90), reflecting viral pangenomes or “meta-
viromic islands.” With the current approach, most of the intraspe-
cies accessory gene content is left out due to sequence dereplication,
and the importance of these genes was not evaluated. Another
limitation is that the analyzed case-control surveys only used DNA
WGS methods whereas RNA sequencing of metatranscriptomes
might have provided more functional data on expression of spe-
cific viral genes, potentially leading to testable hypotheses about
possible mechanisms of action. It is also conceivable that correlations
for viruses with RNA genomes would be uncovered. Despite these
limitations, the current study shows that, using random Forest Clas-
sifiers, the virome may well be more diagnostic than the bacteriome
for a variety of chronic diseases. The strong associations of specific
virus OTUs in chronic diseases, along with medium-to-large–effect
sizes for many OTUs, cries out for more mechanistic investigation of
possible causal roles for viruses in chronic human disease.
While we maintain that this effort is a significant step forward,

it is likely that the CHVD could be improved both in depth and
breadth. Metagenomes from more body sites, such as the pulmonary
tract (91), could be analyzed, and sequencing runs representing more

geographic and lifestyle diversity could be used. Further, analysis of
additional metatranscriptomic datasets would likely uncover more
RNA viruses.
Even with the relatively inclusive criteria used by Cenote-

Taker 2 (discernable amino acid similarity of a viral hallmark
gene to a protein the RefSeq virus database), thousands of viruses
that live on humans from this dataset could not be taxonomically
classified, suggesting that additional families of as-yet-unidentified
viruses await formal discovery and categorization.

Materials and Methods
Identification of Viral Contigs in Assemblies. Human Microbiome Project
studies and other arbitrarily selected human metagenome studies (Dataset
S1) were downloaded from SRA, and unique Biosamples were delineated.
All runs from a given Biosample were downloaded concurrently, pre-
processed with Fastp (92), and coassembled with Megahit (93) using default
settings. Subsequent contigs were fed to Cenote-Taker 2 (https://github.com/
mtisza1/Cenote-Taker2, https://cyverse.org/discovery-environment), which, in
short, looks for genome end features (direct terminal repeats and inverted
terminal repeats), translates genes into amino acid sequences, compares each
amino acid sequence to a hidden Markov model database comprised of virus
hallmark gene alignments, keeps contigs with minimum number of genes
matching to the hallmark database, then identifies and prunes flanking bac-
terial chromosome sequences. All remaining gene features are then annotated
to create a genome map. Cenote-Taker 2 was used with settings to consider
circular or LTR-bearing contigs (minimum 21 nt identical direct repeats at ter-
mini of contig) of at least 1500 nt, ITR-containing contigs of at least 4 kb, and
linear contigs of at least 12 kb. These contigs were scanned for genes matching
viral hallmark models. Terminal repeat–containing contigs with one or more
viral hallmark genes were kept, and linear contigs with two or more viral
hallmark genes were also kept. For every run, regardless of whether the sample
had been physically enriched for virions, the Cenote-Taker 2 prophage pruning
module was employed. Cenote-Taker 2 hallmark gene database was the Sep-
tember 15th, 2020 version (https://github.com/mtisza1/Cenote-Taker2). While
Cenote-Taker 2 does take steps to earmark potential plasmids and conjugative
transposons, extra precautions were taken by removing ∼4,000 putative viral
sequences from the nonredundant database that contained replication-
associated but not virion- or genome-packaging hallmark genes. For meta-
transcriptome datasets, all contigs over 1,500 nt with RNA virus hallmark genes
were kept as putative viral sequences, regardless of end features.

Clustering Similar Contigs for Dereplication. A twofold approach was used to
cluster genomes. First, contigs were binned withMash (61), utilizing its ability
to handle massive sequence databases, accuracy, and lack of issues arising
from genome circularity. All viruses within each higher-level taxon (e.g.,
Microviridae) were used to create Mash sketches (options -k 16 -s 500), and
then these sketches were compared to themselves with Mash’s dist function.
Within close genomic distances, the value of the Mash distance score is thought
to roughly recapitulate average nucleotide divergence. Virus strain–level dis-
tinctions are often defined by <5% average nucleotide divergence (54), so
sequence similarity networks were constructed with connections between se-
quences (nodes) with Mash distance scores ≤0.05 (and P value ≤1 × 10−10).
Markov clustering algorithm (MCL clustering) (94) was applied to Mash net-
works to generate OTU-level clusters. From each cluster of sequences, if cir-
cular or ITR-encoding sequences were present, the longest such sequence was
used as the representative virus OTU sequence. If only linear sequences were
present, the longest linear sequence was used as the representative of the
cluster. Singleton contigs (i.e., sequences that were not assigned to any cluster)
were also retained for the final database. The same approach was applied for
the 99% database (for virus-like particle sequence alignment), but a Mash
distance score of ≤0.01 was used.

Following Mash clustering, a basic local alignment search tool (BLAST)–
based approach was used for final dereplication. Nucleotide BLAST (BLASTN),
anicalc.py, and aniclust.py were used from the CheckV (55) suite of tools as
described in the CheckV ReadMe (https://bitbucket.org/berkeleylab/checkv/
src/master/), with options “–min_ani 95 –min_qcov 0 –min_tcov 85” used for
aniclust to dereplicate sequences into virus OTUs at “95% average nucleotide
identity over 85% alignment fraction” per community standards (54). Best
representative sequences from aniclust.py were used as virus OTU exemplars
comprising the CHVD version 1.1. Future versions will be dereplicated with the
“anicalc/aniclust” approach only.

Assessing Genome Completeness of Virus OTUs. A total of 45,033 dereplicated
virus OTU sequences from the CHVD were run through CheckV version 0.7.0
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Fig. 4. Association of the virome and bacteriome with chronic diseases. (A–C) Analysis of read data from PRJEB17784, a case-control study of stool samples
from patients with or without Parkinson’s disease. (A) Virome-wide and bacteriome-wide associations in stool samples from Parkinson’s disease patients (n =
74) and healthy controls (n = 108) represented as Manhattan plots. Each OTU is represented as a dot along the x-axis, with its y-axis value being the inverse
log10 P value. The size of each dot corresponds to the median relative abundance of the taxon in the disease cohort. Filled dots represent OTUs found at
higher abundance in the diseased state while hollow dots represent decreased abundance in the diseased sate. The dashed gray line represents the false
discovery rate < 1% threshold. (B) Receiver operating characteristic plots from 100 differently seeded random forest classifiers trained on the virome (Left) or
bacteriome (Right). (C) Swarm plots of Cohen’s d effect sizes (absolute value) of OTUs achieving significant P values. Black dots are positive effect size, and red
dots are negative effect size. The mean of all plotted effect sizes is drawn as a blue line. Small effect size = 0.2 to 0.5; medium effect size = 0.5 to 0.8; and large
effect size = > 0.8 (84). (D–F) Similar analyses of read data from PRJEB4336, a WGS survey of stool samples from obese and nonobese individuals. Plots D, E,
and F are laid out in the same manner as plots A, B, and C, respectively.
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(i.e., checkv end_to_end) (55) with default parameters. Completeness esti-
mates for each sequence were taken from the quality_summary.tsv table,
and these values are reported in Dataset S2. This analysis was run in the
same manner on the GVD (downloaded from https://datacommons.cyverse.
org/browse/iplant/home/shared/iVirus/Gregory_and_Zablocki_GVD_Jul2020/
GVD_Viral_Populations). IMG/VR “human-associated” contig metrics were
taken from the CheckV manuscript files.

Identifying Cognate Viruses in GenBank and the Human GVD. Using the NCBI
Virus Resource, metadata for all virus genomes listed as complete were
downloaded for the following taxa: Adenoviridae, Anelloviridae, Bromoviridae,
Caliciviridae, Circoviridae, Cressdnavircota, Herpesviridae, Luteoviridae,
Narnaviridae, Nodaviridae, Papillomaviridae, Polyomaviridae, Tombusviridae,
Totiviridae, Tymovirales, unclassified viruses, unclassified RNA virus, Virgaviridae,
and all bacteriophage (including prophage). The metadata were sorted so that
the longest sequence for each unique species name was selected, and these
sequences were subsequently downloaded. Additionally, many GenBank virus
genomes simply have a family label followed by the indeterminate abbreviation
“sp.,” and, as a result, many highly distinct sequences inadvertently share an
identical generic label. Therefore, all complete GenBank virus genomes from all
nonredundant taxa with an ‘sp.’ designation were downloaded. A Mash sketch
was made for the downloaded sequences using options (-k 16 -s 500), and this
Mash sketch was compared to the CHVD Mash sketch (see Clustering Similar
Contigs for Dereplication). Mash distances of ≤0.05 and P value ≤1 × 10−10 were
considered to be strict cognate (intraspecies or intrastrain) sequences. Mash
distances of ≤0.1 and a P value of ≤1 × 10−5 were used for “loose” cognate
sequences.

TheGVD fromGregory et al. (13) was downloaded fromhttps://datacommons.
cyverse.org/browse/iplant/home/shared/iVirus/Gregory_and_Zablocki_GVD_
Jul2020/GVD_Viral_Populations. The same Mash analyses were applied for
comparisons with this dataset as with the GenBank database.

Deposition of Virus Genomes in GenBank. All sequences from CHVD v1.1 were
considered for deposition into GenBank. First, sequences with strict GenBank
cognates were discarded. We wanted to minimize any overhanging chro-
mosomal sequences from prophage genomes. Therefore, non–DTR-encoding
(i.e., linear) sequences (already trimmed with Cenote-Taker 2 pruning
module) were trimmed again with CheckV (v 0.7.0) as we found this ap-
proach to be more conservative than Cenote-Taker 2. These double-trimmed
sequences were then annotated with Cenote-Taker 2, with full metadata,
CRISPR spacer matches, and read coverage information. Then, the corre-
sponding “.sqn” files were sent to GenBank as “TPA assembly” virus ge-
nomes. All submitted sequences/genomes are associated with Bioproject
PRJNA573942 and will be released upon publication of this manuscript.
Accession numbers can be found in Dataset S2.

Gene Sharing Network for Unclassified Viruses. Vcontact2 (59, 95) was run
using all RefSeq v88 bacteriophage genomes with recommended settings
and all viruses from the CHVD that were labeled “unclassified” in the tax-
onomy field. The resulting network was displayed in Cytoscape (96) and
colored manually.

Virus Cores. Using all virus OTUs from CHVD, virus core coordinates were
obtained computationally. Cenote-Taker 2 scans contigs for virus hallmark
genes and outputs coordinates for each hallmark gene in the context of the
contig. The stop and start coordinates for each hallmark gene were com-
piled, and the lowest and highest coordinates from each contig were taken,
and bioawk was used to trim each fasta nucleotide sequence to start and
end with these coordinates, discarding peripheral sequences.

Bacteria-Encoded CRISPR Spacer Analysis. CrisprOpenDB (https://github.com/
edzuf/CrisprOpenDB) was used (commit 04e4ffcc55d65cf8e13afe55e081-
b14773a6bb70) to assign phages to hosts based on CRISPR spacer match using
BLASTN (63). Three mismatches were allowed for hits. For hits to bacteria

without a currently assigned genus, family-level or order-level taxonomical
information was pulled from the output table, when possible.

Phage-Encoded CRISPR Spacer Analysis. All virus OTU sequences were pro-
cessed with MinCED (https://github.com/ctSkennerton/minced) to discover
CRISPR spacer arrays. As phages can encode CRISPR arrays with spacers as
short as 14 nucleotides (97), MinCED was allowed to detect arrays with
spacers of 14 or more nucleotides. The CRISPR array regions of phage ge-
nomes were masked using Bedtools maskfasta (98), and then all virus OTUs
were queried with BLASTN against a database of the CRISPR spacers.

Only hits aligning to the entire length of the spacer andwith the following
criteria were kept: perfectmatches to spacers 16 to 20 nucleotides, matches to
spacers 20 to 27 nucleotides in which (mismatches + gaps) is 1 or 0, and
matches to spacers ≥ 28 nucleotides in which (mismatches + gaps) are 2
or fewer.

Determining Abundance of Individual Virus OTUs in Metagenomes. The final
database of “virus core” sequences was processed by RepeatMasker to
remove low-complexity regions which recruit reads nonspecifically (99). Bowtie2
(100) was used to align reads to the database, and samtools (101) idxstats was
used to calculate read coverage and RPKM for each contig.

Comparing OTU Abundance and Discriminatory Ability in Case-Control Studies.
For each Bioproject, case versus control samples were determined, if possible,
using categories from Nayfach et al. (82), as patients on confounding
medications were removed in this analysis. For other Bioprojects, metadata
were taken from SRA (102) run selector (Dataset S8 A–K). For all samples,
reads were downloaded from the SRA and trimmed and quality-controlled
with Fastp (92). To quantify abundance of bacterial taxa in each sample,
IGGsearch was used with default parameters, except the “–all-species” op-
tion was employed (82).

Wilcoxon rank-sum test was computed with 100 bootstraps using Python,
NumPy, and SciPy (103) for each OTU in a given study in which at least 10%
of the total samples had an RPKM of at least 0.05 (bacterial OTUs with
“IGGsearch abundance” of at least 0.005 in at least 10% of the samples were
kept). False discovery rate (< 1%) was determined with the Benjamini–
Hochberg method using SciPy. Cohen’s d effect size was calculated for each
OTU above the significance threshold using DaBest Python package (104)
with 5,000 bootstraps.

Random Forest Classifiers from scikit-learn were used (105). Training/test
set sizes were 70%/30%, number of estimators was 100, and a different seed
was used for each of the 100 Random Forest Classifiers trained on each dataset.

Note. Although about 6,000 “Biosamples” encompassing over 16,000 se-
quencing runs were analyzed in this study, another study (published while this
manuscript was under review) was able to mine 28,060 gut metagenome se-
quencing runs to detect putative bacteriophage sequences (106).

Data Availability. Fasta sequence files from CHVD databases can be accessed at
(https://zenodo.org/record/4498884) (56). Additionally, all unique virus ge-
nomes with metadata and annotated genome maps have been deposited to
GenBank under BioProject PRJNA573942. Accession numbers for individual
virus OTUs can be found in Dataset S2. Cenote-Taker 2 was accessed at https://
github.com/mtisza1/Cenote-Taker2.
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