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Abstract

Many models and real complex systems possess critical thresholds at which the systems

shift dramatically from one sate to another. The discovery of early-warnings in the vicinity of

critical points are of great importance to estimate how far the systems are away from the crit-

ical states. Multifractal Detrended Fluctuation analysis (MF-DFA) and visibility graph

method have been employed to investigate the multifractal and geometrical properties of

the magnetization time series of the two-dimensional Ising model. Multifractality of the time

series near the critical point has been uncovered from the generalized Hurst exponents and

singularity spectrum. Both long-term correlation and broad probability density function are

identified to be the sources of multifractality. Heterogeneous nature of the networks con-

structed from magnetization time series have validated the fractal properties. Evolution of

the topological quantities of the visibility graph, along with the variation of multifractality,

serve as new early-warnings of phase transition. Those methods and results may provide

new insights about the analysis of phase transition problems and can be used as early-warn-

ings for a variety of complex systems.

Introduction

Complex systems are formed by subunits that interact non-linearly with each other. Among so

many general properties that describe the complex systems, the existence of critical threshold

is apparently common to plenty of complex systems [1]. There are many examples of critical

transitions that pose potential threats to our daily life. Such potentially dangerous examples

include spontaneous systemic failures disease for human beings, systemic market crashes for

global finance, abrupt shifts in ocean circulation or climate and so on. It is not possible, for

those complex systems, to fully anticipate their behaviors in terms of behaviors of their compo-

nents. Thus characterizing the dynamical process of complex systems from macroscopic quan-

tity, for example time series, is a fundamental problem of significant importance in many

research fields [2, 3].

Recently there has been an substantial interest in understanding how those complex sys-

tems behave near the critical point. Hence lots of early-warnings have been proposed to serve

as signals of the coming of the tipping points [1]. Thereinto, the early-warnings based on time
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series analysis are fairly common. It is well known that fractal and multifractal time series are

ubiquitous in numerous complex systems [4]. Lots of techniques have been proposed to ana-

lyze the fractal and multifractal properties of time series [5–11]. Multifractal detrended fluctua-

tion analysis (MF-DFA) [7] has shown to be quite effective to investigate the multifractal

properties of non-stationary time series. Furthermore, the complex network [12] is one of the

generic ways to describe complex systems. Transformations from time series to networks have

attracted substantial considerations recently [2, 13–16]. Among so many techniques, the visi-

bility graph method [14] is suitable for characterizing the geometrical structure of time series

[17]. Thus utilizing the MF-DFA and visibility graph method to inspect the critical behaviors

of complex systems is an interesting topic.

Here we focus on the well-known physical system, the two-dimensional Ising model [18,

19]. It is a statistical physics model for ferromagnetic materials which goes through spontane-

ous phase transition at non-zero temperature. The Ising model has been widely applied to dif-

ferent fields such as social systems [20] and financial systems [21]. We use the Metropolis

algorithm [22]to simulate the two-dimensional Ising model. The outputs of the simulations

are time series of average magnetization at different temperatures. The time evolution of aver-

age magnetization can be used to reveal the dynamical properties of the system. We then take

advantage of the MF-DFA and the visibility graph method to analyze the behavior of the Ising

model near critical temperature. Hurst exponents increase dramatically around critical point

which means the time series change from short correlated to long-term correlated ones. Gen-

eralized Hurst exponents have shown the transformation of fractal structures of the time series

from weak multifractal (or monofractal) to strong multifractal while the system approaches

critical point. Evolution of the singularity spectrum has depicted the extremely strong multi-

fractality around the critical point. Structural parameters of the singularity spectrum suggest

that the time series become much more complex around the critical point. Thus huge differ-

ences between the dynamical behaviours of the Ising model at different temperatures in the

time domain have been uncovered. The shuffling procedure reveals that both broad probabil-

ity density function and long-term correlations are the sources of multifractality around criti-

cal point. Visibility graphs converted from the time series at different temperatures share the

heterogeneous nature. We also find that the increase and decrease of the topological quantities

can be used to identify the coming of phase transition. The evolution of topological structures

have manifested the differences among geometrical structures of magnetization time series at

different temperatures from the complex network perspective. In summary, the multifractality

of the time series and topological quantities of the complex networks converted from the time

series can be seen as some new metric-based early-warnings.

Methods

Simulation of the Ising model

The two-dimensional Ising model is a paradigm of physical phase transition. Suppose we have

a square lattice of N sites with periodic boundary conditions. A spin state σ is defined on each

site with one of two possible orientation values denoted by σ = ±1. So the number of all possi-

ble configurations of the system is 2N. The Hamiltonian is

HðsÞ ¼ �
X

<i;j>

Jijsisj � m
XN

i¼1

hisi: ð1Þ

Any two adjacent sites i, j 2 N have an interaction strength Jij. A site i 2 N has an external mag-

netic field hi acting on it and μ is the magnetic moment. The order of the system can be
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measured through the magnetization per spin which is defined as

M ¼
1

N

XN

i¼1

si: ð2Þ

It is well known that for the two-dimensional Ising model the system goes through a phase

transition when temperature T equals to the critical temperature Tc. There exists spontaneous

magnetization as all the spins tend to equal toward either +1 state or −1 state at a non-zero crit-

ical temperature Tc.

Here in this paper we focus on the dynamical evolution of the Ising model. The Metropolis

algorithm [22] is employed to simulate the model. Thus the time series of magnetization M
can be obtained from simulation procedure.

In the Metropolis algorithm, new configurations are generated from the previous states via

a transition probability. The probability of the system being in a state n follows the Boltzmann

distribution:

Pn ¼
e� En=kT

Z
; ð3Þ

where En is the free energy of the state, k is the Boltzmann constant, T is the temperature and Z
is the partition function. Thus the transition probability from state n to m is given by

Pn!m ¼ exp½� DE=kT�; ð4Þ

where ΔE = Em − En.

The algorithm proceeds as follows:

1. Choose a site i randomly;

2. Calculate the energy change ΔE if spin site i were to be flipped;

3. If ΔE is negative, flip of the spin of site i is accepted. If ΔE is positive, a random number is

drawn from a uniform distribution between 0 and 1 and the flip is accepted only if the ran-

dom number is smaller than exp[−ΔE/kT];

4. Choose another site and repeat the previous steps.

A Monte Carlo step is completed when every spin of the system has had a chance to flip. In

the ordinary simulation scenario, due to the phenomena of critical slowing down, when the

system approaches the critical temperature Tc, several Monte Carlo steps should be skipped in

order to avoid correlations between successive configurations. This is important for evaluating

the quantities of interest accurately. On the contrary, here we keep all the time series of magne-

tization M calculated from every simulation step. We are indeed very interested in the correla-

tions and the properties caused by the critical slowing down phenomena.

In the following simulation, k and Jij are set to be 1. The critical temperature is Tc’ 2.27.

We have simulated the system from T = 1.17 to T = 3.62 with ΔT = 0.05. For every discrete

temperature we run an ensemble of 100 simulations of 100,000 Monte Carlo steps (the first

10,000 steps have been discarded to overcome the influence of the initial configuration). In

order to investigate the finite size effect, we have simulated different lattice sizes for

N = 100 × 100, 150 × 150, 200 × 200 and 300 × 300. Then in the following section we will intro-

duce two methods that will be used to analyze the properties of those time series from two dif-

ferent aspects: multifractal and complex network.
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Multifractal Detrended Fluctuation Analysis

We adopt multifractal detrended fluctuation analysis (MF-DFA) to analyze the hierarchy of

scaling exponents of the magnetization time series corresponding to different scaling behav-

iour [7]. The MF-DFA method is the generalization of detrended fluctuation analysis (DFA)

[5] and has been widely applied to characterize the properties of various non-stationary time

series in different fields such as financial market [23–32], physiology [33], biology [34], traffic

jamming [35], geophysics [36] and neuroscience [37].

The MF-DFA method proceeds as follows: (i) Suppose we have a time series {x(i)},
i = 1, . . ., l. We first integrate the time series to generate the profile

yðkÞ ¼
Pk

i¼1

½xðiÞ � hxi�; k ¼ 1; . . . ; l, where hxi is the mean value of {x(i)}. (ii) Divide the inte-

grated series y(k) into ls = int(l/s) non-overlapping segments of length s. Calculate the local

trends for each of ls segments by a least-square fit and subtract it from y(k) to detrend the inte-

grated series. We then obtain the detrended variance of each segment v

F2ðv; sÞ ¼
1

s

Xs

i¼1

fyðv � 1þ iÞ � gyðv; iÞg2
; ð5Þ

where gyðv; iÞ is the fitted trend in segment v = 1, . . ., ls. We use a third order polynomial to fit

the local trend here. (iii) Step (ii) has been proceeded from both the beginning and the end of

the time series which leads to 2ls segments in total. Average over all segments to obtain the qth
order fluctuation function

FqðsÞ ¼
1

2ls

X2ls

v¼1

½F2ðv; sÞ�q=2

( )1=q

; ð6Þ

with q a real number, and for positive q, Fq(s) measures large fluctuations, while for negative q,

Fq(s) measures small fluctuations. (iv) Repeat this calculation to get the fluctuation function

Fq(s) for different box size s. If Fq(s) increases by a power law Fq(s)*sh(q), then the scaling

exponents h(q) (called generalized Hurst exponents) can be estimated as the slope of the linear

regression of logFq(s) versus log(s). h(q) are the fluctuation parameters and describe the corre-

lation structures of the time series at different magnitudes. The value of h(0) can not be deter-

mined by using Eq (6) because of the diverging exponent. The logarithm averaging procedure

should be used,

F0ðsÞ ¼ exp
1

4ls

X2ls

v¼1

ln½F2ðv; sÞ�

( )

� shð0Þ: ð7Þ

The generalized Hurst exponents h(q) as a function of q can quantify the multifractality. If h(q)

are the same for all q, the time series is monofractal, otherwise the time series is multifractal.

The classical multifractal scaling exponents τ defined by the standard partition function-

based multifractal formalism are directly related to the generalized Hurst exponents h(q): [38]

tðqÞ ¼ qhðqÞ � 1: ð8Þ

Another way to characterize multifractal time series is by using the singularity spectrum f(α)

which is related to τ(q) via the Legendre transform [7],

a ¼ t
0

ðqÞ; f ðaÞ ¼ qa � tðqÞ: ð9Þ
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Using Eq (8), we have

a ¼ hðqÞ þ qh0 ðqÞ; f ðaÞ ¼ q½a � hðqÞ� þ 1: ð10Þ

Here α is the singularity strength. Geometrical shape of the singularity spectrum can illustrate

the level of multifractality with three parameters: position of the maximum α0 where f(α)

reaches its maxima; width of the spectrum W = αmax − αmin which can be obtained

from extrapolating the fitted f(α) curve to zero; and skew shape of the spectrum

r = (αmax − α0)/(α0 − αmin). In a nutshell, large value of α0 means the underlying process is

more irregular. The wider the spectrum (larger W), the richer the structure of the time series.

The skew parameter r determines which fractal exponents are dominant. Right skew shape of

the spectrum with r> 1 is more complex than left skew shape with r< 1 [31, 39].

Visibility Graph Method

Complex network and time series are two generic ways to describe complex systems. Geomet-

rical properties of time series can usually be preserved in network topological structures. Lots

of methods have been developed to capture the geometrical structure of time series from com-

plex network aspect such as cycle network [2], correlation network [40], visibility graph [14],

recurrence network [41], isometric network [15] and many others. Among those methods, the

visibility graph has a straight forward geometric interpretation of the original time series.

Namely, periodic time series can be transformed into regular networks and random series cor-

responding to random networks [42]. Moreover, fractal series can be converted into scale-free

networks [43]. Hence the visibility graph method has been successfully applied to many fields

[35, 44, 45]

The visibility graph algorithm can be described as follows: for a time series {x(i)}, i = 1, . . .,

l, two arbitrary data points (ti, x(i)) and (tj, x(j)) will have visibility, and those two data points

will become two connected nodes i and j of the associated network connected by edge eij, if all

the data points (tk, x(k)) placed between (ti, x(i)) and (tj, x(j)) fulfill:

xðkÞ < xðjÞ þ ðxðiÞ � xðjÞÞ
tj � tk
tj � ti

: ð11Þ

The network obtained from this algorithm will always be connected. The network is also undi-

rected because we do not keep any direction information in the transformation.

Results and Discussion

Statistical Properties of Time Series

Fig 1 shows the time series at three temperatures T/Tc = 0.52, T/Tc = 1.00, and T/Tc = 1.59

from top to bottom. Obviously we can observe different outlines of the time series at different

temperature regions. Detailed properties of those time series will be analyzed by using multi-

fractal detrended analysis and visibility graph method in the following context.

The first four order moments are used to quantify the distribution differences between

those time series in Fig 2. The ensemble standard errors are defined as standard deviation

divided by square root of the ensemble size (100) and are shown as error bars in figures.

Fig 2(a) is the ensemble average magnetization M varying with relative temperature T/Tc. Sim-

ulation results have confirmed the existence of phase transition around the theoretical critical

temperature Tc’ 2.27. This transition can also be verified from three statistical quantities in

Fig 2: (b) variance σ2, (c) skewness S and (d) kurtosis G which have been fully discussed in Ref

[46]. Those moments have been used as early-warnings of phase transition therein. The
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variance σ2 is almost zero at non-critical regions, but it becomes relatively large around critical

point. The abrupt change at low temperature region is obviously different from the continuous

evolution at high temperature region. Thus the variance can not be recognized as a useful

early-warning when the system approaches the critical point from low temperature region.

The skewness S is related to the asymmetry of events in the time series. It is large only in the

low temperature region and reaches its maxima at critical point and then becomes very small

Fig 1. Average Magnetization time series per spin. Average magnetization M as a function of time for the two-dimensional Ising model at

different temperatures.

doi:10.1371/journal.pone.0170467.g001
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at high temperature region. This is due to the meta-stable states at low temperature [46]. The

stochastic permutation is not strong enough to make the system escape from the meta-stable

states. This makes the distribution of magnetization asymmetric. The kurtosis G fluctuates

severely around critical point and becomes very close to the reference normal distribution

(which has a kurtosis equals to 3) for T� Tc and T� Tc. Apparent distribution differences

between magnetization time series at different temperature regions give a hint about the struc-

ture heterogeneity which demands more detailed investigations.

Fig 2. First four moments of the magnetization time series. Ensemble average of (a) mean M, (b) variance σ2, (c) skewness S (d) kurtosis

G of the magnetization time series versus the relative temperature T/Tc for system size N = 100 × 100.

doi:10.1371/journal.pone.0170467.g002
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MF-DFA

The generalized Hurst exponents h(q) at different temperatures for q 2 [−5, 5] with Δq = 0.1

have been demonstrated in Fig 3. The system sizes are N = 100 × 100, 150 × 150, 200 × 200 and

300 × 300. The time series length here for MF-DFA is 100,000. Heat map of h(q) has given a

comprehensive description about scaling behaviours of the fluctuations at different magni-

tudes. Dramatic increase of the generalized Hurst exponent around critical temperature at

Fig 3. Heat map of the generalized Hurst exponent. (Color online) Heat map of the ensemble average of the generalized Hurst exponent h

(q) for q 2 [−5, 5] at different temperatures with different system sizes.

doi:10.1371/journal.pone.0170467.g003
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different order q can be observed. The generalized Hurst exponent is very close to 0.5 and then

it becomes remarkably larger than 1 around critical point at all observed order q 2 [−5, 5].

This indicates that the generalized Hurst exponent is a very good indicator of phase transition.

As presented in Fig 4, when T/Tc = 0.52 and T/Tc = 1.59 the weak dependence on q of h(q)

show that the fractal properties of the fluctuations at different magnitude are almost the same,

thus the time series far away from the critical point are weak multifractal. As the system

approaches the critical region while T/Tc * 1.00, h(q) become strongly dependent on q. The

small and large fluctuations of the Ising model near critical point display different scaling

Fig 4. Generalized Hurst exponent at three different temperatures. (Color online) The generalized Hurst exponent h(q) as a function

of q at three different temperatures for different system sizes.

doi:10.1371/journal.pone.0170467.g004
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behaviours. The strong non-linear dependence on q of h(q) around Tc reveals the strong multi-

fractal nature of the Ising model. Transformation of the multifractal properties uncover the

apparent structural and dynamical differences of the Ising model at different temperature

regions.

The generalized Hurst exponent for different order q have been displayed in Fig 5. h(q)

shows the same critical behaviours for different order q. If we set q = 2 in the MF-DFA, we get

the same results as the standard DFA method. The Hurst exponents h(q = 2) have been used as

early-warning to detect the rising memory in time series of a system close to critical point [47,

Fig 5. Generalized Hurst exponent for different order q. (Color online) Ensemble average of the generalized Hurst exponent h(q)

versus the relative temperature T/Tc for different order q with different system sizes.

doi:10.1371/journal.pone.0170467.g005
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48]. The Hurst exponent h(q = 2)’ 0.5 when T/Tc� 1.00 and T/Tc� 1.00 which means the

magnetization time series are short-range correlated at these two regions. When T/Tc * 1.00

the Hurst exponent increases rapidly which results in h(q = 2) > 1. It tells that the time series

becomes non-stationary which turns to be an unbounded process. The Hurst exponent h
(q = 2)� 1.2 when the system gets very close to the critical point. This indicates that the mag-

netization time series posses long-range correlations. Those characteristics of the generalized

Hurst exponent should be very good early-warnings [1, 46].

In order to quantify the level of multifracality, the singularity spectrum of the time series at

different temperatures for different system sizes have been presented in Fig 6. The maximum

of the α0 is 1.3 when T/Tc = 1.00, but it decreases to 0.5 when the temperature deviates from

Tc. We can observe that the width of singularity spectrum increases as T approaches Tc. At the

same instant the singularity becomes right skew. Those alternations indicate great complexity

around critical temperature. The patterns of the singularity spectrum are basically consistent

for different system sizes.

A more quantitative measure about the multifractality of the series can be given by fitting

the singularity spectrum [31] and calculating the singularity spectrum parameters: position of

maximum α0; width of the spectrum W = αmax − αmin; and the skew parameter r = (αmax − α0)/

(α0 − αmin) described in the previous method section. These parameters lead to overall mea-

sures of the singularity complexity: a time series with large value of α0, a wide range W of frac-

tal exponents, and a right-skewed shape may be considered more complex than the one with

opposite characteristics [39].

As shown in Fig 7(a) the value of α0 becomes very large at T/Tc = 1.00 which suggests that

the time series become extremely irregular. The evolution pattern of α0 can serve as a very

good early-warning about the coming of the critical transition. The increase of the width W of

the spectrum in Fig 7(b) indicates richer structure near critical region. The abrupt jump right

at the critical point gives a hint about the mutation of the correlation structure. Shrink of the

width W has also been observed in Ref. [49] where the multifractal feature of the energy spec-

trum have been analyzed via the partition function approach. The skew parameters r in Fig 7

(c) is almost equal to 1 when temperature deviates from critical region which manifests sym-

metry shapes of the multifractal spectrum at low and high temperature regions. It becomes

larger than 1 near critical threshold. One interesting finding is that the skew parameter r first

gradually decreases at lower temperature region and then increases very fast when the system

gets particularly close to critical point. This shows that the large fluctuations dominate when

the system approaches critical point from the lower temperature. On the contrary, r gradually

reaches the maxima when the system moves close to Tc from the right side. Thus the small fluc-

tuations contribute the most to the multifractality beyond the critical point. This indicates a

more complex structure with right skewed shape above the critical point.

Fig 7(d) gives the critical length of the autocorrelation as a function of relative temperature.

The critical length of the autocorrelation function is the maximum lag at which the autocorre-

lation is smaller than the critical value 2=
ffiffi
l
p

. According to a recent research about the DFA on

autoregressive process (AR(1)), the autocorrelation length can be used to estimate the Hurst

exponent more accurately [52]. It is known that the two point correlation function of the Ising

model will become divergent in the thermodynamic limit (large N) at critical point. The diver-

gence of two point correlation makes the autocorrelation of the magnetization time series

divergent. Thus the strong multifractality of the Ising model around critical point should at

least caused in part by the increase of autocorrelation.

There are two main sources of multifracality which we would like to distinguish [50, 51]: (i)

Multifractality due to broad probability density function. (ii) Multifractality due to different
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long-term correlations of small and large fluctuations. Here we carry out the same analysis as

in Figs 3 and 6, but shuffle the data randomly to better identify the sources of multifractality.

Multifractality caused by broad probability density function can not be fully eliminated by the

shuffling procedure. However, multifractality induced by long-term correlations can be

removed after shuffling the time series. The shuffling procedures have been performed 1,000 ×
l transpositions on each time series with 100 ensemble average. While l = 100,000 is the length

of each time series. Fig 8 gives the dependency between h(q) and q for the shuffled time series

Fig 6. Singularity spectrum at different temperature regions. (Color online) Singularity spectrum f(α) of the time series as a function of the

singularity strength α at different temperatures for different system sizes.

doi:10.1371/journal.pone.0170467.g006
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at different temperatures with different system sizes. The non-linear dependency only exists

near the critical point. In Fig 9 we show that the singularity spectrum of shuffled time series at

three temperature regions for different system sizes. We find that the singularity spectrum at

T/Tc = 0.52 and T/Tc = 1.59 are nearly overlapped at one point with α0’ 0.5. However, the sin-

gularity spectrum of the time series near critical point still posses multifractality with a right

skewed shape. We address that the sources of strong multifractality of the system near critical

region stem from both long-term correlations and broad probability density function [53].

Fig 7. Complexity measure of the singularity spectrum and autocorrelation length of the time series. (Color online) The complexity

measure of the time series at different temperatures: (a) the position of maximum α0, (b) the width of the spectrum W, (c) the skew parameter

r, (d) the critical length of the autocorrelation Sc for different system sizes.

doi:10.1371/journal.pone.0170467.g007
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Visibility Graph

We use the visibility graph method to convert magnetization time series at different tempera-

tures to complex networks. From each 10,000 element-long time series, a network with 10,000

nodes is generated using the visibility graph method. We should mind that the data length

used here for visibility graph analysis is only 10,000. This is significantly shorter than what we

use in MF-DFA. This is due to the intrinsic data consuming property of the MF-DFA. Then

Fig 8. Generalized Hurst exponent for shuffled time series. (Color online) Heat map of ensemble average of the generalized Hurst

exponents h(q) for q 2 [−5, 5] at different temperatures for the shuffled time series with different system sizes.

doi:10.1371/journal.pone.0170467.g008
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different topological quantities [12] have been calculated. Those topological quantities can

characterize the geometrical properties of time series which are directly related to the dynam-

ics of the Ising model.

Here we give three networks obtained via visibility graph method from time series at three

different temperatures in Fig 10. Fig 10(a)–10(c) are the visibility graphs for T/Tc = 0.52, 1.00

and 1.59 respectively. The network at T/Tc = 1.00 is markedly different from two networks at

T/Tc = 0.52 and 1.59. The extreme modular network structure is exhibited in Fig 10(b). It can

Fig 9. Singularity spectrum for shuffled time series. (Color online) Singularity spectrum f(α) of the shuffled time series as a function of the

singularity strength α at different temperatures for different system sizes.

doi:10.1371/journal.pone.0170467.g009
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be understood that when T/Tc = 1.00 the large trends of the time series make some extreme

values have massive visibilities. This is also responsible for the formation of large communities

presented by different colors. Two networks in Fig 10(a) and 10(c) possess tree-like structures.

The community sizes of these two networks are smaller than that of the network at T/Tc =

1.00. The lack of trends leads to the snowflake shapes. Thus the geometric outlines of the time

series at different temperatures are preserved due to the affine invariant features of the visibil-

ity graph method.

Fig 11(a)–11(c) are the degree distributions of networks for T/Tc = 0.52, T/Tc = 1.00 and T/

Tc = 1.59, respectively. Three distributions show the heterogeneous nature of the networks.

Fig 10. Visibility graphs at different temperatures. (Color online) The network structures of the visibility graphs at (a) T/Tc = 0.52,

(b) T/Tc = 1.00, (c) T/Tc = 1.59 for system size N = 100 × 100. The network sizes are 10,000. Different colors represent different

communities.

doi:10.1371/journal.pone.0170467.g010

Fig 11. Cumulative degree distributions of the visibility graphs. Cumulative degree distributions of the networks at three different temperatures

with (a) T/Tc = 0.52, (b) T/Tc = 1.00, (c) T/Tc = 1.59 for system size N = 100 × 100.

doi:10.1371/journal.pone.0170467.g011
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The network at T/Tc = 1.00 with broader degree distribution is apparently more heterogeneous

than those networks at T/Tc = 0.52 and T/Tc = 1.59. The largest degree of the network at T/Tc =

1.00 is 288 which is significantly larger than the largest degree of those networks away from

critical point. According to Ref [14], fractal time series can be converted to scale-free networks.

We have tested the scale-free properties of those networks by the method proposed by Clauset

and Newman [54]. It turns out that none of them is strictly scale-free network. But they do

share heterogeneous nature. Thus we use the heterogeneity index [55] to quantify the degree

distribution of those networks. In Fig 12(f): heterogeneity index of the networks increases dra-

matically near critical point. Hence from the degree distributions of networks we can gain

some insights about the fractal nature of magnetization time series which has been discussed

by using MF-DFA.

Networks at different regions share the heterogeneous nature, but they do have unique

identities which are related to the dynamical properties of the Ising model at specific tempera-

tures. In Fig 12, we calculate the ensemble average of the topological quantities at different

temperatures. In Fig 12(a), the clustering coefficient C, and (b) the average shortest-path length

L both decrease around the critical point. Decreases of C and L around critical point indicate

more heterogeneous network structures. We can verify these changes from Fig 12(f). Accord-

ing to Ref [55], heterogeneity of the BA network [43] is around 0.11 which is much smaller

than that of the network at critical point. The extreme heterogeneous network structures near

critical region are due to the utmost non-stationarity and long-term correlations of the time

series which are exactly the characterizations of critical state of the the Ising model. The aver-

age degree K, and the network density D in Fig 12(c) and 12(d) reach their maxima around

critical threshold. The network becomes more and more dense when the system approaches

Tc. Fig 12(e) shows the assortativity A as a function of relative temperature. The rapid increase

of A around Tc gives a hint about the coming of the critical threshold. It also tells that the net-

work becomes more and more assortative which means the existence of long trends and

extreme values in the time series near Tc. All those topological transitions suggest vast structure

distinctions between networks at different temperature regions. Those results have shown geo-

metrical structure transitions of the time series are signals of phase transition from the view of

complex networks. The way of those topological quantities approach the critical threshold

either form the low or high temperatures manifest the possibility of been used as early-

warnings.

As a final remark of the paper, we shall emphasize the importance of our previous results

from the view of early-warnings [1, 46, 56]. Recently, plenty of early-warnings have been pro-

posed and summarized [1, 46, 48, 57–64]. Those early-warnings can be categorized into two

major classes: metric-based indicators which probe the delicate changes in the statistical prop-

erties of the time series, and model-based indicators which detect the changes in the time series

dynamics fitted by reasonable models. Thus our results shown in previous sections are metric-

based estimators. The moments given in Fig 2 has been fully discussed in Ref [46]. It is exactly

consistent with previous studies that the critical slowing down and the fluctuation patterns of

the complex system near critical thresholds will increase the autocorrelation, variance and

skewness [65–67]. The contribution of our work is that the MF-DFA and visibility graph elab-

orate the multifractal and geometrical properties of the Ising model near critical point in the

time domain. To our best knowledge, this is the first time to use the variation of the multifrac-

tality and network properties as early-warnings. In fact due to the divergence of the spatial cor-

relation of the Ising model near critical threshold, the spatial multifractal features may also be

used as early-warnings. We can use the higher dimensional MF-DFA [68–70] to explore this

problem. This should be subject to the future investigations.
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Conclusions

In conclusion, we have used the multifractal detrended analysis (MF-DFA) and the visibility

graph method to analyze the outputs of the two-dimensional Ising model—magnetization

time series. Dynamics of the system at different temperatures are directly related to the multi-

fractal and geometrical properties of time series. First four order statistical moments con-

firmed the existence of phase transition around theoretical critical temperature. The variance,

Fig 12. Topological quantities of the visibility graphs. (Color online) Ensemble average of the topological quantities (a) the clustering

coefficient C, (b) the average degree K, (c) the average shortest-path length L, (d) the density D, (e) the assortativity A, (f) the heterogeneity H

of networks converted from time series at different temperatures. Different colors and symbols represent different system sizes.

doi:10.1371/journal.pone.0170467.g012
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skewness and kurtosis have been shown as three very efficient early-warnings as discussed in

recent Ref [46]. According to the MF-DFA, classical Hurst exponent h(q = 2) shows the

extreme non-stationarity of magnetization time series near critical temperature. The general-

ized Hurst exponents uncover the transformation of time series form weak multifractal (or

monofractal) to strong multifractal when temperature approaches critical region. The singu-

larity spectrum and the complexity parameters have been employed to inspect multifractality

level of magnetization time series at different temperatures. The shape of singularity spectrum

around critical point becomes very complicated and the evolution of the complexity parame-

ters manifest the strong multifractality of the system at critical region quantitatively. The shuf-

fling procedure has identified the sources of multifractality of the system near critical point

stem from both broad probability density function and long-term correlations. Meanwhile the

visibility graph method has been employed to convert the magnetization time series to com-

plex networks. Heterogeneous degree distributions of the complex networks at three tempera-

ture regions have shown the fractal nature of magnetization time series. Basic topological

quantities of networks can capture the geometrical variation of time series. The decreases and

increases of those topological quantities near critical region have unfolded the critical dynam-

ics of the Ising model.

The evolution patterns of the multifractality and the geometrical properties of the visibility

graphs can help us identifying how far the system is away from critical point. Thus we then

conclude that the level of multifractality and the topological quantities of visibility graphs can

serve as early-warnings for diverse of complex systems. We may notice that the visibility graph

method only use the data sets that are 10% of the length used for MF-DFA. This indicates that

the visibility graph method maybe more suitable for real world systems since data sets obtained

from real world systems are not always very long. To sum up, the MF-DFA and the visibility

graph method may not only be limited here for the analysis of the two-dimensional Ising

model, but can be used as powerful tools to explore the critical behaviours of many other mod-

els and real systems such as Langevin model and financial index [62].
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