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A B S T R A C T   

The plant primary cell wall is comprised of pectin, cellulose and hemicelluloses, whose dynamic interactions play 
essential roles in plant cell elongation. Through a chemical genetics screening, we identified a small molecule, 
named cell wall modulator (CWM), which disrupted cell growth and deformed cell shape in etiolated Arabidopsis 
hypocotyl. A pectin defective mutant qua2, identified from screening an Arabidopsis EMS mutant library, showed 
a reduced sensitivity to CWM treatment. On the other hand, pectinase treatment suppressed the CWM induced 
phenotype. Furthermore, cellulose content was decreased in response to CWM treatment, while the cellulose 
synthesis mutants ixr1 and ixr2 were hypersensitive to CWM. Together, the study identified a small molecule 
CWM that induced a modification of the cell wall in elongating cells, likely through interfering with pectin 
modification. This molecule may be used as a tool to study cell wall remodeling during plant growth.   

1. Introduction 

The primary cell wall plays a variety of essential roles in plant 
growth, such as shaping cells, controlling cell growth, determining cell 
differentiation and sensing external stimuli (Bidhendi and Geitmann, 
2016; Cosgrove, 2018; Keegstra, 2010; Voxeur and Höfte, 2016). The 
primary cell wall is structured with various polysaccharides (including 
cellulose, hemicelluloses and pectins) and wall proteins (Cosgrove and 
Jarvis, 2012). Pectic polysaccharides are mainly composed of D-gal-
acturonic acid (D-Gal-A) and are increasingly considered as important 
regulators of cell wall construction and plant growth (Anderson, 2016; 
Biswal et al., 2018; Hocq et al., 2017). Homogalacturonan (HG) is the 
most abundant pectin polysaccharide, which is synthesized in the Golgi 
apparatus in a methylesterified form (Atmodjo et al., 2013). After the 
methylated HG is deposited into the cell wall, demethylesterification 
and other modifications are carried out by a battery of enzymes asso-
ciated with cell growth and responding to external stimuli (Altartouri 
et al., 2019; Haas et al., 2020; Peaucelle et al., 2015). The enzymes for 

pectin modification include pectin methyl-esterases (PMEs) (Willats 
et al., 2001), PME inhibitors (PMEI), polygalacturonases (PGs), and 
pectate lyases-like (PLLs) (Senechal et al., 2014). PGs and PLLs cleave 
the α-1,4 bond of D-Gal-A units mainly from the HG backbone through 
hydrolysis or β-elimination, respectively (Senechal et al., 2014). Pectin 
modification in the cell wall is closely related to wall elasticity and 
growth (Peaucelle et al., 2012, 2015). Mutations in the putative pectin 
methyltransferase QUASIMODO2 (QUA2) reduce pectin content, cell 
adhesion and etiolated hypocotyl growth (Krupková et al., 2007; 
Mouille et al., 2007). Overexpression of PECTIN METHYLESTERASE 5 
(PME5) leads to decrease of pectin methylesterification and enhance-
ment of primordia cell growth (Peaucelle et al., 2011). Transcriptomic 
and genetic analyses reveals that pectin de-methylesterification and 
degradation are important for initiation of the growth acceleration in 
the etiolated hypocotyls (Pelletier et al., 2010). Mutation of the PG gene 
polygalacturonase involved in expansion1 (pgx1) inhibits hypocotyl elon-
gation (Xiao et al., 2014). Thus, pectin methylesterifiction and de- 
methylesterification play an important role in plant cell growth. 

Abbreviations: HG, homogalacturonan; RG-I, rhamnogalacturonan-I; RG-II, rhamnogalacturonan-II; CSCs, cellulose synthase complexes; CESA, cellulose synthase; 
DE%, degree of methylesterification. 
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In the cell wall, pectin, cellulose and hemicelluloses form an intricate 
matrix structure (Dick-Pérez et al., 2011; Lin et al., 2016; Wang et al., 
2015). Cellulose microfibrils, which are synthesized by large cellulose 
synthase complexes (CSCs), are highly ordered crystallites formed by 
β-1,4-linked glucan chains packed in parallel through hydrogen bonds 
and van der Waals interactions (Kumar and Turner, 2015; Taylor, 2008). 
CSCs move at constant rates in linear tracks that are aligned and are 
coincident with cortical microtubules (Paredez et al., 2006), resulting in 
parallel alignment of cellulose microfibrils with cortical microtubules 
(Li et al., 2012). Growth symmetry breaking in hypocotyl cells is 
controlled by pectin modification, which takes place prior to cortical 
microtubule reorientation (Peaucelle et al., 2015). Interconnection of 
pectin and cellulose may play a role in cell growth (Wang et al., 2015). 
However, whether the change of pectin methylesterifiction is correlated 
to cellulose deposition during cell growth is yet to be tested. 

Small molecules can modulate biological processes and are widely 
used to study various processes in plants in situations of gene redun-
dancy (Hicks and Raikhel, 2012; Tóth and van der Hoorn, 2010). For 
example, small molecules were used to study abscisic acid (ABA) 
signaling (Park et al., 2009), natural variation of Arabidopsis (Zhao et al., 
2007), endomembrane trafficking (Robert et al., 2008), cellulose 
biosynthesis (Debolt and Brabham, 2013; Desprez et al., 2002) and cell 
wall formation (Harris et al., 2012). Here we report identification of a 
small molecule CWM which displayed an activity in inhibiting cell 
elongation. Chemical and genetic analyses revealed that CWM interferes 
with pectin modification and cellulose biosynthesis in hypocotyls. CWM 
may be used as a chemical genetic tool for studying modification of the 
cell wall intricate composition in cell growth. 

2. Materials and methods 

2.1. Plant materials and growth conditions 

Arabidopsis thaliana (Columbia) was used as wild type (WT) and all 
the plants were grown in a phytotron with a light/dark cycle of 16/8 h at 
22 ◦C. Seeds were surface-sterilized in 5% NaClO for 10 min, washed 5 
times in sterile pure water, and sprayed on the petri dish plates con-
taining 1/2 Murashige and Skoog medium (MS), 0.7% agar and 1% 
sucrose. Sucrose was removed from growth medium when the plates 
were used to treat plants with small molecules. For observation of hy-
pocotyl elongation in dark, plates were placed at 4 ◦C for 3 days, then 
exposed to light for 1–4 h and transferred to dark for 3 days (22 ◦C) 
before hypocotyl was analyzed. Agrobacterium mediated transformation 
was carried out following the floral dip method (Clough and Bent, 
1998). 

2.2. Chemical genetic screening and small molecule treatment 

Chemical genetic screening was performed as previously described, 
using a chemical library bought from Life Chemicals Inc (Li et al., 2017; 
Ye et al., 2016; Ye and Zhao, 2018). The 96-well plates of the small 
molecule library with 1 μL of 10 mM small molecule solution in each 
well were mixed with 35 μL MS and 64 μL 1% melted agar. After cooling 
down, to each well was added about 15 sterilized Arabidopsis seeds in 
0.1% agar solution. Seeds number and agar solution volume were 
regulated to ensure there are about 15 seeds in 20 μL agar solution. 20 μL 
agar solution containing about 15 seeds was added into each well of the 
96 well plate. A total of 12,000 small molecules were screened. For small 

Fig. 1. CWM affects cell elongation and morphology in the hypocotyl of Arabidopsis. (A) CWM chemical structure. (B) CWM effect on hypocotyl length. Arabidopsis 
was treated with CWM. (C) 20 μM CWM caused inhibition of hypocotyl elongation with squeezed spot surface. Arabidopsis was treated with CWM. Scale bar = 1 mm. 
Spots on hypocotyl are shown in enlarged rectangle (arrow indicated, scale bar = 0.1 mm). (D) Cryo-scanning electron microscope shows the cell surface at the base 
part of the hypocotyl from Arabidopsis treated with 20 μM CWM. Scale bar = 50 μm. (E) The hypocotyl cell length in (C). In (B) and (E), the experiment was repeated 
three times and more than 20 seedlings were used in each time. Results are mean ± SE. ** P < 0.01 (Student’s t-test). 
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molecule treatment, unless otherwise stated, the plates were kept in dark 
for 3 days for hypocotyl elongation. Etiolated hypocotyls were observed 
and photographed under a SZX16 dissecting microscope. The length of 
hypocotyls was determined using Image J software (Freeware, National 
Institute of Health). At least 15 hypocotyls were analyzed in each in-
dependent experiment, each experiment was repeated three times, and 
mean ± SE was calculated for each data set. Student’s t test was used in 
the statistical analysis. Chemicals and isoxaben (Sigma-Aldrich) were 
dissolved in dimethyl sulfoxide (DMSO) at a concentration of 10 mM. To 
examine the effects of pectinase along with the small molecule, the 
enzyme derived from the fungus Aspergillus niger (Sigma-Aldrich) was 
used (Yoneda et al., 2010). 

2.3. Screening of CWM resistant mutants 

For isolation of CWM resistant mutants (mutants with reduced sen-
sitivities to CWM compared to WT), we performed a screening through 
Arabidopsis EMS mutant library according to the previous description (Li 
et al., 2017). Arabidopsis seeds were grown without light on the growth 
medium containing 1/2 MS, 0.7% agar and 20 μM CWM. The seedling 
phenotypes were examined under the microscope, and those with longer 
hypocotyls were considered as putative CWM resistant mutants, which 
were verified in the next generation. Using map-based cloning, the 
mutant gene was identified by the CWM resistant phenotype, followed 
with candidate genes DNA sequencing analysis. Molecular markers are 
from the Arabidopsis Mapping Platform (Hou et al., 2010). About 200 F2 
seedlings with the CWM resistant phenotype were used for mapping. 

2.4. Microscopy analysis and ruthenium red staining 

For observation under a cryo-scanning electron microscope (JEOL- 
6360LV carry Quorum PP3010T), the Arabidopsis seedlings were treated 

by 20 μM CWM or DMSO, the hypocotyls of etiolated seedlings were 
directly frozen in liquid nitrogen and then sublimation for about 5 min, 
after that, the samples were sputter coated with platinum and observed 
at an accelerating voltage of 10 kV on a cold stage kept at − 140 ◦C. 

Ruthenium red staining was used to observe the changes in pectin 
esterifications as previously described (Lionetti, 2015). Pollen tubes 
were dipped in ruthenium red solution (0.5 μg/μL, diluted in sterile pure 
water) and subjected to vacuum infiltration for 10 min. Excess of dye 
was removed by several washes with water. The seedlings were observed 
under a SZX16 dissecting microscope. 

2.5. Analysis of pectin and cellulose content 

Content of pectin and cellulose was measured according to the pre-
vious study (Foster et al., 2010; Yoneda et al., 2010). Hypocotyls (~2 g) 
from 3-day dark-grown seedlings were collected by excision of the cot-
yledons with a razor blade, grinded in liquid nitrogen. Then the sample 
was successively washed with 70% (v/v) ethanol, chloroform/methanol 
(1:1 v/v), and acetone and used as alcohol-insoluble residue (AIR) for 
analysis. AIR was destarched using α-amylase (1 μg/mL) and pullulanase 
(10 units/mL) in 0.1 M sodium acetate buffer (pH 5.0), washed with 
water and acetone, and dried at 45 ◦C (Zhang et al., 2018). 

For pectin analysis, about 2 mg cell wall AIR was boiled with 12.5 
mM sodium tetraborate in concentrated sulfuric for 5 min, then incu-
bated with 0.15% m-dihydroxydiphenyl reagent in 0.5 M sodium hy-
droxide for 2 h. The resulted uronic acid content was determined by 
detecting the absorption at 520 nm. 

For cellulose analysis, 1–2 mg of the AIR residue was incubated with 
2 M trifluoroacetic acid at 121 ◦C for 90 min and then centrifuged. The 
resulted pellet was washed with water followed by acetone for 3 times 
and dried. 1 ml of updegraff reagent (acetic acid: nitric acid: water =
8:1:2, v/v) was added to the dry material and incubated at 100 ◦C for 30 

Fig. 2. CWM structural analogs shows similar function as CWM. (A) CWM analogs effect on hypocotyl length. Arabidopsis were treated with 100 μM different CWM 
analogs. The experiment was repeated three times. n > 20. Means ± SE. (B) Structure of active CWM analogs. Other analogs are shown in Table S2. 
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min. Mixture was cooled at room temperature, centrifuged at 10,000 
rpm for 10 min, and the pellet was washed with water followed by 
acetone for 3 times and dried again. The resulted material was reacted 
with 175 μL sulfuric acid (72%) at room temperature for 1 h for 
hydrolyzation, then added 825 μL sterile pure water, centrifuged at 
12,000 rpm for 5 min, and the resulted glucose content in the super-
natant was determined using colorimetric anthrone assay according to 
previous description (Zhang et al., 2018). 

2.6. Plasmid construction and plant transformation 

Plasmid construction and plant transformation were performed as 
previously described (Ye et al., 2016). For complementation of the qua2- 
3 mutant, the coding sequence (CDS) of QUA2 was PCR amplified and 
constructed to a pGWB6 vector and transformed to the qua2-3 mutant 

2.7. Accession numbers 

QUA2 (AT1G78240); PMR6 (AT3G54920); IXR1/CESA3 
(AT5G05170); IXR2/CESA6 (AT5G64740); CWM (F0778-0383). 

3. Results 

3.1. CWM inhibited cell elongation in Arabidopsis hypocotyls. 

The etiolated hypocotyl is an ideal system to study cell elongation as 
it elongates quickly without cell division (Gendreau et al., 1997). To 
search for small molecules that affect cell growth, we screened a 

chemical library (containing 12,000 small molecules) using Arabidopsis 
hypocotyls (Li et al., 2017; Zhao et al., 2007). Columbia (Col-0) seeds 
were surface sterilized and grown on 1/2 MS mediums in 96 well plates. 
Each well contained one chemical at the concentration of 100 μM. Hy-
pocotyl phenotypes were imaged after growth for 3 days without light. 
44 chemicals were identified to show inhibition on hypocotyl elonga-
tion. Among them, the chemical, N-(2-(3,5-dimethylphenyl)-4,6-dihy-
dro-2H-thieno [3,4-c] pyrazol-3-yl) cyclopropanecarboxamide (Fig. 1A) 
inhibited hypocotyl elongation in the dark at a low concentration (IC50 
5 μM) and the inhibition was saturated at 30 μM (Fig. 1B, C; Supple-
mentary Fig. S1). Some of hypocotyl cells were compressed and 
deformed with diminution of transparency at the surface (Supplemen-
tary Fig. S2). To further characterize the cell morphology, we conducted 
a cryo-scanning electron microscope analysis. The chemical caused the 
hypocotyl cells unable to normally elongate in a parallel alignment 
manner. The cells were reshaped, showing an irregularity in cell 
anisotropy (Fig. 1D). The cell length was reduced by about 70% 
(Fig. 1E). This chemical is named CWM (cell wall modulator) as it is 
found to modulate the composition of cell walls during cell growth. 

To confirm the function of CWM and its bioactive groups, we further 
examined the effect of other 24 CWM analogs in the chemical library. 
Four of the analogs also caused hypocotyls with shortened and spotted 
cells, similar phenotypes to those caused by CWM (Fig. 2A, Supple-
mentary Fig. S3). This confirmed our primary screening, of which CWM 
inhibited elongation of etiolated hypocotyls. The bioactive analogs 
share a similar chemical structure that is scaffolded with amide group, 
thieno-pyrazol group and benzene ring (Fig. 2B, Table S2), which may 
be required for the chemical activity. 

Fig. 3. qua2 mutant is resistant to CWM. (A) Phenotypes of wild type, 23-3 mutant and two complemented lines treated with 15 μM CWM. Scale bar = 1 mm. (B) 
CWM effect on hypocotyl length with different genotypes. The experiment was repeated three times and more than 20 seedlings were used in each time. Results are 
mean ± SE. **P < 0.01 (Student’s t-test). (C) Phenotypes of the hypocotyls from 23-3 and its complemented lines. Scale bar = 0.1 mm. (D) Positional cloning of QUA2 
gene. The mutation site was localized to a region between the molecular marker 1-AC012680-9666 and 1-AC007260-9724 on chromosome 1. The 23-3 mutation 
causes a C to T transition in the third exon of QUA2 gene. Chr, chromosome. 
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3.2. qua2-3 mutant showed a reduced CWM sensitivity. 

To find how CWM inhibited cell elongation, we carried out a genetic 
screening against ethyl methane sulfonate (EMS) mutagenized M2 seeds 
of Col-0. In screening of approximate 13,000 lines, 94 putative mutants 
with CWM reduced sensitivity were identified. We then analyzed these 
mutants in the next generation. One mutant 23-3 showed a reduced 
sensitivity to CWM treatment at 15 μM and 20 μM (Fig. 3A, B). The 23-3 
mutant showed some of the cells detached from hypocotyl surface 
(Fig. 3C), indicating that the cell adhesion was defective. 

Then we conducted map-based cloning using about 200 resistant F2 
individuals from a cross between 23-3 (Col-0 background) and Lands-
berg erecta (Ler-0). The mutation site was mapped to an approximate 
170 kb region between the molecular markers 1-AC012680-9666 
(1–29.4108 Mb) and 1-AC007260-9724 (1–29.5868 Mb) on chromo-
some 1 (Fig. 3D). A putative pectin methyltransferase QUA2 was located 
in this region. We sequenced the QUA2 genomic DNA and found the 
mutant harbored a CAG to TAG mutation at the 1094th site, leading to 
an early stop of translation at the 312th amino acid (Fig. 3D). Reintro-
ducing the QUA2 gene into the mutant rescued the chemical genetic and 
cell adhesion defect phenotypes (Fig. 3A, C). These results further 
complement the finding that the phenotypes were caused by this QUA2 
mutation. Thus we designated the identified mutant 23-3 as qua2-3 
following the previous identification of qua2-1 and qua2-2 mutant 
(Mouille et al., 2007). 

3.3. CWM increased pectin content in Arabidopsis hypocotyls and its 
inhibitory effects could be partially restored by pectinase treatment. 

The mutant qua2-3 displayed cell adhesion defects, which was 

rescued by CWM treatment (Fig. 4A). As qua2 mutation showed a 
reduction of HG pectin (Krupková et al., 2007; Mouille et al., 2007), we 
speculated that CWM might affect pectin modification. We employed 
pollen tubes as a test system to examine the CWM effect on pectin. CWM 
treatment reduced pollen tube elongation and inhibited pollen germi-
nation (Fig. 4B). Branched and swollen pollen tubes were observed after 
CWM treatment (Supplementary Fig. S4). Pectin staining indicated an 
increase of esterified pectin after CWM treatment (Supplementary 
Fig. S4). We also examined other pectin-related gene mutants for their 
responses to CWM. pmr6-1, a putative pectin-degrading enzyme mutant 
showed hypersensitive to CWM treatment (Fig. 4D). Total pectin content 
in hypocotyls was increased two-fold after CWM treatment (Fig. 4E). 
However, when we carried out overexpression of QUA2 in WT, the 
transgenics did not show phenotypic changes and obvious response to 
CWM (Supplementary Fig. S5). Since QUA2 is thought to be a putative 
pectin methyltransferase, it is worthy of further investigation to 
demonstrate the precise QUA2 function in cell growth. 

Next, we used CWM in combination with pectinase (hydrolysis of 
pectin) to treat Arabidopsis seedlings, the results showed that without 
pectinase, dark-grown hypocotyl elongation was inhibited by CWM, and 
such inhibition was restored with addition of pectinase (Fig. 5A, B). In 
addition, the squeezed spots on the hypocotyl caused by CWM were 
eliminated by pectinase treatment in a dose dependent manner. The 
percentage of hypocotyls with squeezed spots was decreased from 40% 
to 5% with addition of pectinase (Fig. 5C). 

Then we tested whether CWM directly inhibits pectinase activity in 
vitro. Seed coat mucilage is rich in pectin (Saez-Aguayo et al., 2013). 
Pectinase effectively eliminated the seed coat mucilage layer and 
severely inhibited hypocotyl elongation (Supplementary Fig. S5). 
However, CWM treatment did not inhibit the activity of pectinase on the 

Fig. 4. CWM causes an increase of pectin content in Arabidopsis. (A) Hypocotyl phenotype of qua2-3 mutant treated with CWM. Scale bar = 0.1 mm (B) Pollen tube of 
WT grown on growth medium without or with 20 μM CWM. Scale bar = 0.1 mm. (C) The pectate lyase-like protein mutant pmr6-1 is hypersensitive to CWM. WT and 
pmr6-1 mutant were treated with 5 μM CWM. Scale bar = 1 mm. (D) Hypocotyl length in (C). The experiment was repeated three times and more than 20 seedlings 
were used in each time. Means ± SE. **P < 0.01 (Student’s t-test). (E) Pectin content in the hypocotyl under 20 μM CWM treatment. The experiment was repeated 
three times. Means ± SE. **P < 0.01 (Student’s t-test). 
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seed coat or hypocotyl (Supplementary Fig. S5), suggesting that CWM 
and pectinase act on pectin via different mechanisms 

3.4. Cellulose synthesis was impeded in the CWM treated hypocotyls 

In formation of the cell wall complex, interconnection of pectin with 
cellulose is critical for cell growth (Wang et al., 2015, 2012; Zykwinska 
et al., 2008, 2005). Pectin modification may affect cellulose synthesis 
(Yoneda et al., 2010), though the precise relationship has yet to be 
elucidated. When hypocotyls were treated with CWM, crystalline cel-
lulose content was reduced substantially (Fig. 6A), suggesting a possi-
bility that CWM inhibited cellulose deposition during cell growth. When 
cellulose synthase (CESA) mutants ixr1-1, ixr1-2 and ixr2-1 (IXR1/ 
CESA3, IXR2/CESA6) (Desprez et al., 2002; Scheible et al., 2001) were 
treated with CWM, hypocotyl elongation in the ixr mutants was 
inhibited by CWM. The inhibition was saturated at 5 μM for ixr1-2, a 
much lower concentration than in the WT treatment (the concentration 
of IC50 for WT) (Fig. 6B, C). This indicated that the ixr mutants were 
hypersensitive to CWM. 

Next, CWM was compared with the cellulose inhibitor isoxaben for 
the effect on cell growth. When CWM and isoxaben were used to treat 
etiolated hypocotyls, both chemicals caused a swollen phenotype on the 
hypocotyl (Supplementary Fig. S6A–C). Meanwhile, a pectate lyase-like 
gene mutant pmr6-1, which contains abnormal pectin accumulation 
(Vogel et al., 2002, 2004), was hypersensitive to isoxaben (Fig. 6D, E), 
suggesting importance of the precise pectin accumulation for cellulose 
biosynthesis. However, CWM partly rescued the isoxaben-caused 
swollen phenotype. Meanwhile, pectinase treatment, which showed a 
restoration of the CWM inhibitory effect, was unable to restore isoxaben- 

caused growth inhibition (Supplementary Fig. S6D–F). This suggests 
that CWM may function in a way different from that of isoxaben. As 
CWM affected pectin modification, it is possible that the pectin status 
changes caused by CWM in turn disturbed cellulose biosynthesis during 
cell growth. 

4. Discussion 

4.1. CWM interferes pectin modification during cell growth 

Precise pectin modifications such as methylesterifiction and de- 
methylesterification are important for plant cell growth (Foster et al., 
2010; Peaucelle et al., 2012). Mutant analyses have provided genetic 
evidence to understand how pectin modification is related to cell 
growth. For example, defective pectin methyl-esterification in ga1-3 and 
gai mutants impedes hypocotyl elongation (Derbyshire et al., 2007). 
Pectin demethylesterification is essential for hypocotyl elongation in the 
dark (Pelletier et al., 2010). Mutation of a PME-homologous protein 
VGD1 impairs pectin demethylesterification and inhibits pollen tube 
elongation (Hu et al., 2015; Jiang et al., 2005). In this study, we iden-
tified a small molecule CWM, which inhibits hypocotyl cell elongation. 
Genetic screening revealed that qua2-3, which carries a mutation in a 
putative pectin methyltransferase gene (Krupková et al., 2007; Mouille 
et al., 2007), has reduced sensitivity to CWM (Figs. 3 and 4). The results 
suggest that CWM may interact with pectin metabolism. 

CWM treatment led to increase of pectin contents while pectinase 
treatment can partially restore the CWM-caused phenotypes. The ge-
netic evidence showed that CWM may target at the QUA2 related pro-
cess, while further investigation is needed to elucidate the detail 

Fig. 5. Pectinase rescued the CWM treatment phenotype. (A) Pectinase treatment restores the 20 μM CWM induced phenotype on hypocotyl. Photos show Arabidopsis 
seedlings treated with CWM in addition to pectinase. Scale bar = 1 mm. (B) The hypocotyl length of seedlings treated with combination of CWM and pectinase. The 
experiment was repeated three times and more than 20 seedlings were used in each time. Means ± SE. **P < 0.01 (Student’s t-test). (C) The percentage of the 
seedlings with squeezed spots (as shown in Fig. 1C) in (A). Results shown are means ± SE. The experiment was repeated three times, more than 100 seedlings were 
used each time. 
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mechanism how QUA2 function is related to CWM. Study has reported 
that QUA2 mutant led to reduction of HG pectin but the remaining HG 
methylesterification was unaltered (Mouille et al., 2007). This suggests 
that accurate pectin deposition play an important role in cell growth. 
Although it is proposed that QUA2 functions as a putative methyl-
transferase that modifies the pectin structure (Mouille et al., 2007), it is 
still unclear what is the exact nature of QUA2 function in pectin modi-
fication. Identification of CWM provides a useful tool to further char-
acterize the function of QUA2 which has repeatedly shown genetic 
significance in cell growth (Krupková et al., 2007; Mouille et al., 2007) 

4.2. Pectin modification and cellulose biosynthesis 

Previous studies suggest that pectin plays a critical role in con-
structing the polysaccharide network in cell walls (Braybrook et al., 
2012; Braybrook and Jönsson, 2016). Pectin is also recognized for its 
role in regulating cell wall flexibility and cell growth (Hocq et al., 2017; 
Wang et al., 2018; Wolf and Greiner, 2012). Perturbation of pectin 
synthesis led to changes of the cell wall structure (Biswal et al., 2018), 
suggesting that pectin deposition is important for appropriate organi-
zation of other cell wall components, such as cellulose. 

In this study, CWM treatment resulted in increase of pectin content 
and decease of cellulose content in hypocotyls (Fig. 6). In addition, 
cellulose synthase CESA mutants ixr1 and ixr2 are hypersensitive to 
CWM (Fig. 6). Possibly, CWM caused disturbance of pectin modification 
and over-accumulation of pectin, which in turn interferes cellulose 

biosynthesis. When plant cell elongates, pectin undergoes modification, 
degradation and structural reorganization, which enable loosening of 
cell walls and expansion of cells (Haas et al., 2020; Kim and Carpita, 
1992). CWM-treatment resulted in the cell wall which is aggregated with 
more pectin, and the abnormal pectin accumulation may interfere ac-
curate deposition of cellulose microfibrils and cell elongation. In support 
of this, the pectate lyase–like gene mutant pmr6-1 is hypersensitive to 
isoxaben (Figs. 4 and 6D, E), suggesting that disruption of pectin accu-
mulation affects cellulose biosynthesis. However, more mechanistic 
dissection is needed to understand how the CWM-caused pectin distur-
bance affects cellulose biosynthesis process. Nevertheless, the study 
provides a line of new evidence in supporting that pectin modification 
and cellulose synthesis are interconnected. 

4.3. CWM may be used as a tool for study of cell wall modification during 
cell growth 

During cell elongation, the interconnection between pectin and other 
polysaccharides undergoes active modification. A great deal of interest 
has been attracted to elucidating the mechanisms underlying the 
structural changes (Cosgrove, 2018; Wolf and Greiner, 2012). To 
investigate the process of cell wall modification, several challenges have 
to be overcome: (i) cell growth, cell wall biosynthesis and remod-
ification are highly dynamic; (ii) the interactions between pectin and 
other polysaccharides in plant cell walls are remarkably complex (Wang 
and Hong, 2016); (iii) genes involved in pectin metabolisms are 

Fig. 6. Cellulose synthesis was impeded in the CWM treated hypocotyls (A) Cellulose contents of the WT seedling hypocotyls treated with 20 μM CWM. The ex-
periments were repeated three times. Mean ± SE. (B) Phenotypes of WT, ixr1-1, ixr1-2 and ixr2-1 seedlings treated with CWM. Scale bar = 1 mm. (C) The hypocotyl 
lengths of seedlings treated with CWM. (D) Phenotypes of WT and pmr6-1 seedlings treated with isoxaben. Scale bar = 1 mm. (E) The relative length of hypocotyls 
treated with isoxaben. The experiment was repeated three times, and more than 20 seedlings were used in each time. Means ± SE. **P < 0.01 (Student’s t-test). 
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generally redundant (Senechal et al., 2014). Chemical genetics, using 
natural or synthesized small molecules to disturb a biological process, 
can be an effective tool to help us understand the mechanisms of these 
processes (Schreiber, 2005; Zhang et al., 2009). Many chemicals have 
been used to explore the mechanisms of cellulose function (Desprez 
et al., 2002; Lazzaro et al., 2003; Scheible et al., 2001). Finding new 
small molecules that affect pectin status will accelerate our research on 
pectin function (Yoneda et al., 2010). Our study identified a new small 
molecule CWM that causes increase of pectin content and decrease of 
cellulose content. CWM also displayed properties of being highly sen-
sitive for inhibition of cell growth with stable and easily detectable 
phenotypes. Thus the tested characteristics and genetic activity make 
CWM to be a useful chemical tool to investigate the interaction between 
cell wall polysaccharides and their dynamic modifications during cell 
growth. 
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