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Abstract: Biological systems respond to perturbations through the rewiring of molecular interactions,
organised in gene regulatory networks (GRNs). Among these, the increasingly high availability
of transcriptomic data makes gene co-expression networks the most exploited ones. Differential
co-expression networks are useful tools to identify changes in response to an external perturbation,
such as mutations predisposing to cancer development, and leading to changes in the activity of
gene expression regulators or signalling. They can help explain the robustness of cancer cells to
perturbations and identify promising candidates for targeted therapy, moreover providing higher
specificity with respect to standard co-expression methods. Here, we comprehensively review the
literature about the methods developed to assess differential co-expression and their applications
to cancer biology. Via the comparison of normal and diseased conditions and of different tumour
stages, studies based on these methods led to the definition of pathways involved in gene network
reorganisation upon oncogenes’ mutations and tumour progression, often converging on immune
system signalling. A relevant implementation still lagging behind is the integration of different data
types, which would greatly improve network interpretability. Most importantly, performance and
predictivity evaluation of the large variety of mathematical models proposed would urgently require
experimental validations and systematic comparisons. We believe that future work on differential
gene co-expression networks, complemented with additional omics data and experimentally tested,
will considerably improve our insights into the biology of tumours.

Keywords: differential co-expression; biological networks; cancer; tumour progression; computational
biology; bioinformatics

1. Biological Networks

Biological systems are complex in nature, their behaviour being governed by the interactions of
many molecular components (e.g., coding and non-coding RNAs, proteins), through several regulatory
layers [1] (e.g., promoter binding, miRNA–mRNA interaction, post-translational modifications).
Cancer is no exception, being the result of multiple perturbations within a single cell that also affect
cell–cell and cell–microenvironment communication. Each perturbation does not act in isolation but is
influenced and in turn influences the whole system, with reciprocal relationships occurring between
most components [2].

Therefore, accurately depicting a biological system such as a cancer cell requires knowledge
about elements’ interactions, and in particular about the regulatory layer described as gene regulatory
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networks (GRNs). Gene regulatory networks, like all biological networks, represent biological
components as nodes and their interactions, either physical or functional, as edges (Figure 1). GRNs
are the ideal reconstruction of interactions between genetic elements, comprising the activity of
transcription factors (TFs) on their targets’ expression, post-translational modifications influencing a
protein’s impact on other elements of the network, epigenetic modifications altering transcription and
many additional levels of regulation. While the overall goal of most biological network studies is the
inference of GRNs, this is a complex and laborious task that is generally approached by setting some
simplifying assumptions and by analysing one kind of relationship at a time, based on physical or
other kinds of interactions, as described below.
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Figure 1. Example of a network, indicating nodes, edges, centrally located genes (hubs) and groups of
tightly connected genes (modules).

One caveat is that, despite the general assumption that physical or genetic interactions indicate
shared functions or belonging to the same molecular pathway(s), this is not necessarily true, since the
information used for edges’ inference is not a direct measure of a functional relationship. Moreover,
each network type estimates only part of the overall GRN structure (e.g., transcriptional regulation,
protein–protein interactions), losing the information hidden to the specific data type used for its
construction, which could be revealed by combining the results obtained with additional data sources.

The most frequently studied biological networks based on physical interactions are protein–protein
interaction (PPI) networks, where nodes are proteins and links indicate direct binding, but the binding
of a TF to its targets’ promoters can also be represented in a network. A particular type of biological
network is pathways, curated and deposited in repositories such as KEGG (Kyoto Encyclopedia of
Genes and Genomes) [3], where nodes can be either proteins or small molecules and edges indicate a
variety of interactions, among which are enzymatic reactions. Genetic interactions such as synthetic
lethal interactions can also be studied as networks [4], assuming them to indicate that the two genes
belong to the same pathway. Additionally, methods have been developed to build a variety of
biological networks based on metabolic, single nucleotide polymorphisms (SNPs) and phenotypic
data (reviewed in [5]).

High-throughput gene expression assays are often used to infer functional relationships between
genes from correlations between their expression levels, building the so-called gene co-expression
networks (Figure 1). The potential relevance of this method to estimate GRNs is supported by
the knowledge that genes with similar transcriptional expression profiles are likely to be regulated
through the same mechanisms and to participate in the same functions, or to physically interact [6–9].
This information can also be combined with other information such as, for example, transcription
factor binding and/or PPIs, to obtain a more complete and accurate representation of molecular
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elements’ interrelationships [10]. Specific open-access databases have been created to store physical
and functional networks. Some of the most popular are summarised in Table 1.

Table 1. Some of the most popular databases of biological networks.

Database Type of Network Link Reference

DIP PPI https://dip.doe-mbi.ucla.edu/dip/Main.cgi [11]
MINT PPI https://mint.bio.uniroma2.it/ [12]
IntAct PPI https://www.ebi.ac.uk/intact/ [13]

BioGRID PPI https://thebiogrid.org/ [14]
STRING Various https://string-db.org/ [15]

COXPRESdb Co-expression https://coxpresdb.jp/ [16]
SEEK Co-expression http://seek.princeton.edu/ [17]

2. Gene Co-Expression Networks

Gene networks have proved to be a valuable tool to understand some general principles
governing biological systems, revealing that gene co-expression is organised in a non-random fashion,
with highly interconnected genes (hubs) and groups of tightly co-regulated genes (modules) (Figure 1).
These principles were first identified in simple unicellular organisms such as yeast, but were then
demonstrated to be preserved across evolution.

Seminal studies on Saccharomyces cerevisiae have established that there is a relationship between
genes’ topological features in the network and their function [18,19]. In fact, they have shown that
biological networks have a scale-free topology, with many genes having few interactors and a few
genes having many interactors (central nodes or hubs) [18] (Figure 1). Centrality distinguishes the
most important nodes for a network’s integrity: hub genes’ removal has the strongest effect in inducing
lethality [18,19]. This has important implications for the ability to predict the effect of interfering with
specific genes on the resulting biological phenotype.

The same concepts have been extended to other organisms, including humans, and applied to the
study of disease [20–23]. In Mendelian disorders, for example, genes harbouring disease mutations
with a dominant phenotype display significantly higher network connectivity than genes with a
recessive phenotype [23,24], and cancer driver genes tend to be centrally located in protein–protein
interaction networks [22]. These observations give important indications for genes’ function prediction
and for the prioritisation of therapeutic targets [25,26].

Biological networks are intrinsically modular [27], with genes belonging to the same module
usually sharing common functions [28]. Identifying modules across multiple networks can help in
discovering patterns, and shed light on the underlying mechanisms of biological systems. In particular,
much interest has been directed to the identification of shared modules in different conditions, and also
in cancer biology [29].

Therefore, the organisation of gene co-expression networks can inform about genes and biological
processes that are relevant for cell behaviour, facilitating predictions for specific gene knock-downs
(KDs) and drug treatments’ effects.

However, gene and protein networks provide a static snapshot of molecular interactions
within a tissue, while biological systems are highly dynamic. Perturbations caused by evolutionary
changes, disease, environmental stresses and oncogene activation result in rewiring the network’s
topology [30,31]. A simple example of changes in co-expression is Max, a transcription factor, which acts
either as an activator or a suppressor on the same target genes depending on whether it binds to
Myc or Mad [32]. Accordingly, Max expression exhibits either positive or negative correlation with
its targets depending on the conditions. The study of such changes can give valuable insights on
disease mechanisms and altered pathways [33], providing information on those weakly differentially
expressed genes that are regulated at a different level [34]. In fact, several reports confirmed that
differentially expressed and differentially co-expressed (DC) genes tend not to overlap, and hence
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reflect distinct regulatory processes [35]. Additionally, the differential expression of genes with low
levels of expression, such as TFs, might be difficult to retrieve, while it could be evidenced by the
coherent change in co-regulation of a group of its targets, identified as a DC module. These motivations
led to the definition of several methods for differential co-expression analysis, aimed at identifying
changes in networks’ structure across conditions [36]. Similarly, differential network methods have
been successfully applied to other types of molecular network models, including genetic interaction
networks [37] and PPI networks [38].

Finally, the integration of various data types can build upon co-expression networks to infer
the sources of variability responsible for the observed differential co-expression. As represented in
the simplified model of Figure 2, the loss of co-expression between a transcription factor and its
target can be accounted for by intervening regulatory mechanisms, such as the transcription factor
post-translational modifications, mutations and its association with alternative co-factors or epigenetic
control (DNA methylation, non-coding RNAs), not necessarily leading to a detectable differential
expression at the mRNA level. Adding this information to the model helps, on one side, to explain
the molecular processes involved in the co-expression change and, on the other side, to identify the
functional correlates of less experimentally accessible regulatory layers (e.g., protein phosphorylation).
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Figure 2. Mechanisms underlying differential co-expression and their impact on transcripts’ correlation.
Example of a simplified network in normal tissue (A) and in cancer (B–E), whose comparison leads to
defining a differential network (F). (A) Example of a simplified co-expression network in normal tissue,
with a transcription factor (TF) activating its target, gene A. The TF and A are connected by an edge and
their expression is positively correlated. (B) Post-translational modifications (e.g., phosphorylation) or
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mutations of the TF impede its binding to gene A promoter. Hence, the TF does not activate gene
A expression: they are not transcriptionally correlated and therefore not linked in the co-expression
network. (C) The presence of a cofactor alters the activity of the TF, that switches from acting as
an activator to being a repressor of gene A expression. Hence, the TF and gene A are negatively
correlated. In the network, they can be represented as having an inhibitory edge or as not being linked.
(D) Epigenetic mechanisms (e.g., DNA methylation) inhibit the TF binding and gene A expression.
The TF and gene A are not correlated and they are not linked in the co-expression network. (E) In the
absence of TF expression, gene A expression does not depend on its regulatory activity. The TF and gene
A are not correlated nor linked in the co-expression network. These regulatory mechanisms and others
alter the relationships between the TF and gene A, changing their correlation at the transcriptional
level. In some cases, one of the two genes is also differentially expressed (D,E), in other cases, only
co-expression changes (B,C). Reconstructing the differential network between “normal” and “cancer”
conditions, exemplified here, would lead to defining a network where only the TF and gene A are
linked by an edge, indicating a decreased correlation in cancer (F).

Here, we will provide a brief overview of the main methods used for differential co-expression
analysis, and we will then focus on the results achieved by such methods in the study of cancer biology
and tumour progression. With respect to previous reviews on differential co-expression [36,39], our work
specifically focuses on biological insights that these methods have allowed in cancer biology. Moreover,
we extend the discussion of van Dam and co-authors on differentially co-expressed modules [39],
by including additional “global” and “gene-specific” levels of network analysis, as detailed below.

3. Methods for Differential Co-Expression Analysis

The main methods proposed for the study of differential co-expression can be distinguished into
three broad classes, based on the principles they rely on and on their application (Tables 2–4, Figure 3):

1. “global network” approaches aim at reconstructing the whole differential co-expression network
between two or multiple conditions. Global features of the differential network can be studied,
such as edge distribution, modularity or entropy.

2. “module-based” approaches aim at identifying groups of co-regulated genes that are differentially
interconnected under specific conditions. Usually, differences in connectivity within a module are
analysed, but also methods for the identification of pairs of DC modules (connectivity between
modules) have been proposed. Additionally, modules can be either identified unbiasedly from
data, or pre-specified based on prior knowledge (here defined as “pathway-based” methods).

3. “single-gene” approaches study the change in co-expression between pairs of genes or between
a gene and its neighbours in the network. These approaches are particularly suited to select
experimentally testable hypotheses. In principle, all “global network” methods can be used to
drive “gene-specific” outputs using node-centred metrics that summarise the relevance of a gene
within the differential network. On the other side, single genes thus identified can be used as
seeds to build differential modules with neighbouring genes within the network.

Table 2. “Global network” methods that can also be employed for the “gene-specific” approach.

Method Number of Conditions Citation Availability

DINGO Multiple [40] CRAN R package (iDINGO)
Entropy Two [41] Bioconductor R package (dcanr)
DGCA Two [42] CRAN R package (DGCA)

Discordant Two [43] Bioconductor R package (Discordant)

MAGIC Two [44]
Bioconductor R package (dcanr)

MATLAB implementation at
https://github.com/chiuyc/MAGIC

https://github.com/chiuyc/MAGIC
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Table 2. Cont.

Method Number of Conditions Citation Availability

EBcoexpress Two [45] Bioconductor R package (EBcoexpress)
GGM-based Two [46] Bioconductor R package (dcanr)

LDGM Two [47]
Bioconductor R package (dcanr)

Matlab implementation at
https://github.com/ma-compbio/LDGM

Gill Two [48] R package at
http://www.somnathdatta.org/Supp/DNA

DDN Two [49] MATLAB toolbox at
http://www.cbil.ece.vt.edu/software.htm

Zhao Two [50]

JDINAC Two [51] R code at
https://github.com/jijiadong/JDINAC

TDJGL Two [52] R code at
https://github.com/Zhangxf-ccnu/TDJGL

mlDNA Two [53] CRAN R package (mlDNA, not maintained)
DCGL Two [54] CRAN R package (DCGL)

DECODE Two [55] CRAN R package (DECODE)
SIG method Two [56]
Discordant Two [43] Bioconductor R package (discordant)

DCN Two [57]
R package at

https:
//github.com/weiliu123/DCN-package

TCDV Two [58]

BFDCA Two [59] R package at
http://dx.doi.org/10.17632/jdz4vtvnm3.1

CODC Two [60] R package at
https://github.com/Snehalikalall/CODC

z-score Two/De novo [61] Bioconductor R package (dcanr)
MINDy De novo [62] Bioconductor R package (dcanr)

Table 3. “Module-based” methods.

Method Module
Definition

# of
Conditions Citation Availability

DICER Unbiased Multiple [63]
Bioconductor R package (dcanr)

Java software at
http://acgt.cs.tau.ac.il/dicer/

DiffCoEx Unbiased Multiple [64]
R package at

https://github.com/ddeweerd/MODifieRDev.git
Bioconductor R package (dcanr)

M-Modules Unbiased Multiple [65]
NIPD Unbiased Multiple [66]
C3D Unbiased Multiple [67]

CoXpress Unbiased Two [68] R package at http://coxpress.sourceforge.net/
DiffCorr Unbiased Two [69] CRAN R package (DiffCorr)

ModMap Unbiased Two [70] Java executable at
http://acgt.cs.tau.ac.il/modmap/

ALPACA Unbiased Two [71] R package at
https://github.com/meghapadi/ALPACA

BFDCA Unbiased Two [59] R package at
http://dx.doi.org/10.17632/jdz4vtvnm3.1

DiffCoMO Unbiased Two [72]

SCDA Unbiased Two [73] MATLAB implementation at
http://vk.cs.umn.edu/SDC/

CODC Unbiased Two [60] R package at
https://github.com/Snehalikalall/CODC

EgoNet Unbiased Two [74]

https://github.com/ma-compbio/LDGM
http://www.somnathdatta.org/Supp/DNA
http://www.cbil.ece.vt.edu/software.htm
https://github.com/jijiadong/JDINAC
https://github.com/Zhangxf-ccnu/TDJGL
https://github.com/weiliu123/DCN-package
https://github.com/weiliu123/DCN-package
http://dx.doi.org/10.17632/jdz4vtvnm3.1
https://github.com/Snehalikalall/CODC
http://acgt.cs.tau.ac.il/dicer/
https://github.com/ddeweerd/MODifieRDev.git
http://coxpress.sourceforge.net/
http://acgt.cs.tau.ac.il/modmap/
https://github.com/meghapadi/ALPACA
http://dx.doi.org/10.17632/jdz4vtvnm3.1
http://vk.cs.umn.edu/SDC/
https://github.com/Snehalikalall/CODC
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Table 3. Cont.

Method Module
Definition

# of
Conditions Citation Availability

BicMix Unbiased Two [75] R package at
https://github.com/chuangao/BicMix

MODA Unbiased Two [76] Bioconductor R package (MODA)
COSINE Unbiased Two [77] CRAN R package (COSINE)

DECluster Unbiased Two [78]
DEDC Unbiased Two [79]

DCN Unbiased Two [57] R package at
https://github.com/weiliu123/DCN-package

Contrast
Subgraph Unbiased Two [80]

DCIM Unbiased De novo [81]
GSCA A priori Two [82] Bioconductor R package (GSCA)

ScorePAGE A priori Two [83]
IB-GSA A priori Two [84]

Gill A priori Two [48] R package at
http://www.somnathdatta.org/Supp/DNA

CoGa A priori Two [85]

dCoxS A priori pairs
of gene sets Two [86] R function at

http://www.snubi.org/publication/dCoxS/

MAGIC A priori pairs
of gene sets Two [44]

Bioconductor R package (dcanr)
MATLAB implementation at

https://github.com/chiuyc/MAGIC

ESEA Structured
pathway Two [87] R package on CRAN (ESEA)

PWEA Structured
pathway Two [88] R package on Bioconductor (ToPASeq)

KEDDY Structured
pathway Two [89] Java implementation at

https://sites.google.com/site/sjunggsm/keddy

kDDN Structured
pathway Two [90] MATLAB implementation at

http://www.cbil.ece.vt.edu/software.htm

Table 4. “Single-gene” methods.

Method Description # of
Conditions Citation Availability

DEDC Looks for the “best” DC gene Two [79]

ECF
Given a pre-defined gene, selects

others having differential
co-expression with it

Two [91] CRAN R package (COSINE)

Gill Given a pre-defined gene, tests
whether its connectivity changes Two [48] R package at

http://www.somnathdatta.org/Supp/DNA

Moreover, all methods can be distinguished based on the number of conditions they can
simultaneously compare, and on the amount of previous information they rely on and they can
account for. For example, gene co-expression networks’ structure and differential modules can be
obtained in three ways: (i) making use of transcriptional data only in a completely unbiased way
(Table 3, “Unbiased” methods); (ii) analysing transcriptional data of pre-defined gene sets such as Gene
Ontology lists (Table 3, “A priori” methods) (iii) combining manually curated protein–protein interaction
networks or known pathway structures with expression data (Table 3, “Structured pathway” methods),
to identify a differential usage of predetermined nodes and edges. This method, while allowing for the
reduction the noise, it is unable to uncover new, potentially relevant, interactions. Finally, additional
features such as genetic variation may be integrated to improve networks’ interpretation [92,93]
(Table 5).

https://github.com/chuangao/BicMix
https://github.com/weiliu123/DCN-package
http://www.somnathdatta.org/Supp/DNA
http://www.snubi.org/publication/dCoxS/
https://github.com/chiuyc/MAGIC
https://sites.google.com/site/sjunggsm/keddy
http://www.cbil.ece.vt.edu/software.htm
http://www.somnathdatta.org/Supp/DNA
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Figure 3. Methods for differential co-expression. Left: two conditions are compared. Right: with
“global network” approaches, the overall differential network is built; “module-based” methods
identify groups of differentially connected nodes; the “single-gene” approach searches for pairs of genes
changing connections (differential edges) or single genes changing connectivity within the network
(differential hubs).

Table 5. Methods integrating co-expression and other sources of information.

Method Description Citation Availability

FTGI Integrates co-expression and SNPs [94] Bioconductor R package (dcanr)

MultiDCox
Multivariate.

Identifies variables correlated
with differential co-expression

[95] R package at
https://github.com/lianyh/MultiDCoX

dcVar Differential co-expression based
on sequence variants [93] Linux command-line tool at

http://insilico.utulsa.edu/dcVar.php
wgLASSO Integrates co-expression with PPIs [96]

MACPath
Integrates co-expression with

annotation of miRNA-responsive
elements

[97] Python code at
https://github.com/thejustpark/MACPath

The “module-based” approach to differential co-expression has advantages and downsides.
On one hand, identifying DC modules allows for achieving a higher robustness to noise than the
“gene-specific” approach. Moreover, the results are easier to interpret than those obtained via the
“global network” approach, resulting in smaller gene lists that can be studied for their enrichment
in gene ontology or pathways’ signatures. On the other hand, it hardly allows for extracting general
principles on cancer’s network behaviour, while not giving, on its own, information about individual
cancer targets. Nevertheless, it can be combined with gene prioritisation approaches to obtain both
robust and clinically informative results.

The most fine-grained analysis of differential co-expression aims at identifying pairs of genes that
change their co-expression across conditions, losing, gaining or switching the sign of their correlation.
Often, single genes with overall large changes in connectivity across the whole network are identified.
This approach has the advantage of providing easily testable hypotheses, involving one or two
specific genes, at the cost of lower interpretability. Therefore, most studies combine the “gene-specific”
approach with the identification of modules as ensembles of DC genes or built from a single gene
changing its connectivity, which is used as a seed for a module’s construction.

An intriguing approach consists in using co-expression to identify clusters of samples, e.g., subsets
of tumours differing in the co-expression of TF targets, leading to the identification of modulators
of differential co-expression [62,98–100] (Table 6). Most of the algorithms are implemented in R and
freely available, to facilitate their usage, together with network visualisation tools (e.g., Cytoscape and
Gephi [101,102]).

https://github.com/lianyh/MultiDCoX
http://insilico.utulsa.edu/dcVar.php
https://github.com/thejustpark/MACPath
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Table 6. Methods to infer modulators of gene co-expression.

Method Citation Availability

z-score [61] Bioconductor R package (dcanr)
Mimosa [98]

GIMLET [99] R package at
https://github.com/tshimam/GIMLET

MINDy [62] Bioconductor R package (dcanr)
MINDy module in GenePattern

GEM [100] Implementation at
https://sourceforge.net/projects/modulators

Usually, these methods take as input two or multiple gene expression datasets that the user
wishes to compare, and give as output either a network of dysregulated connections (“global network”
approach), a list of genes belonging to a dysregulated module (“module-based” approach) or a
ranking of dysregulated nodes (“single-gene” approach). The dcanr package [103], implementing
11 different “global network” differential co-expression approaches, is particularly handy and well
documented. An example of the kind of output obtained through this tool is shown in Figure 4,
where the genes most significantly increasing their co-expression between normal breast and breast
tumours in the TCGA (The Cancer Genome Atlas) cohort, identified via the z-score algorithm [61],
are represented in a network with Cytoscape [101] (Figure 4A). Statistics on a network’s properties
indicate overall differences in connectivity between the two conditions, showing that the differential
network follows a power law, with a few genes having many connections and many genes having a
few connections (Figure 4B). This network can be further dissected to gain module- and gene-level
information through gene clustering and node-level statistics obtained, for example, with the igraph
R package [104]. Modules can then be studied through functional enrichment with tools such as
clusterProfiler [105] (Figure 4C). In this case, four modules with at least 20 nodes are detected, and the
two largest modules show enrichment for immune-related and extracellular matrix/angiogenesis
Gene Ontology categories, respectively. Alternatively, modules can be found via methods explicitly
designed for differential modules’ detection, such as DiffCoex, which builds upon the widely used gene
co-expression reconstruction method WGCNA (Weighted Gene Co-expression Network Analysis) [106].
DiffCoex, also implemented in the dcanr package, takes as input two expression matrices (e.g., normal
and tumour) and identifies differentially co-expressed modules via the clustering of genes based on
correlation differences across conditions. Finally, differential edges displaying the strongest change
in correlation can be selected from the whole differential co-expression network in a “gene-specific”
perspective (Figure 4D). In this example, LZTS1, having 54 edges, is the top differentially connected
gene, followed by PODNL1 (Figure 4A), and it shows a strong change in relationship with its network
neighbor LAMA4, switching from negative to positive correlation in normal tissue and breast tumour,
respectively (Figure 4D).

The performance of different methods has been compared in a few studies. In particular, amongst
“global network” approaches, z-score and entropy-based methods have been shown to be the most
reliable in reconstructing differences between synthetic networks differing in a regulator’s expression
levels [103]. Local “gene-specific” approaches, taking into account only the first neighbours of genes
for scoring, have higher performance in detecting disease-related genes when compared with global
“gene-specific” approaches [107]. Moreover, preserving information about all edges without setting
hard thresholds proved to be an advantage [108]. However, the different evaluation methods used
cannot be directly compared, suggesting that further efforts would be needed to reach a consensus
about evaluation standards.

https://github.com/tshimam/GIMLET
https://sourceforge.net/projects/modulators
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4. Differential Co-Expression Networks in Cancer 

Figure 4. Example of differential co-expression analysis comparing TCGA normal tissue and breast
tumour transcriptional data. (A) In a “global network” approach, the whole differentially co-expressed
network is obtained. Here, only the top significantly differentially co-expressed genes are shown
for simplicity (adjusted p-value < 10−40). Each node is a gene, colour indicates the cluster and size
indicates the number of connections of that gene. The two nodes with the highest degree of differential
connections are indicated (LZTS1 and PODNL1); (B) The differentially co-expressed network can
be analysed as a whole, studying its topological properties, such as degree distribution; (C) In the
global network, clusters (modules) can be identified and studied through functional enrichment, in a
“module-based” approach. The top significantly enriched Gene Ontology (GO) categories for the two
largest modules are shown in the two boxes, with bars indicating the number of genes belonging to
each GO category and colour indicating the adjusted p-value; (D) Node and edge prioritisations allow
for selecting specific genes or gene pairs with a particularly strong change in connectivity between the
compared conditions: LZTS1 and LAMA4 are significantly negatively correlated in normal breast and
switch to a positive correlation in breast tumours.

4. Differential Co-Expression Networks in Cancer

The methods described above have been applied to cancer biology to: (i) compare global
topological features of cancer networks at different stages (“global network” approach), (ii) identify
groups of co-regulated genes or pathways that are dysregulated in cancer (“module-based” approach),
(iii) find specific genes changing their connectivity in cancer network (“gene-specific” approach).
Moreover, despite the most frequent comparisons being tumours at different stages, many kind of
conditions have been contrasted (e.g., ER+ vs. ER- breast tumours, p53 mutated vs. p53 wild type).
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4.1. Global Topological Features of Cancer Networks Show Increasingly High Entropy

From the analysis of topological differences between cancer and normal tissue co-expression
networks, some general principles have emerged. In particular, network entropy (disorder), measured
with different metrics, has been shown to increase in cancer [109–111], paralleling an overall decreased
connectivity [112]. Interestingly, entropy is even higher in tumours that metastasise, at least in the
breast [113]. This observation may help in explaining the underlying principles of cancer adaptability
and resistance to perturbations, such as treatments with drugs and hypoxia. In fact, the entropy
is correlated with the system’s robustness [114]. In line with this idea, cancer cell lines resistant to
three different tyrosine kinase inhibitors have been shown to display higher network entropy than
their sensitive counterparts [115]. This could be interpreted as cancer displaying a higher number of
interconnections and possible regulatory relationships for each gene, which makes the whole network
resistant to single nodes’ and edges’ disruptions. Moreover, the relationship between entropy and
robustness can inform about promising drug targets, represented by low-entropy genes [109,116];
interestingly, entropy usually decreases for up-regulated genes in a cancer’s networks [109]. A second
important concept arising from these studies is the differential usage of nodes and edges in cancer:
a cancer’s networks tend to be less hub dependent, displaying signalling shortcuts in comparison
with normal tissues [117,118]. These features, observed in 13 different cancer types, are suggestive of
facilitated crosstalk between biological processes that are usually not interconnected, again supporting
a higher robustness of cancer networks.

Although both higher entropy and connectivity between pathways can be interpreted as a
weakening of tight regulatory rules, improving tumour adaptability, they could also reflect higher
cellular heterogeneity. This idea has been confirmed by Park et al. [119], who assessed network entropy
related to cells’ heterogeneity and the number of subclones, making use of single-cell data, tumour
purity estimates and clonal evolution in xenograft models. Additionally, signalling entropy has been
shown to be an estimate for tumour stemness [120], and to be a prognostic measure across several
epithelial cancers.

Interpreting network entropy as linked with tumour heterogeneity would help in explaining
why it often decreases in cancer at advanced stages [115], confirmed by the observation that initial
tumour heterogeneity is subsequently reduced by clonal selection and expansion in the process of
metastasis [121].

4.2. Pathways Dysregulated in Cancer

The detection of co-expression modules has been widely applied to retrieve gene categories
relevant to cancer, identifying modules shared across cancer types [29]. Nevertheless, condition-specific
modules detected through differential co-expression allow the study of features characterising,
for example, a disease state or different stages of the same disease, and have been shown to
outperform single-condition co-expression modules in identifying characterising features of the
studied biological system [122]. The analysis of the differential co-regulation of groups of genes
(modules or pathways) has been carried out either exclusively using unbiased network properties or
feeding prior knowledge-related gene lists to the network structure. This latter approach, despite its
higher robustness and interpretability, has been employed only in a few studies [82,84,88,123,124] and
needs to be better explored, while the unbiased analysis has also been amply applied to cancer, as
described thoroughly below.

DC modules in cancer biology have been applied to the comparison of tumour and normal
tissue, identifying tumour-specific modules in hepatocellular carcinoma, uveal melanoma and ovarian
and prostate cancer [125–127]. In 12 cancer types, cancer-specific modules were shown to have
prognostic value [128], while three independent studies reported immune response-related modules
to be differentially co-regulated between ER+ and ER- breast cancer [42,103,129]. Immune-related
modules are also differentially connected in non-small cell lung cancer when compared to normal
tissue [70], possibly regulated through a miRNA-mediated mechanism. Interestingly, an independent
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report found an enrichment for targets of miRNAs related with cancer in two co-expression modules
more strongly connected in lung cancer than in normal tissue [63]. Methods to identify modules that
are differentially co-expressed across multiple networks find a particularly interesting application in
the study of cancer stage-specific regulatory relationships [65,130,131]. In breast cancer, dynamically
co-regulated modules improve the prediction of stage, and their hubs are enriched in signalling
protein domains [130]. This observation confirms the idea that context-specific hubs are signalling
or regulatory molecules that tune the activity of constitutive hubs, grouped in modules of genes
with similar functions [132]. Only in a few cases has validation of in silico predictions been provided.
Recently, however, the potential of differential co-expression in driving testable hypotheses has been
demonstrated in an inclusive analysis of astrocytoma progression that integrated mRNA expression,
ChIP-seq and copy number variation (CNV) data [133]. Indeed, the authors were able to identify
a cell cycle-enriched module predicted to be affected by resveratrol and to experimentally validate
their prediction.

Finally, specific comparisons allow for the investigation of regulatory differences between tumours
classified according to various parameters: survival time [134], angiogenic features [71], type of
treatment [135] and genomic stress [136]. A comprehensive study compared high and low genomic
stress tumours in 15 cancer types, identifying 101 modules activated by genomic stress based on
CNV, expression data, and PPI networks [136]. Within these, up-regulated hubs have been proposed
as non-oncogene addiction genes for further functional studies. In the same vein, the differential
co-expression module multivariate analysis method MultiDCox has been applied to breast cancer,
revealing gene sets associated with mutant p53, ER status and grade [95].

4.3. Differentially Co-Regulated Genes

In cancer biology, “single-gene” approaches have been applied to prostate [56,91], gastric [137],
liver [125,138], bladder [139,140], thyroid [141] and lung [142] tumours and glioblastoma [40], comparing
the connectivity of genes between normal and cancerous tissue. This led to the identification of several
gene lists not shared between different cancer types, as also confirmed by a systematic study performed
on 12 cancer types [128]. Despite the gene-centred approach, in all studies, the genes with the
strongest evidence for differential connectivity were analysed as a whole and often corresponded
to previously known and druggable targets [125,128,137]. Despite the lack of a systematic study to
compare the functional enrichment of DC genes across cancer types, recurrent Gene Ontology categories
comprise cell cycle, apoptosis, and immune system-related genes [56,125,138,141–143]. Depending
on the researcher’s interest, the search for DC genes can be restricted to selected gene lists [144,145].
For example, focussing on metabolic genes, a signature of genes suggestive of mitochondrial dysfunction
was found to be differentially connected in seven cancer types [145]. Again, this approach can inform
about differences in connectivity, allowing the grouping of samples based on any feature of interest.
The comparison of patients responsive and non-responsive to a specific treatment is particularly
promising to understand the rearrangement of gene networks leading to drug resistance. Through this
means, well-known genes have been confirmed to confer platinum resistance (e.g., CCNE2, AKT1 and
MYC), and the additional role of FGFR1 and TSC2 has been proposed [52].

The “gene-specific” approach finds a particularly interesting application in investigating the gene
network neighbourhood of a pre-specified gene of interest, such as the tumour suppressors p53 or
PTEN [42,91]. The opposing roles of the same gene in different cellular contexts, a widespread feature
of cancer genes (e.g., Wnt5a, TGFbeta or p63 context-specific oncogenic and tumour-suppressive
activity [146–148]) can be elucidated by this means. Surprisingly, only NOTCH1 has been investigated
by differential co-expression, in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC) [149], predicting and then validating it as a pro-proliferative factor in LUAD, while acting as a
tumour suppressor in LUSC.
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4.4. Regulatory Mechanisms

Differential co-expression indicates changes in regulatory relationships between genes. This change
can be mediated by a transcriptional regulatory mechanism that can be directly appreciated in
transcriptional data (e.g., expression levels of a transcription factor or cofactor), as assessed in a set of
works aiming at reconstructing GRNs [62,98–100]. Alternatively, changes can pertain to a different
layer of molecular regulation (e.g., microRNA, DNA methylation, genomic mutations) and are hence
not directly derived from transcriptional data. In any case, the integration of diverse data types
regarding different regulatory layers can greatly improve the discovery and interpretation of altered
gene regulatory networks, as reported in a comparative study showing an improved performance of
almost all tested methods when integrating mRNA and miRNA data [107].

Indeed, the most explored of these layers is the regulatory activity of miRNAs on mRNAs,
lncRNAs and mRNA–lncRNA crosstalk. In fact, it has been shown that RNA molecules sharing miRNA
response elements (MREs) can communicate with each other by competing for common miRNAs
(competing endogenous RNAs–ceRNAs-) [150]. The mRNA–miRNA–lncRNA connection implies a
correlation of mRNA–lncRNA in the presence of a common regulatory miRNA, and no correlation in
its absence.

The influence of miRNA expression on mRNA–lncRNA crosstalk has been studied in esophageal
squamous cell carcinoma (ESCC), comparing two intrinsic subtypes and identifying the “loss” of
miR-186-mediated PVT1–mRNA and miR-26b-mediated LINC00240–mRNA crosstalk [151] as driver
events of ESCC development. The loss of connectivity in ESCC with respect to normal tissue led to
the identification of two lncRNAs whose functional relevance has been experimentally validated [57].
The ceRNA concept has also been central in the analysis of tumour vs. normal co-expression networks
in breast cancer, leading to the identification of the lncRNA AC145110.1 that significantly changes its
interactions with 127 mRNAs involved in cell growth [152]. Importantly, merging mRNA and miRNA
high-throughput data, two independent studies showed that known cancer miRNAs tend to dysregulate
their connections with targets in the tumour network [153,154], regulating proliferative functions.

To facilitate these investigations, the method LncSubpathway has been specifically designed to
address the change in crosstalk between mRNAs and lncRNAs across conditions [155], identifying
lncRNA-regulated modules, while MACPath [97] searches for pairs of pathways regulated by a ceRNA
mechanism, integrating the additional knowledge of transcripts’ miRNA responsive elements.

Other regulatory layers have been less explored: only a few studies integrated epigenetic changes
with biological networks (e.g., [156], combining differential methylation and PPIs), but no direct
inference of epigenetically regulated co-expression modules has been proposed. Of note, specific
methods have been generated to assess co-expression dependence on sequence variants [92–94,157,158],
and applied to identify genetic variations potentially responsible for gene network rewiring in
disease [158]. In cancer, this led to imply the TF Myc-associated factor X (MAX) in modulating ATF4
and CLOCK interaction [93]. Interestingly, this result was supported by MAX binding to ATF4 and
CLOCK promoters.

Nevertheless, the integration of multiple data types is intriguing, especially since it allows for
moving from the retrieval of a differential co-expression to the identification of a modulator of gene
interactions. The initial results are promising, and further work in this direction, especially taking into
account epigenetic and post-translational modifications, would be profitable.

5. Conclusions and Perspectives

Disentangling molecular interactions underlying cancer properties may help in understanding
and predicting cancer behaviour, selecting therapeutic targets and efficacious drugs to be employed for
treatments. In this, gene co-expression networks and, even more, differential co-expression networks
have shown a strong potential. A wealth of different methods has been developed (Tables 2–5),
allowing for pinpointing gene relationships specific to cancer or to precise cancer types/stages.
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The investigation of changes in overall network structure revealed some of the principles explaining
cancer robustness to escape otherwise deadly treatments, linked to a higher network entropy that can
be explained by the concomitant usage of more biological pathways compared with normal tissue,
together with intra-tumour heterogeneity. This kind of data can inform about which tumours are more
likely to respond to treatments, but also about which nodes (low-entropy genes) are more likely to be
susceptible within the network.

The alterations identified in the modular structure and compactness of cancer networks can
pinpoint the biological functions or molecular pathways more strongly affected by cancer transformation.
Gene co-expression networks, in fact, have a modular structure where genes belonging to the same
module often share functions. This approach can rely on previous knowledge of pathways’ components
and structure, as defined, for example, in KEGG pathways and through PPI networks, but also
unbiasedly define modules based on expression levels only.

Through these means, groups of genes changing their association across cancer stages have been
identified, and, despite a lack of a consensus on the most altered pathways due to differences in methods
and specific comparisons, immune-related modules seem to be recurrent across studies. This implies
that the composition and function of the tumour microenvironment is a crucial feature of cancers,
often showing stronger remodelling than the tumour cells’ gene networks. Thus, employing gene
co-expression networks in cancer cell- or stroma-specific datasets could be a more sensitive alternative
to the use of bulk tumour gene expression. In the absence of wide enough datasets for network
construction, deconvolution methods [159] represent a useful means to reconstruct cell type-specific
gene expression from whole tumours, which can then be fed into differential gene co-expression tools.

Many efforts have been devoted to the identification of pairs of genes changing their relationships
in cancer, in a “gene-specific” approach. This approach is particularly suited for the prioritisation of
therapeutic targets, often defined as the genes that most strongly change their interaction pattern in
cancer. Nevertheless, for ease of interpretation, often top-ranking genes are studied as an ensemble
to run functional enrichment analysis, confirming the recurrence of immune-related categories for
DC genes.

Many gene lists have been proposed in different studies, but drawing a general conclusion from
such scattered studies is, at the moment, impossible. Therefore, to make the most of these methods,
meta-analyses comparing results from published research or systematic analyses on independent
datasets and with different methods should be performed. In particular, very little research has
been devoted to the comparison of the methods’ performance, with a few exceptions. The most
comprehensive comparison of network-based approaches showed the highest performance of z-score
and entropy-based methods, while local and hybrid single-gene methods proved superior to global
single-gene methods in identifying disease-related genes [107].

Beyond simple differential co-expression, some data integration methods have been proposed
to determine altered regulatory mechanisms explaining the differential interactions. Among these,
miRNA-based modulation of co-expression has been the most extensively studied, with very little effort
devoted to DNA sequence variations, methylome or phosphoproteome. Given the strong impact on
molecular mechanisms’ identification and interpretation that transcriptome-based modulator inference
has allowed, efforts in this direction would be beneficial.

A serious concern arising from this literature review is the almost complete lack of experimental
validations or biological studies following the in silico prediction of therapeutic targets and fundamental
pathways involved in cancer. Proofs of the biological validity of differential co-expression methods are
compelling, and multidisciplinary works employing such approaches integrated with experimental
molecular studies would be a valuable combination to discover cancer molecular mechanisms.

A proxy for direct experimental validation may be represented by genome-wide interference
experiments, followed by transcriptomics or functional assays. At least three screenings (the DepMap,
Score and DRIVE projects) have profiled the relevance of each gene for the survival of hundreds of
cancer cell lines [160–162], while the impact on the transcriptome is provided by the Connectivity Map,
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even if on a restricted panel of cell lines [163]. These results can be compared with those obtained
through drug screenings [163–165] combined with the knowledge of drugs’ targets, as annotated in
drug target databases such as DrugBank and ChEMBL [166,167]. Moreover, high-content screenings
with PhagoKinetic Tracks Assays provide additional information on genes’ importance for cancer cells’
migration [168–170].

Despite these resources not allowing a direct validation of gene networks’ rewiring, they can be
profitably used to assess the functional relevance of a differential hub or to show a causal link between
the expression of connected genes in the network.

In conclusion, as the availability of genome-wide data on gene and protein expression,
protein–protein interactions, transcription factors binding, non-coding RNAs, SNPs, mutational
analysis and epigenetic modifications is rapidly growing, it is becoming increasingly essential to
enhance the power and reliability of computing methods aimed at faithfully reconstructing the
cell environment in silico. Compared to the widely employed co-expression networks, differential
co-expression networks confer the key advantage of allowing a more precise reconstruction of
disease-specific gene interactions, depleted of aspecific basic cell functions. Improving the precision
of these reconstructions also via experimental or clinical validation will lead to predictive models
of increasing precision, allowing for the formulation of stringent unbiased hypotheses related to the
molecular causes of cancers, their resistance to drugs and the identification of the best alternative
therapeutic targets.
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CNV Copy Number Variation
DC Differentially Co-expressed
GRN Gene Regulatory Network
KD Knock-Down
PPI Protein–Protein Interaction
SNP Single Nucleotide Polymorphism
TF Transcription Factor

References

1. Barabási, A.-L.; Oltvai, Z.N. Network Biology: Understanding the Cell’s Functional Organization.
Nat. Rev. Genet. 2004, 5, 101–113. [CrossRef] [PubMed]

2. Huang, S.; Ingber, D.E. A Non-Genetic Basis for Cancer Progression and Metastasis: Self-Organizing
Attractors in Cell Regulatory Networks. Breast Dis. 2006, 26, 27–54. [CrossRef] [PubMed]

3. Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30.
[CrossRef] [PubMed]

4. Srivas, R.; Shen, J.P.; Yang, C.C.; Sun, S.M.; Li, J.; Gross, A.M.; Jensen, J.; Licon, K.; Bojorquez-Gomez, A.;
Klepper, K.; et al. A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer
Therapy. Mol. Cell 2016, 63, 514–525. [CrossRef] [PubMed]

5. Conte, F.; Fiscon, G.; Licursi, V.; Bizzarri, D.; D’Antò, T.; Farina, L.; Paci, P. A Paradigm Shift in Medicine:
A Comprehensive Review of Network-Based Approaches. Biochim. Biophys. Acta Gene Regul. Mech. 2020,
1863, 194416. [CrossRef] [PubMed]

6. Derisi, J.L.; Iyer, V.R.; Brown, P. Exploring the Metabolic and Genetic Control of Gene Expression on a
Genomic Scale. Science 1997, 278, 680–686. [CrossRef]

7. Jansen, R.; Greenbaum, D.; Gerstein, M. Relating Whole-Genome Expression Data with Protein-Protein
Interactions. Genome Res. 2002, 12, 37–46. [CrossRef]

http://dx.doi.org/10.1038/nrg1272
http://www.ncbi.nlm.nih.gov/pubmed/14735121
http://dx.doi.org/10.3233/BD-2007-26104
http://www.ncbi.nlm.nih.gov/pubmed/17473364
http://dx.doi.org/10.1093/nar/28.1.27
http://www.ncbi.nlm.nih.gov/pubmed/10592173
http://dx.doi.org/10.1016/j.molcel.2016.06.022
http://www.ncbi.nlm.nih.gov/pubmed/27453043
http://dx.doi.org/10.1016/j.bbagrm.2019.194416
http://www.ncbi.nlm.nih.gov/pubmed/31382052
http://dx.doi.org/10.1126/science.278.5338.680
http://dx.doi.org/10.1101/gr.205602


Int. J. Mol. Sci. 2020, 21, 9461 16 of 23

8. Ge, H.; Liu, Z.; Church, G.M.; Vidal, M. Correlation between Transcriptome and Interactome Mapping Data
from Saccharomyces Cerevisiae. Nat. Genet. 2001, 29, 482–486. [CrossRef]

9. Kemmeren, P.; Van Berkum, N.L.; Vilo, J.; Bijma, T.; Donders, R.; Brazma, A.; Holstege, F.C.P. Protein
Interaction Verification and Functional Annotation by Integrated Analysis of Genome-Scale Data. Mol. Cell
2002, 9, 1133–1143. [CrossRef]

10. Holding, A.N.; Giorgi, F.M.; Donnelly, A.; Cullen, A.E.; Nagarajan, S.; Selth, L.A.; Markowetz, F. VULCAN
Integrates ChIP-Seq with Patient-Derived Co-Expression Networks to Identify GRHL2 as a Key Co-Regulator
of ERa at Enhancers in Breast Cancer. Genome Biol. 2019, 20, 1–16. [CrossRef]

11. Salwinski, L.; Miller, C.S.; Smith, A.J.; Pettit, F.K.; Bowie, J.U.; Eisenberg, D. The Database of Interacting
Proteins: 2004 Update. Nucleic Acids Res. 2004, 32, D449–D451. [CrossRef] [PubMed]

12. Licata, L.; Briganti, L.; Peluso, D.; Perfetto, L.; Iannuccelli, M.; Galeota, E.; Sacco, F.; Palma, A.; Nardozza, A.P.;
Santonico, E.; et al. MINT, the Molecular Interaction Database: 2012 Update. Nucleic Acids Res. 2012, 40,
D857–D861. [CrossRef] [PubMed]

13. Orchard, S.; Ammari, M.; Aranda, B.; Breuza, L.; Briganti, L.; Broackes-Carter, F.; Campbell, N.H.; Chavali, G.;
Chen, C.; del-Toro, N.; et al. The MIntAct Project—IntAct as a Common Curation Platform for 11 Molecular
Interaction Databases. Nucleic Acids Res. 2014, 42, D358–D363. [CrossRef] [PubMed]

14. Oughtred, R.; Stark, C.; Breitkreutz, B.-J.; Rust, J.; Boucher, L.; Chang, C.; Kolas, N.; O’Donnell, L.; Leung, G.;
McAdam, R.; et al. The BioGRID Interaction Database: 2019 Update. Nucleic Acids Res. 2019, 47, D529–D541.
[CrossRef]

15. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.;
Morris, J.H.; Bork, P.; et al. STRING V11: Protein–Protein Association Networks with Increased Coverage,
Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47,
D607–D613. [CrossRef]

16. Obayashi, T.; Kagaya, Y.; Aoki, Y.; Tadaka, S.; Kinoshita, K. COXPRESdb v7: A Gene Coexpression Database
for 11 Animal Species Supported by 23 Coexpression Platforms for Technical Evaluation and Evolutionary
Inference. Nucleic Acids Res. 2019, 47, D55–D62. [CrossRef]

17. Zhu, Q.; Wong, A.K.; Krishnan, A.; Aure, M.R.; Tadych, A.; Zhang, R.; Corney, D.C.; Greene, C.S.; Bongo, L.A.;
Kristensen, V.N.; et al. Targeted Exploration and Analysis of Large Cross-Platform Human Transcriptomic
Compendia. Nat. Methods 2015, 12, 211–214. [CrossRef]

18. Jeong, H.; Mason, S.P.; Barabási, A.-L.; Oltvai, Z.N. Lethality and Centrality in Protein Networks. Nature
2001, 411, 41. [CrossRef]

19. Pržulj, N.; Wigle, D.A.; Jurisica, I. Functional Topology in a Network of Protein Interactions. Bioinformatics
2004, 20, 340–348. [CrossRef]

20. Furlong, L.I. Human Diseases through the Lens of Network Biology. Trends Genet. 2013, 29, 150–159.
[CrossRef]

21. Malod-dognin, N.; Petschnigg, J.; Windels, S.F.L.; Povh, J.; Hemmingway, H.; Ketteler, R. Towards a
Data-Integrated Cell. Nat. Commun. 2019, 10, 1–13. [CrossRef] [PubMed]

22. Jonsson, P.F.; Bates, P.A. Global Topological Features of Cancer Proteins in the Human Interactome.
Bioinformatics 2006, 22, 2291–2297. [CrossRef] [PubMed]

23. Feldman, I.; Rzhetsky, A.; Vitkup, D. Network Properties of Genes Harboring Inherited Disease Mutations.
Proc. Natl. Acad. Sci. USA 2008, 105. [CrossRef] [PubMed]

24. Ala, U.; Piro, R.M.; Grassi, E.; Damasco, C.; Silengo, L.; Oti, M.; Provero, P.; Di Cunto, F. Prediction of Human
Disease Genes by Human-Mouse Conserved Coexpression Analysis. PLoS Comput. Biol. 2008, 4, e1000043.
[CrossRef]

25. Magger, O.; Waldman, Y.Y.; Ruppin, E.; Sharan, R. Enhancing the Prioritization of Disease-Causing Genes
through Tissue Specific Protein Interaction Networks. PLoS Comput. Biol. 2012, 8, e1002690. [CrossRef]

26. Li, M.; Zhang, J.; Liu, Q.; Wang, J.; Wu, F.X. Prediction of Disease-Related Genes Based on Weighted
Tissue-Specific Networks by Using DNA Methylation. BMC Med. Genom. 2014, 7, S4. [CrossRef]

27. Rives, A.W.; Galitski, T. Modular Organization of Cellular Networks. Proc. Natl. Acad. Sci. USA 2003, 100,
1128–1133. [CrossRef]

28. Eisen, M.B.; Spellman, P.T.; Brown, P.O.; Botstein, D. Cluster Analysis and Display of Genome-Wide
Expression Patterns. Proc. Natl. Acad. Sci. USA 1998, 95, 14863–14868. [CrossRef]

http://dx.doi.org/10.1038/ng776
http://dx.doi.org/10.1016/S1097-2765(02)00531-2
http://dx.doi.org/10.1186/s13059-019-1733-0
http://dx.doi.org/10.1093/nar/gkh086
http://www.ncbi.nlm.nih.gov/pubmed/14681454
http://dx.doi.org/10.1093/nar/gkr930
http://www.ncbi.nlm.nih.gov/pubmed/22096227
http://dx.doi.org/10.1093/nar/gkt1115
http://www.ncbi.nlm.nih.gov/pubmed/24234451
http://dx.doi.org/10.1093/nar/gky1079
http://dx.doi.org/10.1093/nar/gky1131
http://dx.doi.org/10.1093/nar/gky1155
http://dx.doi.org/10.1038/nmeth.3249
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1093/bioinformatics/btg415
http://dx.doi.org/10.1016/j.tig.2012.11.004
http://dx.doi.org/10.1038/s41467-019-08797-8
http://www.ncbi.nlm.nih.gov/pubmed/30778056
http://dx.doi.org/10.1093/bioinformatics/btl390
http://www.ncbi.nlm.nih.gov/pubmed/16844706
http://dx.doi.org/10.1073/pnas.0701722105
http://www.ncbi.nlm.nih.gov/pubmed/18326631
http://dx.doi.org/10.1371/journal.pcbi.1000043
http://dx.doi.org/10.1371/journal.pcbi.1002690
http://dx.doi.org/10.1186/1755-8794-7-S2-S4
http://dx.doi.org/10.1073/pnas.0237338100
http://dx.doi.org/10.1073/pnas.95.25.14863


Int. J. Mol. Sci. 2020, 21, 9461 17 of 23

29. Yang, Y.; Han, L.; Yuan, Y.; Li, J.; Hei, N.; Liang, H. Gene Co-Expression Network Analysis Reveals Common
System-Level Properties of Prognostic Genes across Cancer Types. Nat. Commun. 2014, 5, 3231. [CrossRef]

30. Luscombe, N.M.; Babu, M.M.; Yu, H. Genomic Analysis of Regulatory Network Dynamics Reveals Large
Topological Changes. Lett. Nat. 2004, 431, 714–717. [CrossRef]

31. Neph, S.; Stergachis, A.B.; Reynolds, A.; Sandstrom, R.; Borenstein, E.; Stamatoyannopoulos, J.A. Circuitry
and Dynamics of Human Transcription Factor Regulatory Networks. Cell 2012, 150, 1274–1286. [CrossRef]
[PubMed]

32. Ayer, D.E.; Eisenman, R.N. A Switch from Myc:Max to Mad:Max Heterocomplexes Accompanies
Monocyte/Macrophage Differentiation. Genes Dev. 1993, 7, 2110–2119. [CrossRef] [PubMed]

33. de la Fuente, A. From “differential Expression” to “Differential Networking”—Identification of Dysfunctional
Regulatory Networks in Diseases. Trends Genet. 2010, 26, 326–333. [CrossRef] [PubMed]

34. Lai, Y. Genome-Wide Co-Expression Based Prediction of Differential Expressions. Bioinformatics 2008, 24,
666–673. [CrossRef] [PubMed]

35. Hudson, N.J.; Reverter, A.; Dalrymple, B.P. A Differential Wiring Analysis of Expression Data Correctly
Identifies the Gene Containing the Causal Mutation. PLoS Comput. Biol. 2009, 5. [CrossRef] [PubMed]

36. Chowdhury, H.A.; Bhattacharyya, D.K.; Kalita, J.K. (Differential) Co-Expression Analysis of Gene Expression:
A Survey of Best Practices. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 1154–1173. [CrossRef]
[PubMed]

37. Bandyopadhyay, S.; Mehta, M.; Kuo, D.; Sung, M.K.; Chuang, R.; Jaehnig, E.J.; Bodenmiller, B.; Licon, K.;
Copeland, W.; Shales, M.; et al. Rewiring of Genetic Networks in Response to DNA Damage. Science 2010,
330, 1385–1389. [CrossRef]

38. Basha, O.; Shpringer, R.; Argov, C.M.; Yeger-Lotem, E. The DifferentialNet Database of Differential
Protein-Protein Interactions in Human Tissues. Nucleic Acids Res. 2018, 46, D522–D526. [CrossRef]

39. van Dam, S.; Võsa, U.; van der Graaf, A.; Franke, L.; de Magalhães, J.P. Gene Co-Expression Analysis for
Functional Classification and Gene-Disease Predictions. Brief. Bioinform. 2018, 19, 575–592. [CrossRef]

40. Ha, M.J.; Baladandayuthapani, V.; Do, K.A. DINGO: Differential Network Analysis in Genomics. Bioinformatics
2015, 31, 3413–3420. [CrossRef]

41. Ho, Y.-Y.; Cope, L.; Dettling, M.; Parmigiani, G. Statistical Methods for Identifying Differentially Expressed Gene
Combinations; Ochs, M.F., Ed.; Humana Press: Totowa, NJ, USA, 2007; pp. 171–191. [CrossRef]

42. McKenzie, A.T.; Katsyv, I.; Song, W.M.; Wang, M.; Zhang, B. DGCA: A Comprehensive R Package for
Differential Gene Correlation Analysis. BMC Syst. Biol. 2016, 10, 1–25. [CrossRef] [PubMed]

43. Siska, C.; Bowler, R.; Kechris, K. The Discordant Method: A Novel Approach for Differential Correlation.
Bioinformatics 2016, 32, 690–696. [CrossRef] [PubMed]

44. Hsiao, T.H.; Chiu, Y.C.; Hsu, P.Y.; Lu, T.P.; Lai, L.C.; Tsai, M.H.; Huang, T.H.M.; Chuang, E.Y.; Chen, Y.
Differential Network Analysis Reveals the Genome-Wide Landscape of Estrogen Receptor Modulation in
Hormonal Cancers. Sci. Rep. 2016, 6, 1–16. [CrossRef] [PubMed]

45. Dawson, J.A.; Ye, S.; Kendziorski, C. R/Ebcoexpress: An Empirical Bayesian Framework for Discovering
Differential Co-Expression. Bioinformatics 2012, 28, 1939–1940. [CrossRef] [PubMed]

46. Chu, J.H.; Lazarus, R.; Carey, V.J.; Raby, B.A. Quantifying Differential Gene Connectivity between Disease
States for Objective Identification of Disease-Relevant Genes. BMC Syst. Biol. 2011, 5. [CrossRef] [PubMed]

47. Tian, D.; Gu, Q.; Ma, J. Identifying Gene Regulatory Network Rewiring Using Latent Differential Graphical
Models. Nucleic Acids Res. 2016, 44, 1–11. [CrossRef]

48. Gill, R.; Datta, S.; Datta, S. A Statistical Framework for Differential Network Analysis from Microarray Data.
BMC Bioinform. 2010, 11, 95. [CrossRef]

49. Zhang, B.; Li, H.; Riggins, R.B.; Zhan, M.; Xuan, J.; Zhang, Z.; Hoffman, E.P.; Clarke, R.; Wang, Y. Differential
Dependency Network Analysis to Identify Condition-Specific Topological Changes in Biological Networks.
Bioinformatics 2009, 25, 526–532. [CrossRef]

50. Zhao, S.D.; Cai, T.T.; Li, H. Direct Estimation of Differential Networks. Biometrika 2014, 101, 253–268.
[CrossRef]

51. Ji, J.; He, D.; Feng, Y.; He, Y.; Xue, F.; Xie, L. JDINAC: Joint Density-Based Non-Parametric Differential
Interaction Network Analysis and Classification Using High-Dimensional Sparse Omics Data. Bioinformatics
2017, 33, 3080–3087. [CrossRef]

http://dx.doi.org/10.1038/ncomms4231
http://dx.doi.org/10.1038/nature02782
http://dx.doi.org/10.1016/j.cell.2012.04.040
http://www.ncbi.nlm.nih.gov/pubmed/22959076
http://dx.doi.org/10.1101/gad.7.11.2110
http://www.ncbi.nlm.nih.gov/pubmed/8224841
http://dx.doi.org/10.1016/j.tig.2010.05.001
http://www.ncbi.nlm.nih.gov/pubmed/20570387
http://dx.doi.org/10.1093/bioinformatics/btm507
http://www.ncbi.nlm.nih.gov/pubmed/18006554
http://dx.doi.org/10.1371/journal.pcbi.1000382
http://www.ncbi.nlm.nih.gov/pubmed/19412532
http://dx.doi.org/10.1109/TCBB.2019.2893170
http://www.ncbi.nlm.nih.gov/pubmed/30668502
http://dx.doi.org/10.1126/science.1195618
http://dx.doi.org/10.1093/nar/gkx981
http://dx.doi.org/10.1093/bib/bbw139
http://dx.doi.org/10.1093/bioinformatics/btv406
http://dx.doi.org/10.1007/978-1-59745-547-3_10
http://dx.doi.org/10.1186/s12918-016-0349-1
http://www.ncbi.nlm.nih.gov/pubmed/27846853
http://dx.doi.org/10.1093/bioinformatics/btv633
http://www.ncbi.nlm.nih.gov/pubmed/26520855
http://dx.doi.org/10.1038/srep23035
http://www.ncbi.nlm.nih.gov/pubmed/26972162
http://dx.doi.org/10.1093/bioinformatics/bts268
http://www.ncbi.nlm.nih.gov/pubmed/22595207
http://dx.doi.org/10.1186/1752-0509-5-89
http://www.ncbi.nlm.nih.gov/pubmed/21627793
http://dx.doi.org/10.1093/nar/gkw581
http://dx.doi.org/10.1186/1471-2105-11-95
http://dx.doi.org/10.1093/bioinformatics/btn660
http://dx.doi.org/10.1093/biomet/asu009
http://dx.doi.org/10.1093/bioinformatics/btx360


Int. J. Mol. Sci. 2020, 21, 9461 18 of 23

52. Zhang, X.F.; Ou-Yang, L.; Zhao, X.M.; Yan, H. Differential Network Analysis from Cross-Platform Gene
Expression Data. Sci. Rep. 2016, 6, 1–12. [CrossRef] [PubMed]

53. Ma, C.; Xin, M.; Feldmann, K.A.; Wang, X. Machine Learning-Based Differential Network Analysis: A Study
of Stress-Responsive Transcriptomes in Arabidopsis. Plant Cell 2014, 26, 520–537. [CrossRef] [PubMed]

54. Yang, J.; Yu, H.; Liu, B.H.; Zhao, Z.; Liu, L.; Ma, L.X.; Li, Y.X.; Li, Y.Y. DCGL v2.0: An R Package for Unveiling
Differential Regulation from Differential Co-Expression. PLoS ONE 2013, 8, e79729. [CrossRef] [PubMed]

55. Lui, T.W.H.; Tsui, N.B.Y.; Chan, L.W.C.; Wong, C.S.C.; Siu, P.M.F.; Yung, B.Y.M. DECODE: An Integrated
Differential Co-Expression and Differential Expression Analysis of Gene Expression Data. BMC Bioinform.
2015, 16, 1–15. [CrossRef]

56. Mo, W.; Fu, X.; Han, X.T.; Yang, G.Y.; Zhang, J.G.; Guo, F.H.; Huang, Y.; Mao, Y.M.; Li, Y.; Xie, Y. A
Stochastic Model for Identifying Differential Gene Pair Co-Expression Patterns in Prostate Cancer Progression.
BMC Genom. 2009, 10, 1–16. [CrossRef]

57. Liu, W.; Gan, C.Y.; Wang, W.; Liao, L.D.; Li, C.Q.; Xu, L.Y.; Li, E.M. Identification of LncRNA-Associated
Differential Subnetworks in Oesophageal Squamous Cell Carcinoma by Differential Co-Expression Analysis.
J. Cell. Mol. Med. 2020, 24, 4804–4818. [CrossRef]

58. Hu, R.; Qiu, X.; Glazko, G. A New Gene Selection Procedure Based on the Covariance Distance. Bioinformatics
2009, 26, 348–354. [CrossRef]

59. Wang, D.; Wang, J.; Jiang, Y.; Liang, Y.; Xu, D. BFDCA: A Comprehensive Tool of Using Bayes Factor for
Differential Co-Expression Analysis. J. Mol. Biol. 2017, 429, 446–453. [CrossRef]

60. Ray, S.; Lall, S.; Bandyopadhyay, S. OPEN CODC: A Copula-Based Model to Identify Differential Coexpression.
NPJ Syst. Biol. Appl. 2020, 1–13. [CrossRef]

61. Zhang, J.; Ji, Y.; Zhang, L. Extracting Three-Way Gene Interactions from Microarray Data. Bioinformatics 2007,
23, 2903–2909. [CrossRef]

62. Wang, K.; Saito, M.; Bisikirska, B.C.; Alvarez, M.J.; Lim, W.K.; Rajbhandari, P.; Shen, Q.; Nemenman, I.;
Basso, K.; Margolin, A.A.; et al. Genome-Wide Identification of Post-Translational Modulators of Transcription
Factor Activity in Human B Cells. Nat. Biotechnol. 2009, 27, 829–837. [CrossRef] [PubMed]

63. Amar, D.; Safer, H.; Shamir, R. Dissection of Regulatory Networks That Are Altered in Disease via Differential
Co-Expression. PLoS Comput. Biol. 2013, 9, e1002955. [CrossRef] [PubMed]

64. Tesson, B.M.; Breitling, R.; Jansen, R.C. DiffCoEx: A Simple and Sensitive Method to Find Differentially
Coexpressed Gene Modules. BMC Bioinform. 2010, 11. [CrossRef] [PubMed]

65. Liu, B.; Zhang, Z.; Dai, E.N.; Tian, J.X.; Xin, J.Z.; Xu, L. Modeling Osteosarcoma Progression by Measuring
the Connectivity Dynamics Using an Inference of Multiple Differential Modules Algorithm. Mol. Med. Rep.
2017, 16, 1047–1054. [CrossRef] [PubMed]

66. Roy, S.; Werner-Washburne, M.; Lane, T. A Multiple Network Learning Approach to Capture System-Wide
Condition-Specific Responses. Bioinformatics 2011, 27, 1832–1838. [CrossRef] [PubMed]

67. Xiao, X.; Moreno-Moral, A.; Rotival, M.; Bottolo, L.; Petretto, E. Multi-Tissue Analysis of Co-Expression
Networks by Higher-Order Generalized Singular Value Decomposition Identifies Functionally Coherent
Transcriptional Modules. PLoS Genet. 2014, 10. [CrossRef]

68. Watson, M. CoXpress: Differential Co-Expression in Gene Expression Data. BMC Bioinform. 2006, 7, 1–12.
[CrossRef]

69. Fukushima, A. DiffCorr: An R Package to Analyze and Visualize Differential Correlations in Biological
Networks. Gene 2013, 518, 209–214. [CrossRef]

70. Amar, D.; Shamir, R. Constructing Module Maps for Integrated Analysis of Heterogeneous Biological
Networks. Nucleic Acids Res. 2014, 42, 4208–4219. [CrossRef]

71. Padi, M.; Quackenbush, J. Detecting Phenotype-Driven Transitions in Regulatory Network Structure.
NPJ Syst. Biol. Appl. 2018, 4. [CrossRef]

72. Ray, S.; Maulik, U. Identifying Differentially Coexpressed Module during HIV Disease Progression:
A Multiobjective Approach. Sci. Rep. 2017, 7, 1–13. [CrossRef] [PubMed]

73. Fang, G.; Kuang, R.; Pandey, G.; Steinbach, M.; Myers, C.L.; Kumar, V. Subspace Differential Coexpression
Analysis: Problem Definition and a General Approach. Pac. Symp. Biocomput. 2010, 1, 145–156.

74. Jiang, J.; Yin, X.Y.; Song, X.W.; Xie, D.; Xu, H.J.; Yang, J.; Sun, L.R. EgoNet Identifies Differential Ego-Modules
and Pathways Related to Prednisolone Resistance in Childhood Acute Lymphoblastic Leukemia. Hematology
2018, 23, 221–227. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/srep34112
http://www.ncbi.nlm.nih.gov/pubmed/27677586
http://dx.doi.org/10.1105/tpc.113.121913
http://www.ncbi.nlm.nih.gov/pubmed/24520154
http://dx.doi.org/10.1371/journal.pone.0079729
http://www.ncbi.nlm.nih.gov/pubmed/24278165
http://dx.doi.org/10.1186/s12859-015-0582-4
http://dx.doi.org/10.1186/1471-2164-10-340
http://dx.doi.org/10.1111/jcmm.15159
http://dx.doi.org/10.1093/bioinformatics/btp672
http://dx.doi.org/10.1016/j.jmb.2016.10.030
http://dx.doi.org/10.1038/s41540-020-0137-9
http://dx.doi.org/10.1093/bioinformatics/btm482
http://dx.doi.org/10.1038/nbt.1563
http://www.ncbi.nlm.nih.gov/pubmed/19741643
http://dx.doi.org/10.1371/journal.pcbi.1002955
http://www.ncbi.nlm.nih.gov/pubmed/23505361
http://dx.doi.org/10.1186/1471-2105-11-497
http://www.ncbi.nlm.nih.gov/pubmed/20925918
http://dx.doi.org/10.3892/mmr.2017.6703
http://www.ncbi.nlm.nih.gov/pubmed/28586048
http://dx.doi.org/10.1093/bioinformatics/btr270
http://www.ncbi.nlm.nih.gov/pubmed/21551143
http://dx.doi.org/10.1371/journal.pgen.1004006
http://dx.doi.org/10.1186/1471-2105-7-509
http://dx.doi.org/10.1016/j.gene.2012.11.028
http://dx.doi.org/10.1093/nar/gku102
http://dx.doi.org/10.1038/s41540-018-0052-5
http://dx.doi.org/10.1038/s41598-017-00090-2
http://www.ncbi.nlm.nih.gov/pubmed/28273892
http://dx.doi.org/10.1080/10245332.2017.1385211
http://www.ncbi.nlm.nih.gov/pubmed/29019453


Int. J. Mol. Sci. 2020, 21, 9461 19 of 23

75. Gao, C.; McDowell, I.C.; Zhao, S.; Brown, C.D.; Engelhardt, B.E. Context Specific and Differential Gene
Co-Expression Networks via Bayesian Biclustering. PLoS Comput. Biol. 2016, 12, e1004791. [CrossRef]

76. Li, D.; Brown, J.B.; Orsini, L.; Pan, Z.; Hu, G.; He, S. MODA: MOdule Differential Analysis for Weighted
Gene Co-Expression Network. bixRiv 2016, 1–11. [CrossRef]

77. Ma, H.; Schadt, E.E.; Kaplan, L.M.; Zhao, H. COSINE: COndition-SpecIfic Sub-NEtwork Identification Using
a Global Optimization Method. Bioinformatics 2011, 27, 1290–1298. [CrossRef]

78. Wang, M.; Shang, X.; Li, X.; Liu, W.; Li, Z. Efficient Mining Differential Co-Expression Biclusters in Microarray
Datasets. Gene 2013, 518, 59–69. [CrossRef]

79. Dong, L.Y.; Zhou, W.Z.; Ni, J.W.; Wei, X.; Hu, W.H.; Yu, C.; Li, H.Y. Identifying the Optimal Gene and Gene
Set in Hepatocellular Carcinoma Based on Differential Expression and Differential Co-Expression Algorithm.
Oncol. Rep. 2017, 37, 1066–1074. [CrossRef]

80. Lanciano, T.; Bonchi, F.; Gionis, A. Explainable Classification of Brain Networks via Contrast Subgraphs.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
San Diego, CA, USA, 23–27 August 2020; KDD ’20; Association for Computing Machinery: New York, NY,
USA, 2020; pp. 3308–3318. [CrossRef]

81. Freudenberg, J.M.; Sivaganesan, S.; Wagner, M.; Medvedovic, M. A Semi-Parametric Bayesian Model for
Unsupervised Differential Co-Expression Analysis. BMC Bioinform. 2010, 11. [CrossRef]

82. Choi, Y.; Kendziorski, C. Statistical Methods for Gene Set Co-Expression Analysis. Bioinformatics 2009, 25,
2780–2786. [CrossRef]

83. Rahnenführer, J.; Domingues, F.S.; Maydt, J.; Lengauer, T. Calculating the Statistical Significance of Changes
in Pathway Activity from Gene Expression Data. Stat. Appl. Genet. Mol. Biol. 2004, 3. [CrossRef] [PubMed]

84. Zhang, J.; Li, J.; Deng, H.W. Identifying Gene Interaction Enrichment for Gene Expression Data. PLoS ONE
2009, 4, e0008064. [CrossRef] [PubMed]

85. De Siqueira Santos, S.; De Almeida Galatro, T.F.; Watanabe, R.A.; Oba-Shinjo, S.M.; Marie, S.K.N.; Fujita, A.
CoGA: An R Package to Identify Differentially Co-Expressed Gene Sets by Analyzing the Graph Spectra.
PLoS ONE 2015, 10, e0135831. [CrossRef]

86. Cho, S.; Kim, J.; Kim, J.H. Identifying Set-Wise Differential Co-Expression in Gene Expression Microarray
Data. BMC Bioinform. 2009, 10, 1–13. [CrossRef] [PubMed]

87. Han, J.; Shi, X.; Zhang, Y.; Xu, Y.; Jiang, Y.; Zhang, C.; Feng, L.; Yang, H.; Shang, D.; Sun, Z.; et al. ESEA:
Discovering the Dysregulated Pathways Based on Edge Set Enrichment Analysis. Sci. Rep. 2015, 5, 1–15.
[CrossRef] [PubMed]

88. Hung, J.H.; Whitfield, T.W.; Yang, T.H.; Hu, Z.; Weng, Z.; DeLisi, C. Identification of Functional Modules That
Correlate with Phenotypic Difference: The Influence of Network Topology. Genome Biol. 2010, 11. [CrossRef]

89. Jung, S. KEDDY: A Knowledge-Based Statistical Gene Set Test Method to Detect Differential Functional
Protein–Protein Interactions. Bioinformatics 2019, 35, 619–627. [CrossRef]

90. Tian, Y.; Zhang, B.; Hoffman, E.P.; Clarke, R.; Zhang, Z.; Shih, I.M.; Xuan, J.; Herrington, D.M.; Wang, Y.
Knowledge-Fused Differential Dependency Network Models for Detecting Significant Rewiring in Biological
Networks. BMC Syst. Biol. 2014, 8, 1–12. [CrossRef]

91. Lai, Y.; Wu, B.; Chen, L.; Zhao, H. A Statistical Method for Identifying Differential Gene-Gene Co-Expression
Patterns. Bioinformatics 2004, 20, 3146–3155. [CrossRef]

92. Fazlollahi, M.; Muroff, I.; Lee, E.; Causton, H.C.; Bussemaker, H.J. Identifying Genetic Modulators of the
Connectivity between Transcription Factors and Their Transcriptional Targets. Proc. Natl. Acad. Sci. USA
2016, 113, E1835–E1843. [CrossRef]

93. Lareau, C.A.; White, B.C.; Montgomery, C.G.; McKinney, B.A. DcVar: A Method for Identifying Common
Variants That Modulate Differential Correlation Structures in Gene Expression Data. Front. Genet. 2015, 6,
1–9. [CrossRef] [PubMed]

94. Kayano, M.; Takigawa, I.; Shiga, M.; Tsuda, K.; Mamitsuka, H. Efficiently Finding Genome-Wide Three-Way
Gene Interactions from Transcript- and Genotype-Data. Bioinformatics 2009, 25, 2735–2743. [CrossRef]
[PubMed]

95. Liany, H.; Rajapakse, J.C.; Karuturi, R.K.M. MultiDCoX: Multi-Factor Analysis of Differential Co-Expression.
BMC Bioinform. 2017, 18. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pcbi.1004791
http://dx.doi.org/10.1101/053496
http://dx.doi.org/10.1093/bioinformatics/btr136
http://dx.doi.org/10.1016/j.gene.2012.11.085
http://dx.doi.org/10.3892/or.2016.5333
http://dx.doi.org/10.1145/3394486.3403383
http://dx.doi.org/10.1186/1471-2105-11-234
http://dx.doi.org/10.1093/bioinformatics/btp502
http://dx.doi.org/10.2202/1544-6115.1055
http://www.ncbi.nlm.nih.gov/pubmed/16646794
http://dx.doi.org/10.1371/journal.pone.0008064
http://www.ncbi.nlm.nih.gov/pubmed/19956614
http://dx.doi.org/10.1371/journal.pone.0135831
http://dx.doi.org/10.1186/1471-2105-10-109
http://www.ncbi.nlm.nih.gov/pubmed/19371436
http://dx.doi.org/10.1038/srep13044
http://www.ncbi.nlm.nih.gov/pubmed/26267116
http://dx.doi.org/10.1186/gb-2010-11-2-r23
http://dx.doi.org/10.1093/bioinformatics/bty686
http://dx.doi.org/10.1186/s12918-014-0087-1
http://dx.doi.org/10.1093/bioinformatics/bth379
http://dx.doi.org/10.1073/pnas.1517140113
http://dx.doi.org/10.3389/fgene.2015.00312
http://www.ncbi.nlm.nih.gov/pubmed/26539209
http://dx.doi.org/10.1093/bioinformatics/btp531
http://www.ncbi.nlm.nih.gov/pubmed/19736252
http://dx.doi.org/10.1186/s12859-017-1963-7
http://www.ncbi.nlm.nih.gov/pubmed/29297310


Int. J. Mol. Sci. 2020, 21, 9461 20 of 23

96. Zuo, Y.; Cui, Y.; Yu, G.; Li, R.; Ressom, H.W. Incorporating Prior Biological Knowledge for Network-Based
Differential Gene Expression Analysis Using Differentially Weighted Graphical LASSO. BMC Bioinform. 2017,
18, 1–14. [CrossRef]

97. Park, H.J.; Kim, S.; Li, W. Model-Based Analysis of Competing-Endogenous Pathways (MACPath) in Human
Cancers. PLoS Comput. Biol. 2018, 14, 1–16. [CrossRef]

98. Hansen, M.; Everett, L.; Singh, L.; Hannenhalli, S. Mimosa: Mixture Model of Co-Expression to Detect
Modulators of Regulatory Interaction. Algorithms Mol. Biol. 2010, 5, 1–9. [CrossRef]

99. Shimamura, T.; Matsui, Y.; Kajino, T.; Ito, S.; Takahashi, T.; Miyano, S. GIMLET: Identifying Biological
Modulators in Context-Specific Gene Regulation Using Local Energy Statistics. In Lecture Notes Computer
Science (Including Its Subseries Lecture Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics);
Springer: New York, NY, USA, 2019; Volume 10834, pp. 124–137. [CrossRef]

100. Babur, Ö.; Demir, E.; Gönen, M.; Sander, C.; Dogrusoz, U. Discovering Modulators of Gene Expression.
Nucleic Acids Res. 2010, 38, 5648–5656. [CrossRef]

101. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.;
Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks.
Genome Res. 2003, 13, 2498–2504. [CrossRef]

102. Bastian, M.; Heymann, S. Gephi: An Open Source Software for Exploring and Manipulating Networks; AAAI:
New York, NY, USA, 2009.

103. Bhuva, D.D.; Cursons, J.; Smyth, G.K.; Davis, M.J. Differential Co-Expression-Based Detection of Conditional
Relationships in Transcriptional Data: Comparative Analysis and Application to Breast Cancer. Genome Biol.
2019, 20, 1–21. [CrossRef]

104. Csardi, G.; Nepusz, T. The Igraph Software Package for Complex Network Research. InterJ. Complex Syst.
2006, 1695, 1–9.

105. Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. ClusterProfiler: An R Package for Comparing Biological Themes
among Gene Clusters. Omics J. Integr. Biol. 2012, 16, 284–287. [CrossRef] [PubMed]

106. Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis.
BMC Bioinform. 2008, 9, 559. [CrossRef] [PubMed]

107. Lichtblau, Y.; Zimmermann, K.; Haldemann, B.; Lenze, D.; Hummel, M.; Leser, U. Comparative Assessment
of Differential Network Analysis Methods. Brief. Bioinform. 2017, 18, 837–850. [CrossRef] [PubMed]

108. Gonzalez-Valbuena, E.E.; Treviño, V. Metrics to Estimate Differential Co-Expression Networks. BioData Min.
2017, 10, 1–15. [CrossRef] [PubMed]

109. West, J.; Bianconi, G.; Severini, S.; Teschendorff, A.E. Differential Network Entropy Reveals Cancer System
Hallmarks. Sci. Rep. 2012, 2. [CrossRef] [PubMed]

110. Sandhu, R.; Georgiou, T.; Reznik, E.; Zhu, L.; Kolesov, I.; Senbabaoglu, Y.; Tannenbaum, A. Graph Curvature
for Differentiating Cancer Networks. Sci. Rep. 2015, 5, 1–13. [CrossRef]

111. Ayyildiz, D.; Gov, E.; Sinha, R.; Arga, K.Y. Ovarian Cancer Differential Interactome and Network Entropy
Analysis Reveal New Candidate Biomarkers. Omi. A J. Integr. Biol. 2017, 21, 285–294. [CrossRef]

112. Anglani, R.; Creanza, T.M.; Liuzzi, V.C.; Piepoli, A.; Panza, A.; Andriulli, A.; Ancona, N. Loss of Connectivity
in Cancer Co-Expression Networks. PLoS ONE 2014, 9, e0087075. [CrossRef]

113. Teschendorff, A.E.; Severini, S. Increased Entropy of Signal Transduction in the Cancer Metastasis Phenotype.
BMC Syst. Biol. 2010, 4. [CrossRef]

114. Demetrius, L.; Manke, T. Robustness and Network Evolution—An Entropic Principle. Phys. Stat. Mech. Appl.
2005, 346, 682–696. [CrossRef]

115. Cheng, F.; Liu, C.; Shen, B.; Zhao, Z. Investigating Cellular Network Heterogeneity and Modularity in Cancer:
A Network Entropy and Unbalanced Motif Approach. BMC Syst. Biol. 2016, 10. [CrossRef] [PubMed]

116. Carels, N.; Tilli, T.M.; Tuszynski, J.A. Optimization of Combination Chemotherapy Based on the Calculation
of Network Entropy for Protein-Protein Interactions in Breast Cancer Cell Lines. EPJ Nonlinear Biomed. Phys.
2015, 3. [CrossRef]

117. Schramm, G.; Kannabiran, N.; König, R. Regulation Patterns in Signaling Networks of Cancer. BMC Syst. Biol.
2010, 4. [CrossRef] [PubMed]

118. Wong, S.W.H.; Cercone, N.; Jurisica, I. Comparative Network Analysis via Differential Graphlet Communities.
Proteomics 2015, 15, 608–617. [CrossRef]

http://dx.doi.org/10.1186/s12859-017-1515-1
http://dx.doi.org/10.1371/journal.pcbi.1006074
http://dx.doi.org/10.1186/1748-7188-5-4
http://dx.doi.org/10.1007/978-3-030-14160-8_13
http://dx.doi.org/10.1093/nar/gkq287
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1186/s13059-019-1851-8
http://dx.doi.org/10.1089/omi.2011.0118
http://www.ncbi.nlm.nih.gov/pubmed/22455463
http://dx.doi.org/10.1186/1471-2105-9-559
http://www.ncbi.nlm.nih.gov/pubmed/19114008
http://dx.doi.org/10.1093/bib/bbw061
http://www.ncbi.nlm.nih.gov/pubmed/27473063
http://dx.doi.org/10.1186/s13040-017-0152-6
http://www.ncbi.nlm.nih.gov/pubmed/29151892
http://dx.doi.org/10.1038/srep00802
http://www.ncbi.nlm.nih.gov/pubmed/23150773
http://dx.doi.org/10.1038/srep12323
http://dx.doi.org/10.1089/omi.2017.0010
http://dx.doi.org/10.1371/journal.pone.0087075
http://dx.doi.org/10.1186/1752-0509-4-104
http://dx.doi.org/10.1016/j.physa.2004.07.011
http://dx.doi.org/10.1186/s12918-016-0309-9
http://www.ncbi.nlm.nih.gov/pubmed/27585651
http://dx.doi.org/10.1140/epjnbp/s40366-015-0023-3
http://dx.doi.org/10.1186/1752-0509-4-162
http://www.ncbi.nlm.nih.gov/pubmed/21110851
http://dx.doi.org/10.1002/pmic.201400233


Int. J. Mol. Sci. 2020, 21, 9461 21 of 23

119. Park, Y.; Lim, S.; Nam, J.W.; Kim, S. Measuring Intratumor Heterogeneity by Network Entropy Using
RNA-Seq Data. Sci. Rep. 2016, 6, 1–12. [CrossRef]

120. Banerji, C.R.S.; Severini, S.; Caldas, C.; Teschendorff, A.E. Intra-Tumour Signalling Entropy Determines
Clinical Outcome in Breast and Lung Cancer. PLoS Comput. Biol. 2015, 11, 1–23. [CrossRef]

121. Klein, C.A. Selection and Adaptation during Metastatic Cancer Progression. Nature 2013, 501, 365–372.
[CrossRef]

122. Basha, O.; Argov, C.M.; Artzy, R.; Zoabi, Y.; Hekselman, I.; Alfandari, L.; Chalifa-Caspi, V.; Yeger-Lotem, E.
Differential Network Analysis of Multiple Human Tissue Interactomes Highlights Tissue-Selective Processes
and Genetic Disorder Genes. Bioinformatics 2020. [CrossRef]

123. Khosravi, P.; Gazestani, V.H.; Law, B.; Bader, G.D.; Sadeghi, M. Comparative Analysis of Co-Expression
Networks Reveals Molecular Changes during the Cancer Progression. IFMBE Proc. 2015, 51, 1481–1487.
[CrossRef]

124. Liu, Y.; Koyutürk, M.; Barnholtz-Sloan, J.S.; Chance, M.R. Gene Interaction Enrichment and Network Analysis
to Identify Dysregulated Pathways and Their Interactions in Complex Diseases. BMC Syst. Biol. 2012, 6.
[CrossRef]

125. Yu, H.; Lin, C.C.; Li, Y.Y.; Zhao, Z. Dynamic Protein Interaction Modules in Human Hepatocellular Carcinoma
Progression. BMC Syst. Biol. 2013, 7, 1–13. [CrossRef] [PubMed]

126. Amgalan, B.; Lee, H. WMAXC: A Weighted Maximum Clique Method for Identifying Condition-Specific
Sub-Network. PLoS ONE 2014, 9, e0104993. [CrossRef] [PubMed]

127. Han, L.; Chen, C.; Liu, C.H.; Zhang, M.; Liang, L. Revealing Differential Modules in Uveal Melanoma by
Analyzing Differential Networks. Mol. Med. Rep. 2017, 15, 2261–2266. [CrossRef] [PubMed]

128. Gulfidan, G.; Turanli, B.; Beklen, H.; Sinha, R.; Arga, K.Y. Pan-Cancer Mapping of Differential Protein-Protein
Interactions. Sci. Rep. 2020, 10, 1–13. [CrossRef]

129. Zhu, L.; Ding, Y.; Chen, C.-Y.; Wang, L.; Huo, Z.; Kim, S.; Sotiriou, C.; Oesterreich, S.; Tseng, G.C. MetaDCN:
Meta-Analysis Framework for Differential Co-Expression Network Detection with an Application in Breast
Cancer. Bioinformatics 2016, 33, 1121–1129. [CrossRef]

130. Ma, X.; Sun, P.; Qin, G. Identifying Condition-Specific Modules by Clustering Multiple Networks.
IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 15, 1636–1648. [CrossRef]

131. Ma, X.; Gao, L.; Tan, K. Modeling Disease Progression Using Dynamics of Pathway Connectivity. Bioinformatics
2014, 30, 2343–2350. [CrossRef]

132. Taylor, I.W.; Linding, R.; Warde-Farley, D.; Liu, Y.; Pesquita, C.; Faria, D.; Bull, S.; Pawson, T.; Morris, Q.;
Wrana, J.L. Dynamic Modularity in Protein Interaction Networks Predicts Breast Cancer Outcome. Nat.
Biotechnol. 2009, 27, 199–204. [CrossRef]

133. Laaniste, L.; Srivastava, P.K.; Stylianou, J.; Syed, N.; Cases-Cunillera, S.; Shkura, K.; Zeng, Q.; Rackham, O.J.L.;
Langley, S.R.; Delahaye-Duriez, A.; et al. Integrated Systems-Genetic Analyses Reveal a Network Target for
Delaying Glioma Progression. Ann. Clin. Transl. Neurol. 2019, 6, 1616–1638. [CrossRef]

134. Jin, N.; Wu, H.; Miao, Z.; Huang, Y.; Hu, Y.; Bi, X.; Wu, D.; Qian, K.; Wang, L.; Wang, C.; et al. Network-Based
Survival-Associated Module Biomarker and Its Crosstalk with Cell Death Genes in Ovarian Cancer. Sci. Rep.
2015, 5, 1–12. [CrossRef]

135. Zhou, J.; Chen, C.; Li, H.F.; Hu, Y.J.; Xie, H.L. Revealing Radiotherapy- and Chemoradiation-Induced
Pathway Dynamics in Glioblastoma by Analyzing Multiple Differential Networks. Mol. Med. Rep. 2017, 16,
696–702. [CrossRef] [PubMed]

136. Hjaltelin, J.X.; Izarzugaza, J.M.G.; Jensen, L.J.; Russo, F.; Westergaard, D.; Brunak, S. Identification of
Hyper-Rewired Genomic Stress Non-Oncogene Addiction Genes across 15 Cancer Types. NPJ Syst. Biol. Appl.
2019, 5. [CrossRef] [PubMed]

137. Cao, M.S.; Liu, B.Y.; Dai, W.T.; Zhou, W.X.; Li, Y.X.; Li, Y.Y. Differential Network Analysis Reveals
Dysfunctional Regulatory Networks in Gastric Carcinogenesis. Am. J. Cancer Res. 2015, 5, 2605–2625.
[PubMed]

138. Wang, Y.; Jiang, T.; Li, Z.; Lu, L.; Zhang, D.; Wang, X.; Tan, J. Analysis of Differentially Co-Expressed Genes
Based on Microarray Data of Hepatocellular Carcinoma. Neoplasma 2013, 60, 607–616. [CrossRef] [PubMed]

139. Deng, S.P.; Zhu, L.; Huang, D.S. Mining the Bladder Cancer-Associated Genes by an Integrated Strategy
for the Construction and Analysis of Differential Co-Expression Networks. BMC Genom. 2015, 16, 1–10.
[CrossRef] [PubMed]

http://dx.doi.org/10.1038/srep37767
http://dx.doi.org/10.1371/journal.pcbi.1004115
http://dx.doi.org/10.1038/nature12628
http://dx.doi.org/10.1093/bioinformatics/btaa034
http://dx.doi.org/10.1007/978-3-319-19387-8
http://dx.doi.org/10.1186/1752-0509-6-65
http://dx.doi.org/10.1186/1752-0509-7-S5-S2
http://www.ncbi.nlm.nih.gov/pubmed/24564909
http://dx.doi.org/10.1371/journal.pone.0104993
http://www.ncbi.nlm.nih.gov/pubmed/25148538
http://dx.doi.org/10.3892/mmr.2017.6232
http://www.ncbi.nlm.nih.gov/pubmed/28260033
http://dx.doi.org/10.1038/s41598-020-60127-x
http://dx.doi.org/10.1093/bioinformatics/btw788
http://dx.doi.org/10.1109/TCBB.2017.2761339
http://dx.doi.org/10.1093/bioinformatics/btu298
http://dx.doi.org/10.1038/nbt.1522
http://dx.doi.org/10.1002/acn3.50850
http://dx.doi.org/10.1038/srep11566
http://dx.doi.org/10.3892/mmr.2017.6641
http://www.ncbi.nlm.nih.gov/pubmed/28560382
http://dx.doi.org/10.1038/s41540-019-0104-5
http://www.ncbi.nlm.nih.gov/pubmed/31396397
http://www.ncbi.nlm.nih.gov/pubmed/26609471
http://dx.doi.org/10.4149/neo_2017_207
http://www.ncbi.nlm.nih.gov/pubmed/28043148
http://dx.doi.org/10.1186/1471-2164-16-S3-S4
http://www.ncbi.nlm.nih.gov/pubmed/25707808


Int. J. Mol. Sci. 2020, 21, 9461 22 of 23

140. Pan, Q.; Hu, T.; Andrew, A.S.; Karagas, M.R.; Moore, J.H. Bladder Cancer Specific Pathway Interaction Networks;
The MIT Press: Cambridge, MA, USA, 2013; pp. 94–101.

141. Xu, X.; Long, H.; Xi, B.; Ji, B.; Li, Z.; Dang, Y.; Jiang, C.; Yao, Y.; Yang, J. Molecular Network-Based Drug
Prediction in Thyroid Cancer. Int. J. Mol. Sci. 2019, 20, 263. [CrossRef] [PubMed]

142. Fu, S.; Pan, X.; Fang, W. Differential Co-Expression Analysis of a Microarray Gene Expression Profiles of
Pulmonary Adenocarcinoma. Mol. Med. Rep. 2014, 10, 713–718. [CrossRef]

143. Gill, R.; Datta, S.; Datta, S. Differential Network Analysis in Human Cancer Research. Curr. Pharm. Des.
2014, 20, 4–10. [CrossRef]

144. Zhang, Q. A Powerful Nonparametric Method for Detecting Differentially Co-Expressed Genes: Distance
Correlation Screening and Edge-Count Test. BMC Syst. Biol. 2018, 12, 1–16. [CrossRef]

145. Reznik, E.; Sander, C. Extensive Decoupling of Metabolic Genes in Cancer. PLoS Comput. Biol. 2015,
11, e1004176. [CrossRef]

146. Asem, M.S.; Buechler, S.; Wates, R.B.; Miller, D.L.; Stack, M.S. Wnt5a Signaling in Cancer. Cancers 2016, 8, 79.
[CrossRef] [PubMed]

147. Chen, Y.; Peng, Y.; Fan, S.; Li, Y.; Xiao, Z.X.; Li, C. A Double Dealing Tale of P63: An Oncogene or a Tumor
Suppressor. Cell. Mol. Life Sci. 2018, 75, 965–973. [CrossRef] [PubMed]

148. Bach, D.H.; Park, H.J.; Lee, S.K. The Dual Role of Bone Morphogenetic Proteins in Cancer. Mol. Ther. Oncol.
2018, 8, 1–13. [CrossRef] [PubMed]

149. Sinicropi-Yao, S.L.; Amann, J.M.; Lopez, D.L.Y.; Cerciello, F.; Coombes, K.R.; Carbone, D.P. Co-Expression
Analysis Reveals Mechanisms Underlying the Varied Roles of NOTCH1 in NSCLC. J. Thorac. Oncol. 2019, 14,
223–236. [CrossRef] [PubMed]

150. Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A CeRNA Hypothesis: The Rosetta Stone of a Hidden
RNA Language? Cell 2011, 146, 353–358. [CrossRef]

151. Yang, S.; Ning, Q.; Zhang, G.; Sun, H.; Wang, Z.; Li, Y. Construction of Differential MRNA-LncRNA Crosstalk
Networks Based on CeRNA Hypothesis Uncover Key Roles of LncRNAs Implicated in Esophageal Squamous
Cell Carcinoma. Oncotarget 2016, 7, 85728–85740. [CrossRef]

152. Wu, W.; Wagner, E.K.; Hao, Y.; Rao, X.; Dai, H.; Han, J. Tissue-Specific Co-Expression of Long Non-Coding
and Coding RNAs Associated with Breast Cancer. Sci. Rep. 2016, 6, 32731. [CrossRef]

153. Xu, J.; Li, C.X.; Lv, J.Y.; Li, Y.S.; Xiao, Y.; Shao, T.T.; Huo, X.; Li, X.; Zou, Y.; Han, Q.L.; et al. Prioritizing
Candidate Disease MiRNAs by Topological Features in the MiRNA Target-Dysregulated Network: Case
Study of Prostate Cancer. Mol. Cancer Ther. 2011, 10, 1857–1866. [CrossRef]

154. Lin, C.-C.; Mitra, R.; Cheng, F.; Zhongming, Z. Cross-Cancer Differential Co-Expression Network Reveals
MicroRNA-Regulated Oncogenic Functional Modules. Mol. Biol. 2015, 11, 3244–3252. [CrossRef]

155. Xu, Y.; Li, F.; Wu, T.; Xu, Y.; Yang, H.; Dong, Q.; Zheng, M.; Shang, D.; Zhang, C.; Zhang, Y.; et al.
LncSubpathway: A Novel Approach for Identifying Dysfunctional Subpathways Associated with Risk
LncRNAs by Integrating LncRNA and MRNA Expression Profiles and Pathway Topologies. Oncotarget 2017,
8, 15453–15469. [CrossRef]

156. West, J.; Beck, S.; Wang, X.; Teschendorff, A.E. An Integrative Network Algorithm Identifies Age-Associated
Differential Methylation Interactome Hotspots Targeting Stem-Cell Differentiation Pathways. Sci. Rep.
2013, 3. [CrossRef] [PubMed]

157. Lareau, C.A.; White, B.C.; Oberg, A.L.; McKinney, B.A. Differential Co-Expression Network Centrality
and Machine Learning Feature Selection for Identifying Susceptibility Hubs in Networks with Scale-Free
Structure. BioData Min. 2015, 8, 1–17. [CrossRef] [PubMed]

158. Hou, L.; Chen, M.; Zhang, C.K.; Cho, J.; Zhao, H. Guilt by Rewiring: Gene Prioritization through Network
Rewiring in Genome Wide Association Studies. Hum. Mol. Genet. 2014, 23, 2780–2790. [CrossRef] [PubMed]

159. Aran, D.; Sirota, M.; Butte, A.J. Systematic Pan-Cancer Analysis of Tumour Purity. Nat. Commun. 2015, 6,
1–12. [CrossRef] [PubMed]

160. Behan, F.M.; Iorio, F.; Picco, G.; Gonçalves, E.; Beaver, C.M.; Migliardi, G.; Santos, R.; Rao, Y.; Sassi, F.;
Pinnelli, M.; et al. Prioritization of Cancer Therapeutic Targets Using CRISPR–Cas9 Screens. Nature 2019,
568, 511–516. [CrossRef] [PubMed]

161. Tsherniak, A.; Vazquez, F.; Montgomery, P.G.; Weir, B.A.; Kryukov, G.; Cowley, G.S.; Gill, S.; Harrington, W.F.;
Pantel, S.; Krill-Burger, J.M.; et al. Defining a Cancer Dependency Map. Cell 2017, 170, 564–576.e16. [CrossRef]

http://dx.doi.org/10.3390/ijms20020263
http://www.ncbi.nlm.nih.gov/pubmed/30641858
http://dx.doi.org/10.3892/mmr.2014.2300
http://dx.doi.org/10.2174/138161282001140113122316
http://dx.doi.org/10.1186/s12918-018-0582-x
http://dx.doi.org/10.1371/journal.pcbi.1004176
http://dx.doi.org/10.3390/cancers8090079
http://www.ncbi.nlm.nih.gov/pubmed/27571105
http://dx.doi.org/10.1007/s00018-017-2666-y
http://www.ncbi.nlm.nih.gov/pubmed/28975366
http://dx.doi.org/10.1016/j.omto.2017.10.002
http://www.ncbi.nlm.nih.gov/pubmed/29234727
http://dx.doi.org/10.1016/j.jtho.2018.10.162
http://www.ncbi.nlm.nih.gov/pubmed/30408569
http://dx.doi.org/10.1016/j.cell.2011.07.014
http://dx.doi.org/10.18632/oncotarget.13828
http://dx.doi.org/10.1038/srep32731
http://dx.doi.org/10.1158/1535-7163.MCT-11-0055
http://dx.doi.org/10.1039/C5MB00443H
http://dx.doi.org/10.18632/oncotarget.14973
http://dx.doi.org/10.1038/srep01630
http://www.ncbi.nlm.nih.gov/pubmed/23568264
http://dx.doi.org/10.1186/s13040-015-0040-x
http://www.ncbi.nlm.nih.gov/pubmed/25685197
http://dx.doi.org/10.1093/hmg/ddt668
http://www.ncbi.nlm.nih.gov/pubmed/24381306
http://dx.doi.org/10.1038/ncomms9971
http://www.ncbi.nlm.nih.gov/pubmed/26634437
http://dx.doi.org/10.1038/s41586-019-1103-9
http://www.ncbi.nlm.nih.gov/pubmed/30971826
http://dx.doi.org/10.1016/j.cell.2017.06.010


Int. J. Mol. Sci. 2020, 21, 9461 23 of 23

162. McDonald, E.R.; de Weck, A.; Schlabach, M.R.; Billy, E.; Mavrakis, K.J.; Hoffman, G.R.; Belur, D.; Castelletti, D.;
Frias, E.; Gampa, K.; et al. Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal
Relationships Uncovered by Large-Scale, Deep RNAi Screening. Cell 2017, 170, 577–592.e10. [CrossRef]

163. Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.-P.; Subramanian, A.;
Ross, K.N.; et al. The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules,
Genes, and Disease. Science 2006, 313, 1929–1935. [CrossRef]

164. Ghandi, M.; Huang, F.W.; Jané-Valbuena, J.; Kryukov, G.V.; Lo, C.C.; McDonald, E.R.; Barretina, J.;
Gelfand, E.T.; Bielski, C.M.; Li, H.; et al. Next-Generation Characterization of the Cancer Cell Line
Encyclopedia. Nature 2019, 569, 503–508. [CrossRef]

165. Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.;
Thompson, I.R.; et al. Genomics of Drug Sensitivity in Cancer (GDSC): A Resource for Therapeutic Biomarker
Discovery in Cancer Cells. Nucleic Acids Res. 2013, 41, 955–961. [CrossRef]

166. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.;
Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res.
2018, 46, D1074–D1082. [CrossRef] [PubMed]

167. Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.;
Bellis, L.J.; Cibrián-Uhalte, E.; et al. The ChEMBL Database in 2017. Nucleic Acids Res. 2017, 45, D945–D954.
[CrossRef] [PubMed]

168. Koedoot, E.; Fokkelman, M.; Rogkoti, V.M.; Smid, M.; van de Sandt, I.; de Bont, H.; Pont, C.; Klip, J.E.;
Wink, S.; Timmermans, M.A.; et al. Uncovering the Signaling Landscape Controlling Breast Cancer Cell
Migration Identifies Novel Metastasis Driver Genes. Nat. Commun. 2019, 10, 1–16. [CrossRef] [PubMed]

169. Pavan, S.; Meyer-Schaller, N.; Diepenbruck, M.; Kalathur, R.K.R.; Saxena, M.; Christofori, G. A Kinome-Wide
High-Content SiRNA Screen Identifies MEK5–ERK5 Signaling as Critical for Breast Cancer Cell EMT and
Metastasis. Oncogene 2018, 37, 4197–4213. [CrossRef]

170. Van Roosmalen, W.; Le Dévédec, S.E.; Golani, O.; Smid, M.; Pulyakhina, I.; Timmermans, A.M.; Look, M.P.;
Zi, D.; Pont, C.; De Graauw, M.; et al. Tumor Cell Migration Screen Identifies SRPK1 as Breast Cancer
Metastasis Determinant. J. Clin. Investig. 2015, 125, 1648–1664. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cell.2017.07.005
http://dx.doi.org/10.1126/science.1132939
http://dx.doi.org/10.1038/s41586-019-1186-3
http://dx.doi.org/10.1093/nar/gks1111
http://dx.doi.org/10.1093/nar/gkx1037
http://www.ncbi.nlm.nih.gov/pubmed/29126136
http://dx.doi.org/10.1093/nar/gkw1074
http://www.ncbi.nlm.nih.gov/pubmed/27899562
http://dx.doi.org/10.1038/s41467-019-11020-3
http://www.ncbi.nlm.nih.gov/pubmed/31278301
http://dx.doi.org/10.1038/s41388-018-0270-8
http://dx.doi.org/10.1172/JCI74440
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Biological Networks 
	Gene Co-Expression Networks 
	Methods for Differential Co-Expression Analysis 
	Differential Co-Expression Networks in Cancer 
	Global Topological Features of Cancer Networks Show Increasingly High Entropy 
	Pathways Dysregulated in Cancer 
	Differentially Co-Regulated Genes 
	Regulatory Mechanisms 

	Conclusions and Perspectives 
	References

