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OBJECTIVE—Obesity-associated low-grade systemic inflamma-
tion resulting from increased adipose mass is strongly related to
the development of insulin resistance and type 2 diabetes as well
as other metabolic complications. Recent studies have demon-
strated that the obese metabolic state can be improved by
ablating certain inflammatory signaling pathways. Tumor pro-
gression locus 2 (TPL2), a kinase that integrates signals from Toll
receptors, cytokine receptors, and inhibitor of k-B kinase-b is an
important regulator of inflammatory pathways. We used TPL2
knockout (KO) mice to investigate the role of TPL2 in mediating
obesity-associated inflammation and insulin resistance.

RESEARCH DESIGN AND METHODS—Male TPL2KO and
wild-type (WT) littermates were fed a low-fat diet or a high-fat
diet to investigate the effect of TPL2 deletion on obesity,
inflammation, and insulin sensitivity.

RESULTS—We demonstrate that TPL2 deletion does not alter
body weight gain or adipose depot weight. However, hyper-
insulinemic euglycemic clamp studies revealed improved insulin
sensitivity with enhanced glucose uptake in skeletal muscle and
increased suppression of hepatic glucose output in obese
TPL2KO mice compared with obese WT mice. Consistent with
an improved metabolic phenotype, immune cell infiltration and
inflammation was attenuated in the adipose tissue of obese
TPL2KO mice coincident with reduced hepatic inflammatory
gene expression and lipid accumulation.

CONCLUSIONS—Our results provide the first in vivo demonstra-
tion that TPL2 ablation attenuates obesity-associated metabolic
dysfunction. These data suggest TPL2 is a novel target for improving
the metabolic state associated with obesity. Diabetes 60:1168–
1176, 2011

O
besity is an independent risk factor for type 2
diabetes, cardiovascular disease, nonalcoholic
steatohepatitis, stroke, and certain cancers (1,2).
Obesity is now recognized as a state of chronic

low-grade systemic inflammation and this inflammatory
state promotes the development of obesity-related compli-
cations (3–6). Macrophages are a major source of proin-
flammatory cytokines in adipose tissue and are implicated
in the onset and progression of insulin resistance (7–10).
Similarly, proinflammatory activation of hepatic macro-
phages (Kupffer cells) is observed in response to obeso-
genic diets and is causally implicated in the hepatic and
systemic metabolic abnormalities of obesity and type 2
diabetes (11,12). In addition to immune cells, activation of
parenchymal cells, including adipocytes and hepatocytes,
has been suggested to promote local and systemic insulin
resistance with obesity (7–9,13,14).

A current challenge is to identify the mechanisms un-
derlying inflammatory cell recruitment and activation in
obese states. Several stimuli have been implicated in pro-
moting the inflammatory profile associated with obesity,
including the death of enlarged adipocytes, increased free
fatty acid flux, and low-grade systemic endotoxemia (6,13–
15). Adipocyte death is associated with infiltration and
activation of immune cells in adipose tissue, and endo-
toxin and fatty acids both activate cell surface receptors
such as Toll-like receptors (TLRs) (16).

Recent studies using mouse knockout (KO) models have
delineated the importance of several inflammatory signal-
ing pathways in the onset and development of obesity-
associated insulin resistance and metabolic dysfunction
(7–9,17–21). For example, reduced activation of Jun NH2-
terminal kinase (JNK), inhibitor of k-B kinase-b (IKK-b), or
TLR4 in immune cells and parenchymal cells has been
demonstrated to reduce the systemic inflammation asso-
ciated with obesity and to improve the metabolic profile.
Notably, many of these improvements in metabolic health
occurred independent of changes in adiposity (22,23).
Accordingly, inflammatory signaling pathways have been
targeted for the purposes of preventing or improving
obesity-associated insulin resistance (3,9).

Tumor progression locus 2 (TPL2) is a serine/threonine
kinase expressed by a variety of cell types that functions
downstream of IKK-b and is activated by the tumor ne-
crosis factor (TNF) family of cytokines and cell-associated
molecules, interleukin (IL)-1b, several chemokines, and
TLR ligands (24,25). The predominate proinflammatory
actions of TPL2 depend on the activation of mitogen-
activated protein (MAP) kinases, including extracellular
signal–related kinase (ERK) and JNK, and upregulated
production of cytokines, including TNF-a and IL-1b. The
mechanism of TPL2-induced cytokine production has
been reported to be specifically by ERK in macrophages
and ERK and JNK in nonhematopoietic cells such as
fibroblasts and pancreatic cells (26,27). Consistent with
these in vitro observations, TPL2KO mice challenged with
endotoxin produced dramatically reduced levels of TNF-a
protein (28). Overall, ablation of TPL2 blocks the actions
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of cytokines (TNF-a and IL-1b) and proinflammatory
stimuli (lipopolysaccharide) to activate ERK, and in cer-
tain cell types, JNK (29,30). Thus, TPL2 is uniquely posi-
tioned to integrate the multiple inflammatory signaling
pathways implicated in the development and progression
of obesity-associated complications. TPL2 expression was
recently reported to be upregulated in obese adipose tissue,
further supporting the notion that TPL2 is a potential me-
diator of obesity-associated inflammation (31). However,
in vivo studies examining the role of TPL2 in obesity and
its associated metabolic disorders are lacking.

The current study used TPL2KO and wild-type (WT)
mice to investigate TPL2 in high-fat diet (HFD)-induced
obesity, inflammation, and insulin resistance. We demon-
strate that lack of TPL2 reduces HFD-induced macrophage
recruitment, mitogen-activated protein kinase (MAPK)
activation, and inflammatory gene expression in adipose
tissue and liver, improves insulin signaling and sensitivity,
and attenuates lipopolysaccharide-induced inflammatory
gene expression in bone marrow–derived macrophages
(BMDMs). The salutary effects on inflammation and me-
tabolism are observed in the absence of a significant effect
of TPL2 ablation on body weight or adipose mass. These
data are the first to demonstrate a role for TPL2 in obesity-
associated metabolic dysfunction and suggest that TPL2 is
a novel target for regulating the development and metabolic
impacts of obesity-associated inflammation.

RESEARCH DESIGN AND METHODS

Materials. Human insulin (Novolin R) and recombinant macrophage colony
stimulating factor (M-CSF) were purchased from Novo Nordisk (Denmark) and
enScript (Piscataway, NJ), respectively. Antibodies recognizing ERK (9102),
phospho-ERK (9101), JNK (9252), phospho-JNK (9251), AKT (9272), and
phospho-Akt (9271) were obtained from Cell Signaling (Danvers, MA), and
a MAC-2 (CL8942AP) antibody was obtained from Cedarlane (Burlington,
ON, Canada). Horseradish peroxidase-conjugated secondary antibodies and
bicinchoninic acid protein assay reagents were obtained from Thermo Sci-
entific (Rockford, IL). Enhanced chemiluminescence reagent was purchased
from PerkinElmer Life Sciences (Boston, MA). Immunohistochemistry was
performed by VectaStain Elite ABC kit (Vecta Laboratory, Burlingame, CA).
Cell culture products were obtained from Gibco (Carlsbad, CA), and chemical
reagents were purchased from Sigma-Aldrich (St. Louis, MO).
Isolation of BMD cells. Bone-marrow cells were isolated from femoral and
tibial bone marrow of WT and TPL2KOmice and differentiated to macrophages
in the presence of M-CSF (17,32). Media for the culture of BMDM was com-
posed of 80% DMEM, 20% heat-inactivated FBS, 2.0 g/L glucose, 100 mmol/L
nonessential amino acid, 2 mmol/L L-glutamine, 100 ng/mL M-CSF, and peni-
cillin/streptomycin. The progenitor cells were proliferated and differentiated
to mature macrophages for 5 days, at which point adherent viable cells were
harvested and plated in six-well plates.
Animals and diets. Experiments were conducted in a viral pathogen–free
facility at the Jean Mayer-U.S. Department of Agriculture Human Nutrition
Research Center on Aging at Tufts University in accordance with Institutional
Animal Care and Use Committee guidelines. WT and TPL2KO mice generated
from heterozygous matings were used as homozygous breeding pairs to gen-
erate WT and KO experimental mice. Genotyping of animals was verified at
weaning and again when mice were killed. Male 6-week-old mice were in-
dividually caged and fed a normal diet (ND) with 17% calories from fat (Harlan
#7012) or HFD with 60% calories from fat (Research Diets D12492) for
17 weeks. Mice were killed by CO2 narcosis, followed by cardiac puncture.
Tissues were dissected, weighed, and snap frozen for analysis of protein or
gene expression, or were fixed, embedded in paraffin, and sectioned for his-
tologic analysis.
Measures of insulin resistance and signaling. Fasted (overnight) plasma insulin
was measured by ELISA (Crystal Chem, Downers Grove, IL). A hyperinsulinemic-
euglycemic clamp was performed for 120 minutes, after an overnight fast, using
a primed/continuous infusion of human insulin (126 pmol/kg prime, 18 pmol/kg/min
infusion) as described (33). During the clamp, plasma glucose was maintained at
basal concentrations. Rates of basal and insulin-stimulated whole-body glucose
fluxes and tissue glucose uptake were determined as described (33). To
assess peripheral tissue insulin sensitivity, mice were fasted 6 h and then

received an intraperitoneal injection of saline (basal) or insulin (stimu-
lated, 0.75 mU/kg). Mice were killed 10 minutes after injection, and blood
and adipose, liver, and muscle tissues were collected and snap frozen until
Western blotting analyses.
Western blotting analysis. Protein from the frozen tissue samples was iso-
lated as described previously (34). Briefly, gonadal adipose and liver were
processed in 5% SDS lysis buffer and muscle was pulverized in liquid nitrogen
and processed in a 1% Triton X-100 buffer. Proteins were separated by SDS-
PAGE and transferred to Hybond enhanced chemiluminescence nitrocellulose
membrane and incubated with the indicated antibody and horseradish peroxidase-
coupled anti-species antibodies. Proteins were visualized by enhanced chem-
iluminescence and quantified by densitometry.
RNA isolation, reverse transcription, and real-time quantitative PCR.

Adipose tissue RNA was extracted using Qiagen Lipid Mini kits and liver RNA
was isolated using Qiagen Mini kits according to manufacturer’s instructions.
RNA was quantified and checked for purity using the Nanodrop spectro-
photometer (Nanodrop 1000, Wilmington, DE). cDNA was generated from 1
mg of RNA, and real-time quantitative PCR was performed using SYBR
Green (Applied Biosystems 7300, Carlsbad, CA). Fold-changes were calcu-
lated as 2–DDCT, with cyclophilin A or cyclophilin B used as the endogenous
control.
Liver triglyceride. Liver triglyceride content was determined using a modified
protocol described by Schwartz and Wolins (35). Briefly, frozen liver was
extracted in PBS-10 mmol/L EDTA buffer, and protein concentration was
determined by bicinchoninic acid protein assay. Samples were assayed in
duplicate, and 25 mg of protein extract was subjected to organic extraction.
Triglyceride was quantified using a colorimetric enzyme-linked kit (Sigma).
Immunohistochemistry. Gonadal adipose and liver tissue were fixed in 4%
formaldehyde overnight, embedded in paraffin, sectioned, and stained with
hematoxylin and eosin (H&E). Digital images were acquired with an Olympus
DX51 light microscope (Center Valley, PA). Adipocyte death was quantified by
identification of crown-like structures (CLS) within histologic sections of ep-
ididymal adipose tissue. The percentage of CLS ([number dead adipocytes/
number total adipocytes] 3 100) was calculated and used for comparison
among experimental groups. Adipocyte volume was calculated from cross-
sectional area obtained from perimeter tracings using Image J software (Sun
Microsystems, Santa Clara, CA) (13).
Statistical analysis. Data are presented as mean6 SE. Data were determined
to have a normal distribution with equal variance, and statistical differences
were determined by t test or ANOVA using the Tukey least significant differ-
ences test for post hoc determination using Minitab software (University Park,
PA). Significance was set at P # 0.05.

RESULTS

The effect of TPL2 deletion on diet-induced obesity.
The 6-week-old male TPL2KO and WT mice were fed ND
or HFD for 17 weeks. Although the HFD increased growth
rate and final body weight compared with the ND, we
observed no difference in these variables between WT and
TPL2KO mice receiving the same diet (Supplementary Fig.
1 and Table 1). Consistent with a lack of difference in body
weight, food intake and fat pad mass were similar between
obese WT and TPL2KO mice (Table 1). We did observe
a small but significant reduction in the liver weight of
TPL2KO mice fed an HFD. Obesity is typically associated
with decreased insulin sensitivity and elevated circulating
concentrations of glucose and insulin. Despite having
a similar body weight and fat pad mass, 6-h fasting blood
glucose and overnight fasting plasma insulin concentra-
tions were decreased in obese TPL2KO mice, suggesting an
improved insulin sensitivity, which is further investigated
subsequently. Although we did not observe a difference in
blood glucose concentrations after an overnight fast (data
not shown), a recent report indicated that in mice, blood
glucose concentrations after a 6-h fast are a better repre-
sentation of blood glucose levels throughout the day (36).

Consistent with an improved metabolic state, obese
TPL2KO mice had reduced plasma concentrations of the
proinflammatory cytokines TNF-a and IL-6 (Supplementary
Table 1). Plasma concentrations of nonesterified fatty acid,
leptin, and resistin were not significantly different between
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obese WT and TPL2KO mice (Supplementary Table 1).
We observed no differences in plasma glucose, insulin, or
proinflammatory cytokine concentrations in ND-fed WT
and TPL2KO mice (data not shown). In summary, obese
TPL2KO mice had reduced levels of circulating cytokines
and improvements in glucose-insulin homeostasis com-
pared with obese WT mice.
TPL2 regulates immune cell infiltration and
inflammation in obese adipose tissue. TPL2 is located
downstream of IKK-b and regulates MAPK activation, both
of which have been implicated in obesity-associated in-
flammation. Therefore, we investigated the effects of TPL2
ablation on adipose tissue inflammation. A hallmark of
obesity-associated adipose tissue inflammation is the lo-
calization of macrophages around dead adipocytes to form
CLS (6,13). Importantly, the presence of CLS in the adipose
tissue of obese TPL2KO mice was reduced by more than
70% (Fig. 1A and C). The observed reduction in CLS oc-
curred independent of a difference in adipocyte size (Fig. 1B)
or fat pad mass (Table 1). Consistent with the observed
reduction in CLS, gene expression of the general macro-
phage marker F4/80 was attenuated in the adipose tissue of
obese TPL2KO mice (Fig. 2). We observed a similar re-
duction in the expression of CD11c, a marker for a subset
of proinflammatory immune cells that have been demon-
strated to be major contributors to the insulin resistance
associated with obesity (17,32). In accordance with a re-
duced inflammatory phenotype, relative mRNA expression
of the cytokine TNF-a and the chemokine monocyte che-
moattractant protein-1 (MCP-1) were also markedly re-
duced in obese TPL2KO adipose tissue.

Gene expression of TLR2 and TLR4 was upregulated
with obesity in WT mice, and this increase was diminished
in obese TPL2KO mice (Fig. 2). Furthermore, lack of TPL2
signaling in adipose tissue attenuated obesity-induced ac-
tivation of ERK and JNK, which is consistent with our
observation of reduced inflammatory gene expression
(Fig. 3). In summary, the adipose tissue of obese TPL2KO
mice had significantly reduced immune cell infiltration,
MAPK signaling, and inflammatory mediators that have
been implicated in local and systemic insulin resistance.
TPL2 deficiency reduces obesity-induced liver steatosis
and inflammation. Increased hepatic inflammation and
steatosis are prominent characteristics of obesity and are
risk factors for the development of insulin resistance. His-
tology suggested that livers of obese WT mice contained
more lipid than livers of obese TPL2KO mice (Fig. 4A), and
analysis by organic extraction confirmed liver triglyceride
content was 30% greater in obese WT mice (Fig. 4B). This

reduction in liver triglyceride may explain the small re-
duction in liver weight observed between obese WT and
TPL2KO mice (Table 1). Consistent with our observed dif-
ferences in liver triglyceride values, several genes associ-
ated with lipogenesis and lipid storage, such as PPARg,
GPAT, and ADRP, were significantly decreased in the livers
of obese TPL2KO mice compared with their obese WT
counterparts (Fig. 4C). Additional analysis of the livers
revealed reduced gene expression of macrophage markers
(CD11b, CD11c), TLR2, and the cytokines TNF-a and IL-6
in the obese TPL2KO mice compared with obese WT con-
trols (Fig. 4D).

We also observed a reduction in suppressor of cytokine
signaling (SOCS)-1 expression and a trend for reduced
SOCS-3 expression in obese TPL2KO mice. These data
support the notion of an improved liver phenotype, be-
cause research has shown expression of SOCS-1 and
SOCS-3 is increased in the livers of obese insulin-resistant
animals (37,38).

We did not observe an effect of obesity or lack of TPL2
signaling on activation of ERK and JNK in the liver
(Supplementary Fig. 2). However, these studies examined
ERK and JNK activation in the entire liver, not in specific
cell types, such as macrophages or Kupffer cells, in which
there may have been an effect. Overall, obese TPL2KO
mice have reduced triglyceride accumulation in their livers,
reduced expression of SOCS, and decreased mRNA ex-
pression of lipogenic and inflammatory genes.
BMDM devoid of TPL2 have a reduced inflammatory
phenotype. It is generally well accepted that BMD im-
mune cells contribute significantly to the inflammation that
occurs with obesity (4,39). Systemic concentrations of fatty
acids and endotoxin (lipopolysaccharide) are increased
with obesity and are able to induce an inflammatory re-
sponse through TLR4 activation (16). To better understand
our observation of reduced inflammation in obese TPL2KO
mice, we cultured BMDM from WT and TPL2KO mice to
determine the consequences of TLR activation. Macro-
phages from WT and TPL2KO mice were differentiated and
treated with or without the TLR agonist lipopolysaccharide
for 3 h. We observed that in response to lipopolysaccha-
ride treatment, TPL2KO BMDM expressed significantly less
TNF-a, IL-6, and MCP-1 mRNA compared with BMDM
isolated from WT mice (Fig. 5A). Consistent with the gene
expression data, TPL2KO BMDM secreted less TNF-a and
IL-6 protein, and there was a trend for reduced MCP-1
secretion (Fig. 5B). The difference in secreted TNF-a be-
tween WT and TPL2KO macrophages was significantly
more robust than the difference in TNF-a mRNA, a finding

TABLE 1
Metabolic parameters of WT and TPL2KO mice

Parameters

ND HFD

WT TPL2KO WT TPL2KO

Body wt (g) 26.54 6 0.87 28.54 6 0.25 41.35 6 0.86 41.22 6 1.17
Food intake (g) 4.24 6 0.27 4.29 6 0.34 2.80 6 0.13 2.73 6 0.06
Liver (g) 1.02 6 0.09 1.11 6 0.06* 1.29 6 0.05 1.18 6 0.05*
Subcutaneous fat (g) 0.22 6 0.04 0.31 6 0.04 1.96 6 0.18 2.37 6 0.30
Gonadal fat (g) 0.38 6 0.09 0.40 6 0.04 2.29 6 0.15 2.31 6 0.20
Fasting glucose (mg/dL)† 205.67 6 11.32 182.50 6 12.97 257.50 6 14.33 213.17 6 11.06*
Fasting insulin (ng/mL)‡ 0.46 6 0.15 0.64 6 0.16 2.52 6 0.40 1.43 6 0.21*

WT and TPL2KO mice were fed an ND or an HFD for 17 weeks, and plasma was collected as described in RESEARCH DESIGN AND METHODS (n = 5–6
mice per group). *Indicates a statistical difference within a dietary treatment group (P , 0.05). †Fasting glucose concentrations were
measured from 6-h fasted mice. ‡Fasting insulin concentrations were measured from plasma collected after an overnight fast.
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consistent with a role for TPL2 in the post-transcriptional
regulation of this cytokine (28). In the absence of lipo-
polysaccharide stimulation, basal secretion of these fac-
tors was below the minimum detectable limits of the

assays (data not shown). These in vitro studies are con-
sistent with our in vivo observations and confirm a role for
TPL2 in modulating the expression of cytokines and che-
mokines in response to an inflammatory stimulus.

FIG. 2. Obesity-induced inflammation is attenuated in the adipose tissue of TPL2KO mice. Relative mRNA expression of macrophage and in-
flammatory markers in gonadal adipose tissue from WT or TPL2KO mice fed an ND or an HFD (n = 5–6). *P < 0.05. Mean data are shown with the
SE (error bars).

FIG. 1. TPL2 ablation reduces macrophage accumulation in obese adipose tissue. A: MAC-2 immunohistochemistry of gonadal adipose tissue from
obese WT (left panel) and TPL2KO mice (right panel); the black arrows indicate a CLS. B: Average size of adipocytes within gonadal adipose
tissue (n = 5). C: Quantification of CLS from multiple histologic sections (n = 5). *P< 0.05. Mean data are shown with the SE (error bars). (A high-
quality color representation of this figure is available in the online issue.)
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Improved insulin sensitivity in obese TPL2KO mice.
To determine the physiologic consequences of TPL2 ab-
lation on glucose-insulin homeostasis in obese mice, we
performed hyperinsulinemic euglycemic clamps on obese
WT and TPL2KO mice (Fig. 6; Supplementary Table 2). The
infusion rate of exogenous glucose during the clamp was
approximately 100% greater in obese TPL2KO mice (22.7 6
2 mg/kg/min) compared with obese WT mice (11.6 6 1.6
mg/kg/min; Fig. 6B; Supplementary Table 2). This en-
hanced insulin sensitivity in obese TPL2KO mice reflects
enhanced insulin suppression of hepatic glucose output
(89% suppression in obese TPL2KO compared with 30% in
obese WT; Fig. 6C) as well as enhanced insulin-stimulated
whole-body glucose uptake (Fig. 6D; Supplementary Table 2).
The latter is reflected in the enhanced insulin-stimulated
glucose uptake in skeletal muscle, which was significantly
(80%) increased in obese TPL2KO mice compared with
obese WT mice (Fig. 6E). In contrast with its salutary
effects on liver and muscle insulin sensitivity, TPL2 ablation
had no effect on insulin-stimulated glucose uptake in adi-
pose tissue (Fig. 6E).

We next asked if enhanced hepatic and skeletal muscle
insulin sensitivity in obese TPL2KO mice was associated
with enhanced insulin signaling, measured as the magni-
tude of Akt phosphorylation in response to an insulin bo-
lus. Insulin-stimulated Akt phosphorylation was greater in
skeletal muscle and adipose tissue of obese TPL2KO mice
than in obese WT mice, whereas liver Akt was activated to
a similar extent regardless of TPL2 status (Supplementary
Fig. 3). Inflammatory gene expression and ectopic tri-
glyceride/metabolite accumulation are both implicated in
the compromised peripheral insulin signaling of obesity
(40,41). In the current study, enhanced Akt phosphoryla-
tion in skeletal muscle of TPL2KO mice was not associated

with significantly reduced skeletal muscle inflammatory
gene expression (data not shown) but did correlate with
a significant reduction in triglyceride content compared
with obese WT mice (Supplementary Fig. 4). Interestingly,
reduced muscle triglyceride in obese TL2KO mice was
observed in the absence of reduced basal or insulin-
suppressed plasma free fatty acids (data not shown; see
DISCUSSION).

In summary, these studies provide strong evidence of
a protected metabolic phenotype in obese TPL2KO mice
and are consistent with our data demonstrating decreases
in local and systemic inflammation and reduced accumu-
lation of triglyceride in liver and skeletal muscle.

DISCUSSION

The serine/threonine kinase TPL2 integrates inflammatory
inputs from the MAP kinase and IKK/NF-kB signaling
pathways (24–26) and is upregulated in the inflamed adi-
pose tissue of obese mice and humans (31). These obser-
vations suggest that TPL2 actions promote the inflammatory
and metabolic complications of obesity. The current study
used a diet-induced obesity paradigm with TPL2KO and WT
mice to provide the first demonstration that TPL2 deletion
reduces peripheral inflammation, hepatic steatosis, and
improves whole-body insulin resistance in the obese state.
A key finding of our study was that whole-body insulin
sensitivity was improved in obese TPL2KO mice compared
with obese WT controls. The observed improvement in
glucose-insulin homeostasis was due to increased glucose
uptake in skeletal muscle and also increased suppression of
hepatic glucose output.

Importantly, the improvement in whole body insulin
sensitivity in obese TPL2KO mice occurred in the absence

FIG. 3. Lack of TPL2 signaling diminishes obesity-induced activation of ERK and JNK in gonadal adipose tissue. Representative immunoblot analysis
of phospho-ERK (Thr202/Tyr204) and total ERK (A), phospho-JNK (Thr183/Tyr185) and total JNK (B) in gonadal adipose tissue of WT or TPL2KO
mice fed an ND or an HFD (n = 2–3). Intensity of phospho-JNK was normalized to total JNK and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
to account for apparent differences in total JNK and confirm statistical significance. *P < 0.05. Mean data are shown with the SE (error bars).
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of any reductions in adipose depot mass, suggesting that
an alternative mechanism promotes enhanced insulin sen-
sitivity in TPL2KO mice. Specifically, our results suggest that
the improved metabolic profile of TPL2KO mice reflects the
salutary effects of TPL2 gene ablation on inflammation.

Two key components of the TPL2-mediated signaling
axis in nonhematopoetic and hematopoietic cells and tis-
sues are the MAP kinases ERK and JNK (26,27), both of
which are implicated in obesity-associated insulin re-
sistance. JNK and ERK activity are both increased in adi-
pocytes from obese patients with diabetes, and this MAPK
activation has been linked to the development of insulin
resistance, either directly or indirectly, by increased pro-
duction of downstream inflammatory mediators such as
TNF-a and IL-6 (8,42). Phosphorylation of both JNK and
ERK was increased in the adipose tissue of WT mice in

response to diet-induced obesity, and this increase was
attenuated by $50% in TPL2KO mice.

Adipose tissue inflammation is largely due to the pro-
inflammatory actions of recruited BMD immune cells
(4–6). In both rodents and humans (43–45), the metabolic
complications of obesity are associated with the accumu-
lation of proinflammatory macrophages (F4/80+ cells) that
express the dendritic cell marker CD11c in adipose tissue
(13,46). These macrophages selectively localize to CLS
surrounding dead and dying adipocytes (6). Genetic abla-
tion of CD11c+ cells results in significant reductions in CLS
and improves metabolic profiles in obese mice (17,45). Our
data suggest that TPL2 is a key regulator of CD11c+ mac-
rophage infiltration and inflammation in obese adipose
tissue. Gene expression of F4/80 and CD11c were dra-
matically decreased in the adipose tissue of obese TPL2KO

FIG. 4. TPL2 deficiency reduces obesity-induced liver inflammation and steatosis. A: Representative H&E stain of liver from the obese WT (left)
and TPL2KO (right) mice. B: Liver triglyceride (TG) content of WT or TPL2KO mice fed an ND or an HFD. C and D: Relative gene expression of
lipogenic genes and inflammatory markers in livers from WT or TPL2KO mice fed an ND or an HFD (n = 5–6). *P < 0.05. Mean data are shown with
the SE (error bars). (A high-quality color representation of this figure is available in the online issue.)
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mice, suggesting reduced infiltration or retention of CD11c+

macrophages. Consistent with this observation, the fre-
quency of CLS and mRNA levels of MCP-1 and TNF-a were
both significantly reduced. Our data do not rule out the
possibility that reduced adipose tissue inflammation in
TPL2KO mice reflects altered inflammatory responses of
T-cells (47) or other adipose tissue immune cells.

TPL2 is a master regulator of ERK-dependent gene
expression downstream of TLRs in hematopoietic cells,
including macrophages (25,48). Thus, in addition to its
effects on adipose tissue macrophage recruitment, TPL2
ablation is likely to have direct effects on macrophage
inflammatory gene expression in obesity. We therefore de-
termined the effect of TPL2 ablation on lipopolysaccharide-
induced IL-6, MCP-1, and TNF-a expression in BMDM
from WT and TPL2KO mice. We observed reduced se-
cretion of TNFa, MCP-1, and IL-6 from TPL2KO BMDM.
These data are in line with the gene expression data from
the adipose tissue or liver, or both, of obese WT and
TPL2KO mice and suggest TPL2 signaling in immune cells
is an important factor in the initiation and maintenance of
obesity-induced peripheral inflammation.

In addition to reducing adipose tissue immune cell in-
filtration and inflammation, ablation of TPL2 signaling in
obese mice reduced hepatic lipid accumulation and in-
flammation. Decreased hepatic inflammation and lipid ac-
cumulation are both associated with improved insulin
action in the liver. Hepatic inflammation is linked to en-
hanced triglyceride deposition in the liver; therefore, TPL2
ablation may reduce hepatic steatosis by directly reducing
hepatic inflammation, for example, in Kupffer cells.

Alternatively our observations are consistent with studies
reporting positive associations between visceral adipose
tissue inflammation and hepatic inflammation in obese
humans (49) and mice (13). Future studies using tissue-
specific TPL2 ablation will be required to determine if

the observed reduction in hepatic inflammation is a result
of reduced adipose tissue inflammation or is caused by a
lack of TPL2 signaling in the liver.

Accumulation of triglyceride and active lipid species
(i.e., diacylglycerols) has been implicated in the patho-
genesis of insulin resistance (40,41) and could be a
common denominator in the improved metabolic profile
observed in liver and muscle. Triglyceride accumulation
was reduced in the liver and skeletal muscle in obese
TPL2KO mice compared with obese WT mice. Consistent
with reduced ectopic triglyceride accumulation, the clamp
studies demonstrated increased sensitivity to insulin’s
actions in liver and skeletal muscle. Insulin-stimulated Akt
phosphorylation was enhanced in skeletal muscle but not
in the liver of obese TPL2KO mice. This discrepancy be-
tween clamp and Akt data presumably reflects differential
responses to an acute insulin bolus versus the integrated
physiologic response to a steady-state insulin infusion
during the clamp. It is intriguing that reduced ectopic
triglyceride was observed in obese TPL2KO mice without
a relative reduction in basal or clamped plasma free fatty
acid concentrations. Future studies will address the mech-
anism(s) by which TPL2 reduces ectopic triglyceride ac-
cumulation in the liver and skeletal muscle and its role in
improving glucose-insulin homeostasis.

In summary, the current study demonstrates a signifi-
cant role for TPL2 in obesity-induced inflammation and
metabolic dysfunction. TPL2 deletion in the obese state
prevents MAPK activation, proinflammatory cytokine ex-
pression, and the accumulation of immune cells in pe-
ripheral tissues, resulting in reduced hepatic steatosis and
improved insulin sensitivity. The recent report of increased
TPL2 activity in human obesity (31) and the results of the
current study suggest that TPL2 is a promising therapeutic
target for the inflammatory and metabolic complications
of obesity.

FIG. 5. TPL2KO BMDMs have a reduced inflammatory phenotype. A: Relative gene expression (fold change) of inflammatory cytokines and che-
mokine in BMDM from WT and TPL2KO mice that were simulated with or without lipopolysaccharide (LPS; 100 ng/mL) for 3 h. B: Protein con-
centrations in the culture media were measured by enzyme-linked immunosorbent assay (data are the average of three separate experiments
performed in duplicate). *P < 0.05. The error bars designate the SE.
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