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Abstract

Distinct mutation signatures arise from environmental exposures and/or from defects in metabolic pathways that promote genome stability.
The presence of a particular mutation signature can therefore predict the underlying mechanism of mutagenesis. These insults to the ge-
nome often alter dNTP pools, which itself impacts replication fidelity. Therefore, the impact of altered dNTP pools should be considered
when making mechanistic predictions based on mutation signatures. We developed a targeted deep-sequencing approach on the CAN1
gene in Saccharomyces cerevisiae to define information-rich mutational profiles associated with distinct rnr1 backgrounds. Mutations in the
activity and selectivity sites of rnr1 lead to elevated and/or unbalanced dNTP levels, which compromises replication fidelity and increases
mutation rates. The mutation spectra of rnr1Y285F and rnr1Y285A alleles were characterized previously; our analysis was consistent with
this prior work but the sequencing depth achieved in our study allowed a significantly more robust and nuanced computational analysis of
the variants observed, generating profiles that integrated information about mutation spectra, position effects, and sequence context. This
approach revealed previously unidentified, genotype-specific mutation profiles in the presence of even modest changes in dNTP pools.
Furthermore, we identified broader sequence contexts and nucleotide motifs that influenced variant profiles in different rnr1 backgrounds,
which allowed specific mechanistic predictions about the impact of altered dNTP pools on replication fidelity.
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Introduction
Specific environmental exposures and/or genetic backgrounds
generate distinct mutation signatures (Chan et al. 2012, 2015;
Saini et al. 2020). Therefore, characterizing mutations provides in-
sight into the underlying molecular mechanisms of mutagenesis
in the absence of information about genotype or exposure. For
example, C!T mutations have long been associated with UV ex-
posure (Howard and Tessman 1964). This is the basis for the
Catalog of Somatic Mutations in Cancer (COSMIC), which has cu-
rated somatic mutation signatures in cancers to infer mutagenic
mechanisms underlying cancer development (Tate et al. 2019).
Our goal in this study was to develop a broader analytic pipeline
that allowed us to build genotype-specific mutation profiles from
the ground up, using both canonical and signature mutations
(Brash 2015), as well as sequence context.

In Saccharomyces cerevisiae, mutation spectra are frequently de-
termined via one of two general strategies. The first requires se-
lection of mutants, most often at the CAN1 locus (Xu et al. 2008;
Kumar et al. 2011; Buckland et al. 2014), which encodes an
arginine permease that also imports the toxic arginine analog,

L-canavanine, leading to cell death (Fantes and Creanor 1984;
Hoffmann 1985). Inactivating mutations in CAN1 block canava-
nine uptake and toxicity, allowing selection for mutations in
CAN1. The CAN1 gene from individual resistant colonies is then
amplified by PCR and subjected to Sanger sequencing. However,
this approach is relatively low throughput (Chabes et al. 2003; Xu
et al. 2008; Kumar et al. 2011) and will miss low-frequency var-
iants (below 15–20%) that might exist within a resistant colony
(Rohlin et al. 2009). The second approach has been mutation ac-
cumulation (MA) experiments followed by WGS, which avoids po-
tential bias associated with focusing on a single genetic locus (i.e.,
CAN1). However, the depth of sequencing is limited because the
entire genome is sequenced, complicating statistically significant
comparisons among genotypes (Lujan et al. 2014; Zhu et al. 2014;
Rentoft et al. 2016). Increased depth requires increased numbers
of MA lines and many passages are required to accumulate suffi-
cient mutations and low-frequency mutations that are poten-
tially diagnostic of a genotype will be missed.

We developed a high-throughput sequencing approach and
bioinformatic pipeline that allowed characterization and
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comparison of robust mutation profiles from different RNR1 ge-
netic backgrounds. RNR1 encodes the large subunit of ribonucleo-
tide reductase (RNR), the enzyme that catalyzes the rate-limiting
step in dNTP synthesis. RNR expression and activity is tightly reg-
ulated to promote replication fidelity. Mutations that affect the
allosteric regulation of RNR increase and/or skew dNTP pools and
increase mutation rates to varying degrees (Chabes et al. 2003;
Xu et al. 2008; Kumar et al. 2010, 2011; Buckland et al. 2014;
Watt et al. 2016). Altered dNTP pools compromise replication
fidelity by: (1) increasing the frequency of misinsertion and mis-
alignment by replicative DNA polymerases and (2) biasing those
polymerases toward synthesis at the expense of proofreading,
promoting extension beyond a mispair (Phear et al. 1987; Kunkel
and Soni 1988; Kumar et al. 2010). Notably, altered RNR activity is
associated with cancer and nucleobase analogs are frequently
used as chemotherapeutics, commonly targeting RNR (Jordheim
et al. 2013; Aye et al. 2015; Kohnken et al. 2015; Mathews 2015,
2018). Overexpression of Rrm2, encoding the small subunit of
RNR, induced lung neoplasms in a mouse model, consistent with
an elevated mutator phenotype (Xu et al. 2008).

We focused on three rnr1 alleles (rnr1D57N, rnr1Y285F, and
rnr1Y285A) that decrease replication fidelity by altering dNTP
pools (Chabes et al. 2003; Xu et al. 2008; Kumar et al. 2010). We
chose these rnr1 alleles because: (1) they have been demonstrated
to have elevated mutation rates and (2) there was both Sanger
and MA WGS sequencing data available for comparison and vali-
dation of our analytic approach (Chabes et al. 2003; Xu et al. 2008;
Kumar et al. 2010, 2011; Buckland et al. 2014; Watt et al. 2016). We
paired selection for mutations at CAN1 with next-generation se-
quencing (NGS) to define mutation profiles for RNR1, rnr1D57N,
rnr1Y285F, and rnr1Y285A. Importantly, mutations in CAN1 have
been found to be representative of mutations occurring genome-
wide when Sanger and WGS approaches were compared (Kumar
et al. 2011; Buckland et al. 2014; Watt et al. 2016). While the major-
ity of mutations identified were CAN1 inactivating mutations, the
variant types (single nucleotide changes and small insertions and
deletions) are not necessarily inactivating in other genomic con-
texts. The variants and the sequence contexts in which they oc-
curred revealed mutations that could occur throughout the
genome. While we recognize that some mutations may be missed
via selection, pairing NGS with selection for mutations signifi-
cantly increased sequencing depth compared with previous stud-
ies and allowed us to innovate in our computational analysis.

In this study, we defined and characterized mutation profiles
in wildtype yeast and in isogenic strains bearing the rnr1D57N,
rnr1Y285F, and rnr1Y285A alleles (Chabes et al. 2003; Xu et al.
2008; Kumar et al. 2010). We built comprehensive mutation pro-
files from first principles, which consisted of analysis of the spe-
cific types and positions of variants observed, the trinucleotide
context in which the variants occurred and the broader sequence
context of the variants, identifying motifs that were specifically
enriched or depleted in distinct rnr1 backgrounds. Importantly,
and in contrast to previous work (Chabes et al. 2003; Xu et al.
2008; Kumar et al. 2010, 2011; Buckland et al. 2014; Watt et al.
2016), our analysis defined novel, distinct profiles in all three rnr1
backgrounds, with rnr1Y285A exhibiting the most unique profile.
We noted many of the same rnr1Y285A mutation motifs deter-
mined by MA WGS (Watt et al. 2016), while also revealing new
high and low-frequency variants for rnr1Y285A and unique pro-
files in rnr1Y285F and rnr1D57N, indicating that even small
changes in dNTP pools contribute to mutagenesis. Therefore, we
propose that genotype-specific mutation profiling at CAN1 is
complementary to MA WGS.

Materials and methods
Strains and plasmids
All strains in this study were derived from the W303 RAD5þ back-
ground (Supplementary Table S1). Strains containing rnr1Y285F/
A in the pGAL-RNR1 background and integration plasmids to re-
create these strains (Kumar et al. 2010) were kindly provided by
Andrei Chabes. To integrate rnr1 alleles at the endogenous RNR1
locus in the absence of pGAL-RNR1, we created a new set of rnr1
integration plasmids. First, we amplified pRS416 (Sikorski and
Hieter 1989) with SO261 and SO262, which each contain an AatII
recognition site (Supplementary Table S2). The resulting PCR
product, which consists of pRS416 without the ARS/CEN region,
was digested with AatII and ligated to generate the yeast integra-
tion plasmid, pEM3, which carries a counter-selectable URA3
marker (Supplementary Table S3). RNR1 was amplified from
JSY13 with SO263 (Supplementary Table S2; encodes a XhoI site)
and SO265 (Supplementary Table S2; encodes a SpeI site) to am-
plify a product that extends �1 kb upstream of the endogenous
RNR1 start site to �3 kb downstream of the RNR1 start site, to
capture the full RNR1 gene. This fragment was digested with XhoI
and SpeI and ligated into pEM3 to generate the RNR1 integration
plasmid pNL1 (Supplementary Table S3). To generate a truncated
version of RNR1 in the same plasmid, RNR1 was amplified
from JSY13 with SO263 (encodes a XhoI site) and SO264
(Supplementary Table S2; encodes a SpeI site) to amplify a prod-
uct that extends �1 kb upstream of the endogenous RNR1 start
site to �2 kb into the RNR1 open reading frame. The PCR product
was digested with XhoI and SpeI and ligated into pEM3 to generate
pNL2 (Supplementary Table S3).

We generated versions of pNL1 and pNL2 that encode
rnr1D57N, rnr1Y285F and rnr1Y285A using the Q5 site-directed
mutagenesis kit (New England Biolabs) (Supplementary Table
S3). Oligonucleotides used for the mutagenesis are described in
Supplementary Table S2. Plasmids were sequenced to confirm
the presence of the desired mutations and absence of secondary
mutations. To integrate each rnr1 allele into the endogenous
RNR1 locus, both the full-length and truncated integration plas-
mid for a given allele were linearized with Sph1 and used to co-
transform JSY13 using the standard lithium acetate approach
(Gietz et al. 1992). Transformants were selected on synthetic com-
plete medium lacking uracil (SC-URA). Single colonies were
patched onto YPD to allow for homologous recombination and
transplacement of one copy of rnr1. After 2 days growth at 30 �C,
cells from these patches were struck out to obtain single colonies
on plates containing 5-FOA (0.1%), selecting for a loss of URA3.
Plasmid integration was confirmed by PCR using SO266
(Supplementary Table S2; specific to the integration plasmid) and
SO230 (Supplementary Table S2; specific to the genomic locus).
Sanger sequencing was used to confirm retention of a mutant
rnr1 allele and a loss of RNR1. rnr1 was amplified in two frag-
ments for sequencing, using the SO32/SO21 and SO25/SO22
primer pairs (Supplementary Table S2).

CAN1 mutation rate analysis
Mutation rates were determined through canavanine resistance
assays as described previously (Xu et al. 2008). Strains were struck
out to single colonies on complete media. Individual 2 mm colo-
nies were carefully measured and selected to assay. Colonies
were suspended in 100 ml in TE (10 mM Tris-HCl, pH 7.5; 1 mM
EDTA); 75ml of undiluted colony suspension was plated on
SC-ARG þcanavanine plates. The cell suspension was diluted
1:10,000 and 20 ml was plated under permissive conditions on
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SC-ARG. At least two independent isolates of 11 colonies were
assayed for each genotype. Isolates were first analyzed indepen-
dently before grouping data to calculate rates. Mutation rates
and confidence intervals were calculated utilizing FluCalc fluctu-
ation analysis software (Radchenko et al. 2020).

Pooling canavanine resistant colonies
Strains were patched on SC-ARG plates and grown at 30 �C for
3 days, �30–35 generations. A quarter of the patch was used to in-
oculate a 25 mL SC-ARG liquid culture. A patch was used to inoc-
ulate the culture instead of a single colony to reduce the
potential effects of jackpot mutations in the cultures. Cells were
grown for approximately 3–4 additional generations and then
plated on SC-ARG þ canavanine plates, to select for approxi-
mately 2,000 canavanine resistant (CanR) colonies. It required an-
other �30 generations to generate colonies, for a total of �65–70
generations of accumulated mutations, although mutations that
confer canavanine resistance should occur in the first 35–40 gen-
erations. CanR colonies were selected in at least four independent
experiments per genotype. For each genotype, at least two inde-
pendent isolates were used (Supplementary Table S4).

Colonies were counted and collected by adding TE (100 mM
Tris-HCl, pH 7.4, 10 mM EDTA) to the plate and using a sterile glass
spreader to scrape off the cells. Colonies from multiple plates were
pooled and resuspended in TE (pH 7.4) to a final volume of 10–
12 mL. One mL of the colony suspension was used to extract geno-
mic DNA (gDNA). Briefly, cells were lysed by vortexing in 200ml 1:1
phenol: chloroform, 200ml chromosome preparation buffer (10 mM
Tris,-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, 1% SDS, 2% Triton X-
100) and 0.3 grams acid-washed glass beads (Sigma; 425–600
microns). Two-hundred microliter TE pH 8.0 was added and reac-
tions were centrifuged for 5 minutes at 16,000 � g. The resulting
supernatant was collected. Three additional phenol: chloroform
extractions were performed to increase DNA purity. gDNA was
precipitated by addition of ammonium acetate to a final concen-
tration of 100 mM followed by 2 volumes of 95% ethanol. The
gDNA was collected by centrifugation at 16,000 � g for 10 minutes,
followed by a wash with 70% ethanol. The gDNA pellets were
resuspended in 50ml nuclease free water with RNase A (final con-
centration of 50mg/ml) and incubated at room temperature for at
least 1 hour after which gDNA was stored at �20�C.

Pooling colonies growing on nonselective media
In addition to canavanine resistant colonies, we also pooled
�2,000 colonies grown on nonselective media from RNR1,
rnr1D57N, rnr1Y285F and rnr1Y285A backgrounds as permissive
controls. These colonies were grown as described above, except
that in the final step, cells were grown on SC-ARG in the absence
of canavanine. Colonies were pooled and genomic DNA extracted
as described above.

Library preparation and sequencing
CAN1 was amplified from gDNA in 6 overlapping, 349-350 base
pair fragments using primers listed in Supplementary Table S2.
KAPA HiFi ReadyMix (Roche) was used to amplify these frag-
ments in 25 ll reactions for each CAN1 region for each of the 150
samples (total of 906 reactions). Two-microliter of DNA was
added to each reaction, in the range of 50–500 ng. Two-microliter
of each PCR reaction was electrophoresed on a 1% agarose gel to
confirm amplification. For each sample, 20 ll of PCR product
from each of the 6 regions (each � 300 bp) were pooled in a
96-well plate and purified using the Zymo ZR-96 DNA Clean-up
Kit. A total of 65 pooled sample sets (Supplementary Table S4)

were generated for paired-end sequencing (2 � 300), including
technical replicates. PCR products from the same genomic prepa-
ration of pooled samples were independently amplified and se-
quenced.

Library barcoding and QC
Nextera barcode adapters were added to CAN1 amplicons and
were then minimally PCR amplified (8 cycles) for attachment of
Illumina Nextera XT index primers set A (Illumina). After PCR,
excess adapters were removed using Ampure XP beads (Beckman
Coulter) and samples were eluted into EB buffer. Barcoded ampli-
cons were checked for quality using an Advanced Analytical
Fragment Analyzer and Qubit Fluorescence (Invitrogen).
Amplicons were pooled to 10 nM in EB buffer and the final con-
centration was determined using the Illumina Universal qPCR
Amplification kit from Kapa Biosystems. All pooled samples were
diluted to 4 nM, denatured using NaOH and loaded onto an
Illumina MiSeq sequencing platform (PE300, V3) with 20% PhiX
control. The sequencing was performed in two separate runs to
increase coverage and as a check for reproducibility.

Upstream sequencing analysis
Reads were trimmed using a variable length trimmer (CutAdapt
version 1.14) specifying a quality score of Q30. Trimmed reads
were further processed using CLC Genomics Workbench Version
11. Paired-end reads were merged, primer locations were
trimmed, and processed reads were aligned to the SacCer3 refer-
ence genome. Variants were then called using the CLC low-fre-
quency variant caller with required significance of 0.01%. Variant
files were exported from CLC as VCF files and downstream analy-
sis was performed in RStudio (version 1.2.1335), paired with cus-
tom python scripting (Figure 1).

The variant classes included 6 possible single nucleotide var-
iants (SNVs), single base A/T or G/C insertions and deletions,
complex insertions and deletions, as well as multinucleotide var-
iants (MNVs) and replacements (Replac.). MNVs are dinucleotide
SNVs, where two neighboring nucleotides are both mutated, e.g.,
CC>AT. Replacements are complex insertions or deletions, where
the deleted or replaced base is a variant. Two examples include
AAC>G and C>AT. Both MNVs and replacements are extremely
low-frequency events and rarely occurred in our data set; neither
had a significant impact on clustering. Our initial analysis
assessed the frequency of each variant type as a function of
genotype.

Mutation spectra visualization
Variants across biological replicates were analyzed in two differ-
ent ways. The first, was a more conservative approach based on
presence or absence of a variant at a particular position within
CAN1 for a given genotype, referred to as “unique counts.” Each
position-specific, unique variant was counted only once per repli-
cate and the fraction of biological replicates in which it was ob-
served was scored. In our NGS approach, we cannot easily
distinguish between a mutation appearing early in the growth of
the culture and a mutation occurring independently multiple
times. By not considering the variant frequency in this analysis,
we eliminated this concern. It also mitigated the effects of any
“jackpot” mutations that might skew variant frequencies. The
second approach incorporated the frequency of each unique vari-
ant across CAN1 (sum of frequencies). This approach added the
sum of the variant frequencies if a particular variant occurred in
multiple biological replicates. This analysis generated a geno-
type-specific mutation profile that incorporates variant type,
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frequency, and position. Overall, the results from both types of
analysis were consistent when mutation spectra were visualized.

Permissive variant analysis and filtering
We applied a filter based on our permissive samples (RNR1,
rnr1D57N, rnr1Y285F, rnr1Y285A grown in the absence of selec-
tion) to remove background mutations from CanR samples
(Figure 2). The permissive filter removes any variant that occurs
below the average permissive sample unique variant frequency
of 0.109% (Figure 3C). We customized the permissive filter be-
cause we also observed position-specific variants at a frequency
higher than the overall average permissive variant frequency of
0.109%. Thus, these systematically higher frequency variants
were removed from the selected samples if they occurred at a fre-
quency below the highest frequency variant that occurred at the
same position in the permissive data set. Figure 3, E–G shows an
example of the permissive filter applied. This is a conservative fil-
ter, and undoubtedly low-frequency events that are biologically
relevant may be removed but are below the sensitivity of this as-
say. The filtering parameters can be adjusted accordingly, for
other applications of this targeted sequencing approach.

Determining SNV trinucleotide context
The trinucleotide context surrounding the SNV was determined by
taking a 3 bp window surrounding the reference position within
CAN1. We cannot definitively determine which strand incurred a
mutation and therefore all SNVs were categorized as C or T
changes for this analysis. There are a total of 96 different possible
SNV changes in unique sequence context (Alexandrov et al. 2015).
For a given sample, the number of SNVs in each of these 96 con-
texts was totaled. This analysis does not take frequency into ac-
count and only scores the presence or absence of a particular type
of SNV. The data was further condensed by taking the average of
each of the 96 different contexts for all the biological replicates in
one genotype.

The number of trinucleotide sequence contexts in CAN1 was
calculated using a sliding window approach utilizing python

scripting. For each of the 96 different SNV changes in triplet con-
text, the average number of SNVs in a genotype was divided by
the number of times the triplet sequence context occurs in CAN1.
This data set was imported into R-studio and plotted via the bar-
plot() function.

Hierarchical cluster analysis and motif
enrichment
To identify genotype-specific variants and mutation profiles and
to eliminate frequency bias from variants that occurred early on
in the growth of a particular culture, we condensed unique var-
iants based on the number of biological replicates sequenced for
that genotype. While we were hesitant to include variant fre-
quency in this analysis, we reasoned that observing a variant in
multiple replicates increased the probability that it was specific
to that genotype. If a variant occurred in 4 out of 4 biological rep-
licates it was represented as 1, if it occurred in 3 out of 6 repli-
cates it was represented as 0.5. This strategy provided an
unbiased way to assess the probability that a given variant was
genotype-specific. These data were clustered on rows (or unique
variants), after applying a row sum cut-off of >-2 to eliminate
low-frequency variants that are less likely to be driving the ob-
served differences in mutation spectra. Clustering the data based
on unique variants allows us to identify different types of muta-
tions in specific sequence contexts that are potentially predictive
of a genotype. We performed motif enrichment on the different
variant classes (i.e., G/C deletion, CG>AT SNVs) independently,
with a 12 base window surrounding the variant. Heatmaps were
plotted using the pheatmap library in RStudio and motif enrich-
ment was performed using Berkely web logos (Crooks et al. 2004).

Data availability
All data and reagents are available upon request. All variant
sequences are provided in Supplementary Table S5. The
Supplemental Material is available at figshare: https://doi.org/
10.25387/g3.14187080.

Figure 1 A schematic of (A) experimental design and (B) pipeline for data analysis.
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Results
Rates of canavanine resistance in different
genetic backgrounds
To characterize and compare mutation profiles between different
isogenetic backgrounds, we genetically altered dNTP pools using
previously characterized mutations in RNR1, the large subunit of
RNR. We chose RNR because alterations in dNTP pool levels gen-
erate distinct mutation profiles and RNR is associated with can-
cer (Xu et al. 2008; Kumar et al. 2010, 2011; Buckland et al. 2014;
Aye et al. 2015; Mathews 2015, 2018; Watt et al. 2016). The
rnr1D57N mutation, in the activity site, leads to a balanced two-
fold increase in each of the four dNTPs (Chabes et al. 2003). Two
mutations in the RNR specificity site, rnr1Y285F and rnr1Y285A,
lead to threefold and 20-fold skewed increases in dCTP and dTTP,
respectively (Kumar et al. 2011). The previously characterized
rnr1Y285F and rnr1Y285A strains also encoded a wild-type copy
of RNR1 under control of the inducible pGAL1 promoter (pGAL-
RNR1) (Kumar et al. 2010). All strains were grown in glucose,
which restricts expression of RNR1 from the pGAL promoter, but
leaky expression remained a possibility. Therefore, we also con-
structed strains that encoded only rnr1Y285F and rnr1Y285A for
comparison and for use in this study (Supplementary Table S1).

We determined mutation rates of all strains at the CAN1 locus
using a canavanine resistance assay (see Materials and Methods).
The rnr1D57N and rnr1Y285F strains exhibited low mutation rates
(�threefold increase), while the rnr1Y285A strain exhibited a
larger �10–20-fold increase in mutation rate (Kumar et al. 2010;
Supplementary Table S6), consistent with previous work (Chabes
et al. 2003; Xu et al. 2008; Kumar et al. 2010, 2011). The pGAL-RNR1
construct did not affect mutation rates in rnr1Y285F, but did
modulate levels of mutagenesis in the rnr1Y285A background de-
spite growth in glucose (Supplementary Table S6).

Selection at CAN1 paired with next generation
sequencing (NGS) to define mutation profiles
To generate mutation sequence data in RNR1/rnr1 backgrounds,
we selected � 2,000 canavanine resistant colonies (“selected
samples”), each of which contained at least one mutation within
CAN1. Resistant colonies were pooled, genomic DNA was

extracted and CAN1 was amplified in 6 overlapping regions. To
amplify the 50 end of CAN1, which includes a highly repetitive
promoter element, we used a primer that annealed to that ele-
ment, to avoid replication slippage during PCR or sequencing
(Supplementary Table S2: CAN1 reg1 Forward_anchored).
Amplicons from each pooled sample, representing a single repli-
cate for a given genotype, were barcoded, combined and se-
quenced using 2 � 300 paired-end sequencing (see Materials and
Methods) (Figure 1A).

Identifying genotype-specific trends in mutation profiles is
complicated by the stochastic nature of mutations. To help ac-
count for this, we sequenced at least four independent samples
for each genotype, using at least two independently generated
isolates (Supplementary Tables S1 and S4). In parallel, we se-
quenced pooled samples (�1,000 colonies each) grown in the ab-
sence of canavanine selection, which we called “permissive”
samples (Figure 1A). These permissive controls allowed us to de-
velop a threshold for background mutations at each position
along CAN1 that are a result of low frequency, stochastic muta-
tions and sequencing and/or PCR polymerase bias (see below).

We developed a custom bioinformatic pipeline for sequence
analysis. Upstream analysis was performed in CLC Genomics
Workbench 11, determining variants utilizing a low-frequency
variant caller, and downstream analysis was performed in R
Studio and through custom python scripts to determine the ef-
fect of sequence context and to compare genotypes (Figure 1B;
see Materials and Methods and below for details). All sequence
data were scored for: (1) SNVs, (2) single base (A/T or G/C) inser-
tions or deletions, (3) complex (>1 base) insertions or deletions,
(4) dinucleotide SNVs at adjacent nucleotides, i.e., MNVs, and (5)
complex replacements (see Materials and Methods). We could
not definitively determine which strand incurred a mutation; a
C to A transition could also be a G to T change and was repre-
sented as such, i.e., CG>AT. NGS allowed deep sequencing of
pooled samples at each position along CAN1, providing: (1) large
sample sizes for each pooled group, (2) sequencing depth suffi-
cient to uncover low-frequency variants, and (3) novel insight
into mutation profiles and positional effects on mutations, all of
which would be unattainable via a whole genome approach

Figure 2 Absolute variant frequency is consistent with selection at CAN1. The average absolute variant frequency was calculated for each genotype by
dividing the total number of variants by the total number of reads sequenced. The average was then taken for all biological replicates sequenced in a
genotype. Error bars represent the standard deviation between biological replicates within each genotype. The number of total biological replicates
sequenced varied by genotype; numbers are displayed in Supplementary Table S4. (A) The average total variant frequency differed significantly between
selected and permissive samples, regardless of genotype. (B) The average variant frequency decreased following application of the permissive variant
filter.
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because the sequencing depth/coverage is insufficient for this

type of analysis.
On average CAN1 was sequenced at a depth of 16,000x cover-

age per sample. The total variant frequency for each sample was
calculated by taking the sum of the number of variants and divid-

ing by the total number of reads sequenced for that sample. The

variant frequencies for all biological replicates within a genotype

were averaged. The total variant frequency for all selected samples

ranged from �80 to >100%, with an average of 99.35% (Figure 2A).
Frequencies above 100% indicated more than 1 mutation within

CAN1 in a CanR colony, and were observed in rnr1Y285A strains,

which had higher mutation rates (Supplementary Table S6).

Permissive sample filtering removes background
mutations
Under permissive conditions (no canavanine selection), the aver-

age variant frequency for all four genetic backgrounds (wildtype,

rnr1D57N, rnr1Y285F, and rnr1Y285A) was 8.7% compared to
>90% in the samples selected in the presence of canavanine

(Figure 2A). While the variant frequencies in permissive controls

were lower, they were higher than expected in the absence of se-

lection, indicating that these background mutations were being
introduced as part of the PCR/sequencing pipeline. Consistent

with this prediction, the variant distribution in permissive con-

trols from wildtype, rnr1D57N, rnr1Y285F, and rnr1Y285A were

virtually identical between genotypes, despite differences in mu-
tation rates and mutation spectra in selected samples (Chabes

et al. 2003; Xu et al. 2008) (Supplementary Table S6, Figure 3, A
and B). Of the 296 unique variants observed in all permissive
samples, 82 (27.7%) were observed in all 4 genotypes; over half
were observed in at least 2 genetic backgrounds. Moreover, the
SNV spectra from permissive samples, independent of genotype
(Figure 3A), closely resembled the SNV spectrum observed for
KAPA HiFi polymerase (Oyola et al. 2012; Potapov and Ong 2017),
with a large bias toward CG>TA changes that represented �70%
of all SNVs. The small number of unique variants observed and
the significant overlap in variant and position among genotypes,
precluded a genotype-specific analysis of the permissive samples.
This overlap is illustrated in Figure 3E which shows the variant
profile from a section of CAN1 for all four genotypes grown in the
absence of selection. Note that the variant patterns are low fre-
quency and are largely superimposable.

To correct for these effects, we developed a permissive variant
filter to remove potentially artefactual variants as part of the ana-
lytical pipeline. We determined the average frequency of each vari-
ant at each position along CAN1 observed in permissive samples,
which was 0.109% compared to 0.407% in the selected samples
(Figure 3, C and D). Any variant that occurred below the average
permissive variant frequency of 0.109% was removed by the per-
missive filter, which represents �1 variant called for every 1,000
reads sequenced. Some position-specific variants systematically oc-
curred at average frequencies above 0.109%, in multiple biological
replicates and genotypes. We incorporated this into the permissive
filter, setting the threshold for each position-specific variant to its

Figure 3 Permissive controls show consistent mutation spectra and are filtered from our data set. (A) The SNV spectra for all permissive samples.
Plotted are the number of unique variants in a sample normalized out of 100% for comparison purposes. Individual biological replicates for each
genotype are shown. (B) The deletion spectra for each permissive sample. Shown are single G/C (blue), A/T (green) base deletions and deletions greater
than 1 base (pink). Individual biological replicates for each genotype are shown. (C) A histogram plotting the number of variants (y-axis) and the
frequency (x-axis) at which they occur in both permissive and (D) selected samples. The red vertical line represents the average variant frequency in
permissive and selected samples respectively. (E) A 100 bp window from 32,000 to 32,100 displaying the different types of variants (deletions [blue
circles]; insertions [magenta circles]; MNV [green circles]; replac. [red circles]; SNV [orange circle]) and the frequency at which they occur in 4 different
permissive genotypes. (F) The same window displaying the variants that occur in the same four genotypes where mutants were selected in the presence
of canavanine. (G) Variants that remain in selected samples post-permissive variant filter.

Note: Figure Replacement Requested.
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highest observed frequency in a permissive sample. The position-

specific variant frequencies were consistent across genotypes.
This conservative approach ensured that our analysis of muta-

tion profiles in selected samples (see below) was not driven by

background variants. We set a blanket cutoff at 0.109%, rather

than making the filter exclusively position-specific, because we se-

quenced significantly fewer permissive samples (18) than selected

(47). Therefore, the permissive filter likely underestimates stochas-

tic mutations. The higher the number of samples sequenced, the

greater the probability that low-frequency mutations due to

“noise” will be sequenced. Figure 3E illustrates the application of

this filter, where the filter cutoff is 0.109%, except for positions

32057, 32081, and 32092, where variants occurred at position-spe-

cific higher average frequencies in the permissive samples. The

application of this filter reduced the noise in the selected data

(Figure 3, F and G), decreased variant frequency in selected sam-

ples by an average of 7.5% (Figure 2B) and resulted in only minor

changes to mutation spectra overall (Supplementary Figure S1).

Alterations in dNTP pools change mutation profiles
We determined the mutation profiles for each individual replicate

(Supplementary Figure S2) and then compared the relative levels of

transitions, transversions, in/dels and other variants from previous

analyses of rnr1D57N, rnr1Y285F pGAL-RNR1 and rnr1Y285A pGAL-

RNR1 (Xu et al. 2008; Kumar et al. 2011) with our data sets (Figure 4),

using pooled biological replicates (Figure 5). The distributions for

the same genotypes were very similar, indicating that our sequenc-

ing approach and analysis pipeline replicated these previous

results. The most pronounced differences were observed in the

rnr1D57N spectra, likely a result of the small sample size (n¼ 16

CanR colonies) used in the previously published results (Xu 2008).

We also compared the relative rates of each type of variant that we

observed with previous work (Xu et al. 2008; Kumar et al. 2011;

Buckland et al. 2014), which were also similar (Supplementary Table

S6). Because of the depth of sequencing in our data, we were able to

perform a more nuanced analysis (see below).

After the initial analysis, we characterized mutation events in two
ways: (1) the presence of a particular variant at a unique position, i.e.,
the number of different CG>AT changes within CAN1 (“unique var-
iants”) (Counts in Supplementary Table S7) and (2) the frequency at
which each of these unique variants occurred, i.e., the combined fre-
quency of all CG>AT observed changes along CAN1 (“sum of
frequencies”) (Freq. in Supplementary Table S7) (see Materials and
Methods). The latter essentially provides mutation spectra but is
structured to incorporate position information. The former prevented
potential “jackpot” mutations from dominating and skewing the mu-
tation spectra. These analyses allowed us to determine whether dif-
ferent types of mutations occurred in a genotype-dependent
manner, independent of frequency, and whether variant frequencies
were altered in a significant way (Counts/Freq. in Supplementary
Table S7). For example, a decreased number for “unique variants”
combined with unchanged or increased “sum of frequencies” indi-
cated that variant type is more localized, possibly indicating a muta-
tional hotspot. Independent biological replicates with the same
genotype closely resembled each other (Supplementary Figure S2);
variant frequencies were more variable than unique counts among
biological replicates of the same genotype (Supplementary Figure S2),
consistent with the stochastic nature of MA during the growth of a
culture. Distinct mutagenic events were observed in multiple, inde-
pendent, experiments, consistent with systematic, genotype-specific
changes in mutation profiles.

The relative frequency of SNVs, insertions and deletions, normal-
ized by the number of sequence reads, varied significantly by RNR1/
rnr1 allele (Supplementary Table S6, Figure 5), as did the absolute
variant frequencies (Figure 5). In rnr1D57N, deletions increased sub-
stantially compared to RNR1, while insertions remained unchanged
(Figure 5, B and C). The SNV profile of rnr1D57N was very similar to
wildtype, although the overall SNV frequency was reduced
(Supplementary Table S7, Figure 5A), consistent with more stochastic
rather than systematic mutation events. In contrast, SNVs domi-
nated the rnr1Y285F profile. Despite its lower mutation rate
(Supplementary Table S6), the normalized variant profiles of
rnr1Y285F were very similar to those of rnr1Y285A, although CG>GC
changes were essentially eliminated in rnr1Y285A. The proportion of
variant type was skewed toward SNVs in rnr1Y285F and deletions in
rnr1Y285A. While the rnr1Y285A and rnr1Y285A pGAL-RNR1 strains
resulted in almost indistinguishable mutation profiles, rnr1Y285F and
rnr1Y285F pGAL-RNR1 showed more variation compared to one an-
other (Supplementary Table S7 and Figure S2), likely because there is
a higher proportion of stochastic versus systematic mutations when
mutation rates are lower. All three rnr1 backgrounds exhibited a sig-
nificant increase in G/C �1 bp deletions compared to wildtype, al-
though the absolute frequency varied (Supplementary Table S7,
Figure 5B). Overall, very few insertions were observed, but we noted
that the G/Cþ 1 bp insertions were extremely rare in rnr1Y285A cells
compared to other genotypes (Supplementary Table S7, Figure 5C).
The depth of sequencing coverage in the current study revealed
more distinct and detailed mutation profiles than previously identi-
fied in rnr1D57N and rnr1Y285F (Xu et al. 2008; Kumar et al. 2010,
2011; Buckland et al. 2014; Watt et al. 2016), with clear shifts in the
types and frequency of mutations that accumulate in the presence
of balanced versus skewed elevations in dNTP levels.

Unique variants occur within CAN1 in a
genotype-specific manner
Mutations occurred across the 1,773 bp CAN1 in all genotypes
tested. For each genotype, we identified unique variants in each
replicate and then calculated the average variant frequency of
each unique variant (Supplementary Figure S3). Combined, we

Figure 4 A comparison to previous studies which utilized Sanger
sequencing. Variant counts determined using Sanger sequencing from
previous studies (Xu et al. 2008; Kumar et al. 2011) were compared with
the normalized sum of frequencies from genotypes in our study. Relative
frequencies were similar across studies.
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identified 860 unique variants in all tested genotypes; 288 in
rnr1Y285A genotypes (rnr1Y285A and rnr1Y285A pGAL-RNR1), 570
in rnr1Y285F genotypes (rnr1Y285F and rnr1Y285F pGAL-RNR1),
452 in wildtype and 322 in rrn1D57N (Supplementary Figure S3).
On average this is over 5 times greater than the number of unique
mutational events picked up by previous Sanger sequencing
approaches.

Many unique variants were observed in a single isolate at low
frequency, while others occurred in multiple biological replicates
at increased variant frequency. The majority of average variant
frequencies were below 5%; 44/860 variants occurred at an aver-
age frequency greater than 5% (Supplementary Figure S4). When
a unique variant occurred at a frequency above 25% in only one
biological replicate, we defined it as a “jackpot” mutation; a mu-
tation that arose after two generations of growth would result in
>25% of the cells (colonies) harboring that mutation. This is dis-
tinct from high-frequency unique variants, which had an average
frequency above 5% in multiple replicates, which we analyzed to
identify systematic, genotype-specific variants.

We compared the average variant frequency of high-
frequency variants (>5% average frequency) that were enriched
within a particular genotype (Figure 6), which could represent
positions within CAN1 that are particularly susceptible to muta-
tion in that genetic background. In RNR1 (9 biological replicates),
we identified 15 unique high-frequency variants, 9 of which oc-
curred in more than one RNR1 biological replicate (Figure 6A).
The majority occurred in a small proportion of biological repli-
cates (Figure 6A). When a high-frequency variant was present in
multiple RNR1 replicates, it typically occurred at variant frequen-
cies of less than 1% for the remaining replicates. Most of the
RNR1 high-frequency variants were not observed in any of the
rnr1 backgrounds. The exception of the SNV at position 32114
which was observed in all four rnr1Y285F/A genotypes and was
previously identified as a “hotspot” in rnr1Y285A pGAL-RNR1
(Buckland et al. 2014). In our data set, this was also the most

significantly mutated position in RNR1; it was found in over half
the biological replicates.

In rnr1D57N, 3 high-frequency unique variants were systemat-
ically mutated in multiple rnr1D57N biological replicates, and
were specific to rnr1D57N (Figure 6B, mustard bars). For example,
the G deletion at position 31971 occurred in 4/7 biological repli-
cates (Figure 6B) and drives the observed overall mutation spec-
trum for this genotype (Figure 5). These susceptible positions
have not been previously observed. Similarly, rnr1Y285F (periwin-
kle) and rnr1Y285F pGAL-RNR1 (pink bars) exhibited very few
high-frequency unique variants. There was some overlap be-
tween rnr1Y285F and rnr1Y285F pGAL-RNR1 at about half of these
positions (32449, 32940, 31986, 32008; Figure 6, C and D), which
were unique to these genetic backgrounds. Susceptible positions
in rnr1D57N and rnr1Y285F genotypes have not been previously
observed. In contrast, we observed overlapping, systematic high-
frequency unique variants in multiple replicates of rnr1Y285A
(green) and rnr1Y285A pGAL-RNR1 (turquoise) (Figure 6, E and F),
including CG>AT and GC>TA SNVs as well as G/C single base
deletions. Notably, several of these high-frequency unique var-
iants were also observed in both rnr1Y285F genotypes (periwinkle
and pink bars) at lower frequencies, but in multiple biological
replicates. This indicates that these types of mutations occur in
the same sequence contexts when dCTP and dTTP levels are
skewed, whether by a modest threefold or the more significant
20-fold increase. Variants at these positions, commonly G/C �1
deletions and CG>AT changes, are increasingly probable when
dNTP pools are further elevated and skewed.

Several of the high-frequency unique variants that we ob-
served in rnr1Y285A-pGAL-RNR1 and rnr1Y285A overlapped with
previously defined “hotspots” in rnr1Y285A pGAL-RNR1 by Sanger
sequencing, i.e., occurring at 10x higher frequency than in wild-
type (Kumar et al. 2011; Buckland et al. 2014). Specifically, CAN1
positions 32027, 32556, 32608, 32658, 32670, 32842, 32917, and
33151 were susceptible to mutation in the current study and in

Figure 5 Mutation spectra vary by rnr1 allele. (A) The SNV spectra normalized to total SNVs (upper panel) and normalized out of total variants (lower
panel). (B) The deletion spectra normalized to total deletions (upper) and normalized to total variants (lower). (C) The insertion spectra normalized to
total insertions (upper) and normalized out of total variants (lower).
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Figure 6 High-frequency variants occur systematically in rnr1Y285F/A genotypes. Unique variants with an average variant frequency >5% for (A)
wildtype, (B) rnr1D57N, (C) rnr1Y285F-pGAL RNR1, (D) rnr1Y285F, (E) rnr1Y285A-pGAL-RNR1, (F) rnr1Y285A. For comparison, the average frequency of each
variant in other genotypes is also plotted. Below each plot, the fraction of biological replicates in which the variant occurred is observed and the
surrounding sequence context are indicated. *, unique variant occurred in �50% of biological replicates for the genotype analyzed; **, unique variant
occurred in 100% of biological replicates for the genotype analyzed.

Note: Figure Replacement Requested.
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previous studies (Figure 6, E and F) (Kumar et al. 2011; Buckland
et al. 2014). In addition, our targeted sequencing approach identi-
fied two additional susceptible positions in rnr1Y285A back-
grounds; the TA>GC SNV at position 32823 and the CG>AT SNV
at position 33114 (Figure 6, E and F). Three positions in CAN1
were highly susceptible to mutation in the rrn1Y285A back-
grounds in our work and in previous work: (1) G/C deletion at po-
sition 32658, (2) GC>TA SNV at position 32027, and (3) the
CG>AT SNV at position 32917 (Figure 6, E and F) (Buckland et al.
2014). Therefore, these three high-frequency variants may be di-
agnostic of this genotype.

All of the “hotspots” identified previously (Buckland et al. 2014)
were observed in our rnr1Y285A samples and the majority were
observed at higher frequencies in rnr1Y285A than in wildtype
(Supplementary Table S5) Several previously identified “hotspots”
were observed as systematic low-frequency variants (see below).
We also noted a shift in the type of variant observed at some of
these positions in rnr1Y285A relative to RNR1 (Supplementary
Table S5). For example, at position 33168, RNR1 variants include
CG>TA, CG>AT, CG>GC substitutions, single C deletions as well
as MNVs and replacements. In contrast, in rnr1Y285A, variants at
this position were dominated by CG>AT changes, with some
CG>TA changes. Similarly, at position 33154, variants were
evenly distributed between CG>GC and CG>AT changes in RNR1
while CG>AT changes dominated in rn1Y285A.

Low-frequency variant analysis identifies new
mutational hotspots in rnr1Y285A strains
The sequencing depth across CAN1 achieved in our targeted NGS
approach also allowed us to analyze low-frequency variants for
systematic, genotype-specific changes. For this analysis, the in-
clusion of multiple biological replicates was critical. We analyzed
low-frequency variants, defined as less than 5% average variant
frequency enriched in a genotype-specific manner. RNR1,
rnr1D57N, and rnr1Y285F mutation profiles exhibited a large
number of low-frequency variants (56–123) found in only one rep-
licate and/or at low variant frequency, consistent with a high pro-
portion of stochastic mutations. In contrast, both rnr1Y285A
genotypes exhibited a much smaller number of unique low-fre-
quency events (13 deletions, 16 SNVs; Figure 7). The concentra-
tion of low-frequency events in rnr1Y285A backgrounds indicates
a more systematic, rather than stochastic, pattern of mutagene-
sis. Notably, there were many G/C deletions (Figure 7A) and
CG>AT SNVs (Figure 7B) unique to, and therefore characteristic
of, rnr1Y285A backgrounds. Furthermore, these genotype-specific
mutations appeared to drive the mutation profiles of rnr1Y285A
backgrounds (Figure 5). Many of these low-frequency variants
were previously observed in rnr1Y285A, including several that
were categorized as “hotspots,” e.g., deletions at positions 33356,
33078, and 33747 and base substitutions at positions 33153 and
32929 (Figure 7) (Buckland et al. 2014). We further investigated
these variants by systematically analyzing sequence context.

SNVs in trinucleotide context reveal unique
mutation signatures
The analysis of both high- and low-frequency variants above indi-
cated specific positions within CAN1 that were susceptible to mu-
tation in a genotype-specific manner. The sequencing depth
achieved in our study provided the opportunity to analyze geno-
type-specific variants and sequence context more systematically.
We took two distinct approaches, which have not been previously
applied to these rnr1 alleles: (1) trinucleotide context analyses and
(2) hierarchical cluster analyses paired with motif enrichment.

Assessing the trinucleotide context of mutations is an increas-
ingly common approach to extract mutation signatures, espe-
cially in human cancers (Alexandrov et al. 2016; Haradhvala et al.
2018). For our analysis, each unique SNV was categorized with re-
spect to the nucleotide immediately 50 and 30 to the variant, with
96 possible triplet contexts. We determined the average number
of times an SNV was observed in a particular triplet context per
genotype, normalized to the number of times the triplet context
occurs in CAN1 (Figure 8). Pearson correlation coefficients of each
SNV in unique trinucleotide context were calculated to evaluate
patterns of SNV mutagenesis (Supplementary Figure S5 and
Table S8). Notably, in all genotypes, C!T changes (red bars,
Figure 8), particularly in GCC and GCG sequence contexts, domi-
nated. The proportion of GCC and GCG changes increased with
altered dNTPs, most dramatically in rnr1Y285F and rnr1Y285A
samples, which were highly correlated within a genotype
(rnr1Y285A:rnr1Y285A pGAL-RNR1 rs ¼ 0.930, rnr1Y285F:rnr1Y285F
pGAL-RNR1 rs ¼ 0.947) and between rnr1Y285F and rnr1Y285A
genotypes (rnr1Y285F:rnr1Y285A rs ¼ 0.924, rnr1Y285F pGAL-
RNR1:rnr1Y285A pGAL-RNR1 rs ¼ 0.909). RNR1 and rnr1Y285A gen-
otypes showed the weakest correlations (RNR1:rnr1Y285A rs ¼
0.693, RNR1:rnr1Y285A pGAL-RNR1 rs ¼ 0.658), with many variants
absent in rnr1Y285A C>G (black), T>A (gray), T>C (green), and
T>G (pink) variants. For example, C>G errors in ACG, ACT, CCG,
GCA, GCG, GCT, TCC, and TCT contexts were completely absent
in both rnr1Y285A genotypes. Many of these missing variants oc-
curred in repetitive sequences, while errors in different repetitive
contexts dominated in rnr1Y285A.

RNR1 and rnr1D57N or rnr1Y285F were more strongly corre-
lated (RNR1: rnr1D57N rs ¼ 0.774, RNR1: rnr1Y285F rs ¼ 0.736), con-
sistent with more subtle differences between SNV spectra in
trinucleotide context (Figure 8). In rnr1D57N, the most apparent
difference is a loss of C>G variants in CCA, CCC, CCG, and CCT;
both rnr1D57N and rnr1Y285F also exhibited some variability in
T>A (gray), T>C (green), and T>G (pink) variants.

Motif enrichment reveals CC dinucleotides are
commonly mutated in rnr1Y285F/A genotypes
We performed hierarchical cluster analysis of the unique variants
in our data set to determine differences between mutation profiles
and to determine which variants in CAN1 were driving these dif-
ferences. This analysis was paired with motif enrichment to deter-
mine broader sequence contexts prone to mutagenesis in a
particular genetic background. The rnr1Y285A and rnr1Y285A
pGAL-RNR1 genotypes clustered, indicating shared common fea-
tures that were underrepresented in RNR1 and rnr1D57N (Figure 9),
as did the rnr1Y285F genotypes. Both rnr1Y285F and rnr1Y285A
clustered away from rnr1D57N and RNR1, which were more closely
related in this analysis. We observed three main clusters of unique
variants, labeled I, II, and III.

In the first two clusters (Figure 9, clusters I and II) RNR1 and
rnr1D57N were very similar, while rnr1Y285F/A exhibited distinct
differential enrichment profiles. The variants in cluster I were
more significantly overrepresented in rnr1Y285A backgrounds, rel-
ative to rnr1Y285F. The reverse was true of variants in cluster II.
Both clusters I and II were underrepresented in RNR1 and
rnr1D57N. Within cluster II, there were several variants that were
more significantly underrepresented in rnr1D57N than in RNR1. In
contrast, the third cluster (III) did not exhibit clear trends, with dif-
ferent variants under- or over-represented in different genotypes.
Combined, these data indicate genotype-specific mutagenesis.

From each of these three clusters, we performed motif enrich-
ment on the sequence surrounding the variants and identified
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unique contexts differentially enriched in rnr1Y285F/A back-

grounds, consistent with the trinucleotide context data (Figure 8)

as well as high- (Figure 6) and low-frequency (Figure 7) variant

analysis. C>A and C>T changes in cluster I occurred at CC dinu-

cleotides, while those in cluster III, which were underrepresented

in rnr1Y285F/A, did not. This is consistent with the prediction

that repetitive GC sequences are more prone to mutation in the

presence of skewed elevations in dCTP and dTTP. Similarly, G/C

deletions in repetitive G/C context were differentially enriched in

rnr1Y285A genotypes (Figure 9, cluster II), while A/T insertions

and deletions were enriched across all samples (Figure 9, cluster

III). Similar logos were previously identified via MA WGS only

Figure 7 Low-frequency variants specific to rnr1Y285A genotypes. Low-frequency deletions (A) and SNVS (B) in rnr1Y285A pGAL-RNR1 (turquoise) and
rnr1Y285A (green) genotypes. None of these variants were observed in wildtype, but some occurred at low frequencies in rnr1D57N (brown) and
rnr1Y285F (blue and pink) genotypes. *, variant occurred in �50% of rnr1Y285A or rnr1Y285A pGAL-RNR1 biological replicates; **, variant occurred in
100% of the rnr1Y285A or rnr1Y285A pGAL-RNR1 biological replicates analyzed.

Note: Figure Replacement Requested.
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Figure 8 The average number of each SNV as it occurs in unique triplet nucleotide context is distinct between rnr1 alleles. Bars are colored according to
the six different types of SNVs. (A) The 16 different triplet contexts are lettered for display purposes. The variant change (C>A, blue bar) occurs at the
middle nucleotide marked X in each triplet context for (B) RNR1, (C) rnr1D57N, (D) rnr1Y285F pGAL-RNR1, (E) rnr1Y285F, (F) rnr1Y285A pGAL-RNR1, and (G)
rnr1Y285A.

Note: Figure Replacement Requested.

Figure 9 Unique variants in enriched motifs form distinct clusters. (A) Hierarchical cluster analysis of the highest occurring variants reveals distinct
clusters, annotated I, II and III. (B) The different classes of variants enriched in each cluster were subset, and 12 basepairs surrounding the variant was
used to perform motif enrichment. The corresponding motifs from the different variant classes in each boxed cluster are displayed on the right and
labeled accordingly (boxes I, II, and III). The mutated position is indexed at 0 and the 6 bases on either side of the variant are labeled as such.
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when rnr1Y285A pGAL-RNR1 was combined with msh2D (Watt
et al. 2016).

Discussion
To build mutation profiles from first principles, we developed a
CAN1 selection-based next generation sequencing approach to
determine robust, information-rich, genotype-specific mutation
profiles. We focused on rnr1 alleles that reduced replication fidel-
ity and increased mutation rates (Chabes et al. 2003; Xu et al.
2008; Kumar et al. 2011). While CAN1 is a widely used mutational
reporter gene in yeast, the application of deep-sequencing
allowed streamlined sample preparation and more accurate de-
termination of mutation spectra, by increasing both the number
of colonies and biological replicates analyzed at one time. This
approach allowed us to (1) identify low-frequency sequence var-
iants, (2) develop mutational fingerprints that resulted from com-
promised replication fidelity as a result of altered dNTP pools,
and (3) identify broader sequence contexts significantly enriched
in specific genotypes. While some noninactivating mutations will
have been missed, we did observe �1–3% of variants resulted in
synonymous changes (data not shown). It is also worth noting
that the inactivating mutations at CAN1 we observed were pri-
marily SNVs and small in/dels; other rearrangements may be se-
lected in different genetic backgrounds (e.g., rad27 alleles, Xie
et al. 2001). Nonetheless, we effectively expanded our under-
standing of the impact of altered dNTP pools on mutagenesis and
developed an approach that can be applied to study other genetic
backgrounds or environmental exposures.

Our sequencing/analytic approach allowed us to define geno-
type-specific mutation profiles, including trinucleotide sequence
context for mutations and broader sequence motifs surrounding
mutations. Deep sequencing and analysis of only CAN1 muta-
tions identified mutation sequence motifs similar to those gener-
ated through WGS (Watt et al. 2016), uncovered genotype-specific
variants and motifs not identified by WGS or previous CAN1 se-
quencing, and revealed new details for mutation profiles in geno-
types with lower mutations rates. From this information, we can
infer mechanisms of mutagenesis (see below). Notably, we identi-
fied sequence motifs in rnr1Y285A similar to those identified pre-
viously by WGS in rnr1Y285A msh2D, which eliminates MMR
(Watt et al. 2016), indicating that the errors generated when
dNTPs are elevated and skewed are substrates for MMR.

Mechanisms of mutagenesis from distinct
elevations in dNTP levels
Despite a twofold increase in mutation rate above wildtype, the
rnr1D57N mutation spectrum closely resembled wildtype (Figure 5),
consistent with previous studies (Xu et al. 2008; Kumar et al. 2011).
This indicated that the twofold balanced increase in dNTPs causes
errors to accumulate in a stochastic manner, similar to wildtype.
Given the low-mutation rate in rnr1D57N (Supplementary Table S6),
the majority of these errors are likely corrected by the MMR system,
which identifies replication errors and targets them for repair (Xu
et al. 2008; Kunkel and Erie 2015). Nonetheless, we observed a signif-
icant increase in G/C single base deletions in this genetic back-
ground (Figure 5B) and were able to identify new sequence contexts
specific to mutations in rnr1D57N. This includes CG>TA, CG>AT
changes, A/T deletions in repetitive A/T sequences (Figures 5, 6B,
and 9), which appeared diagnostic of rnr1D57N mutagenesis. We
predict that the regions in which these mutations occur are inher-
ently more prone to mutation; the twofold increase in dNTP levels

exacerbates this by favoring replicative polymerase synthesis over
proofreading activity.

The high frequency of G/C deletions observed in rnr1D57N was
driven by a single base G deletion at position 31971 that was mu-
tated in 4 out of 7 rnr1D57N replicates and occurs at a high fre-
quency, on average �60% (Figures 5B and 6B, S2C & S2D—
compare unique counts vs. frequency of variants). The high fre-
quency indicated the mutation arose early in the growth of the
cultures, but the fact that it occurred and was enriched in multi-
ple biological replicates indicated that this position is uniquely
susceptible to deletion, specifically in rnr1D57N. This variant was
flanked by repeats on both the 50 side (repetitive A/T motif) and 30

side (CC dinucleotide) (ATAAGCCA). Therefore, both the excess of
dTTP incorporated opposite the AA dinucleotide and the excess
of dCTP incorporated on the opposite strand could result in tran-
sient misalignment and misincorporation at this position and it
is therefore likely this variant occurred during both leading and
lagging strand replication. Increased dNTP levels alter replication
fork dynamics (Davidson et al. 2012; Poli et al. 2012), potentially
enhancing the next nucleotide effect and resulting in increased
variant frequencies at this position in rnr1D57N.

The rnr1Y285F allele exhibited a modest effect on mutation
rate and a distinct mutation profile (Figure 5). Meta-analysis of
the types and positions of variants in rnr1Y285F significantly
overlapped with that of rnr1Y285A (Figures 6–9), despite the dif-
ferences in mutation rate (Supplementary Table S6) and dCTP/
dTTP levels (Kumar et al. 2010). There was a strong correlation be-
tween the trinucleotide context for variants in rnr1Y285F and
rnr1Y285A backgrounds (Supplementary Table S8; Figure S5).
Similarly, hierarchical cluster analysis indicated that similar var-
iants were enriched in the two genetic backgrounds in clusters I
and II, although the degree of enrichment varied (Figure 9). This
was particularly noticeable with G/C variants, i.e., G/C deletions
(e.g., C deletion at position 33356 and G deletion at 32670) and
CG>AT variants (e.g., CG>AT SNV at position 33168 and CG>AT
change at 32037). Therefore, even modestly increased dCTP and
dTTP pools resulted in distinct error accumulation. We predict an
increased probability that replicative polymerases incorporated
the excess nucleotides (dCTP, dTTP) during synthesis and more
efficiently extended mismatches at the expense of proofreading
(Kumar et al. 2011; Watt et al. 2016).

We noted a substantial increase in G/C deletions specific
to rnr1Y285A backgrounds (Figure 6, E and F), which may be
explained by limiting levels of dGTP in rnr1Y285A. dGTP levels
are already limiting in both yeast and mammalian cells (Chabes
et al. 2003; Håkansson et al. 2006); in rnr1Y285A, the proportion of
dGTP relative to the total dNTP pool is extremely small, reducing
the probability of its incorporation. The reduced probability of
dGTP incorporation and the concomitant increased probability of
dCTP and dTTP incorporation in rnr1Y285A allow us to predict
the strand that has sustained the initial misincorporation event
(Figure 9) (Buckland et al. 2014). We propose that the predicted
reduction in dGTP incorporation led to the observed distinct pat-
tern of deletion in rnr1Y285F/A (Mathews 2015), within specific
sequence contexts, i.e., CC and CCC runs (Figure 9). Notably, rnr1
alleles that dramatically increased dGTP levels were also severely
mutagenic (rnr1K243E and rnr1I262V, N291D), increasing SNVs
and frame shift mutations in repetitive contexts (Schmidt et al.
2019). This highlights the importance of determining the absolute
and relative abundance of dGTP when assessing mutation pro-
files.

Our data indicated that the mutation profiles generated using
our sequencing and analytical approach were diagnostic of the

N. A. Lamb et al. | 13



balanced or unbalanced nature of the dNTP pools, i.e., which

dNTPs were elevated. The mutation rate and variant frequencies

reflected the absolute levels of dNTPs; far more in/dels than

SNVs were observed for rnr1Y285A while the reverse was true for

rnr1Y285F. Despite this difference, the proportions were similar

and many of the same errors in the same sequence context accu-

mulated in both these genetic backgrounds. This hypothesis

could be tested by comparing the rnr1D57N mutation profile with

that of RNR1 galactose-induced overexpression, which similarly

leads to balanced dNTP pools, but elevated �10-fold above wild-

type levels (Chabes and Stillman 2007), as well as other rnr1

alleles.

Implications for understanding mutation
signatures in human cancers
Mutation signatures of human tumors are used to identify molec-

ular drivers of carcinogenesis (Alexandrov et al. 2013; Nik-Zainal

et al. 2016; Haradhvala et al. 2018; Alexandrov et al. 2020), which

have clear implications for diagnosis, prognosis and treatment

options for patients (Van Hoeck et al. 2019). However, in general,

elevated dNTP levels (balanced or skewed) have not been consid-

ered when evaluating mutation signatures from human tumors,

although they almost certainly contribute to mutagenesis in can-

cer (Aye et al. 2015; Mathews 2015, 2017; Pai and Kearsey 2017;

Degasperi et al. 2020). We noted distinct similarities between rnr1

SNV triplet mutation profiles (Figure 8) and specific COSMIC sig-

natures, most notably signatures 6 and 15. Signature 6 occurs

most commonly in colorectal and uterine cancers and is associ-

ated with defective MMR. We previously noted synergistic effects

on mutation rate between rnr1D57N and MMR deletions (Xu et al.

2008). The contribution of elevated dNTP pool levels to mutagen-

esis in combination with MMR is intriguing.
While elevated dNTP levels have been implicated in support-

ing rapidly proliferating cancer cells, altered dNTP pools may be

tumor-specific (Wilson et al. 2011; Kohnken et al. 2015; Mathews

2015; Purhonen et al. 2020). Different skewed elevations result in

distinct mutation spectra (Schmidt et al. 2019) and thus more

studies are necessary to determine what dNTP imbalances are

relevant to different types of cancers. In the meantime, certain

indicator mutations, such as a high number of G/C single base

deletions, can point towards specific dNTP imbalances i.e., high

dCTP and dTTP levels seen in rnr1Y285A.
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